DEMETHYLATION OF METHOXYPYRIDINES WITH SODIUM TRIMETHYLSILANETHIOLATE

Min-Jen Shiao,* Wei-Shen Ku, and Jih Ru Hwu

Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China

Abstract — Demethylation of methoxypyridines was accomplished in 55–87% yield by use of ~1.5–2.5 equivalents of NaSSiMe₃ in 1,3-dimethyl-2-imidazolidinone at 120–180 °C. This method was found applicable to a methoxyquinoline and methoxypyridines containing a second substituent, such as Cl, OMe, and COOMe.

Protection of a hydroxyl group attached to a pyridine nucleus by methylation is a commonly used tool during the synthesis of heterocyclic compounds.¹⁻⁷ The methyl group in the resultant methoxypyridines often has to be removed later. Limited methods have been reported for the demethylation of methoxypyridines,^{1-5,7,8} wherein none involves systematic studies.

Reagents for demethylation of methoxypyridines can be classified into the following categories: mineral acids, 9-11 alkylthiolates, 2,12 acylating agents, 8 and silicon compounds. 1,13,14 Recently, sodium trimethylsilanethiolate (NaSSiMe3) has been used for the bis-O-demethylation of aryl methyl ethers. 15 To understand more about the utility of the silicon-containing reagents, we performed a systematic study on the demethylation of methoxypyridines using NaSSiMe3.

A general method for removal of the methyl group from methoxypyridines was developed, as shown in Scheme I, and the results are listed in the Table. A methoxypyridine (e.g., la-h) was treated with NaSSiMe₃ (~1.5-2.5 equivalents) in anhydrous 1,3-dimethyl-2-

imidazolidinone (DMEU) at 120-180 °C to give the corresponding hydroxypyridine (e.g., 2a-h) in 55-87% yield. We found that DMEU was a better solvent than others, such as DMF and THF. The products were purified by column chromatography and recrystallized (for solids) from a mixture of CH₂Cl₂ and MeOH.

Scheme I

This newly developed method was applicable to a pyridine having a methoxy group attached at the 2-, 3-, and 4-positions (i.e., $1a \rightarrow 2a$ (73%), $1b \rightarrow 2b$ (61%), and $1c \rightarrow 2c$ (60%)). A disubstituted molecule 2-methoxy-6-methylpyridine (1d) was converted to 2-hydroxy-6-methylpyridine (2d) in 70% yield. Furthermore, we found that the standard conditions can be used to demethylate a methoxyquinoline (1e). The corresponding 2-hydroxyquinoline (2e) was produced in 87% yield.

Under the standard conditions, 6-chloro-2-methoxypyridine (1f) gave a 70% yield of 6-chloro-2-hydroxypyridine (2f) as the major product, along with <5% yield of 2-hydroxy-6-methylthiopyridine as the by-product. The thiolated by-product came from demethylation of 1f with NaSSiMe3, followed by reaction of the resultant 2f with MeSSiMe3 generated in situ. The results indicate the feasibility for selective O-demethylation of a methoxypyridine that is attached a Cl substituent. On the other hand, use of ~2.5 equivalents of NaSSiMe3 to react with methyl 6-methoxynicotinate (1g) gave 6-hydroxynicotinic acid (2g) as the exclusive product (55% yield), which came from the demethylations of both the -OMe and the -COOMe moieties in 1g. In a control

Table. Demethylation of Methoxypyridines with NaSSiMe₃, Generated from Me₃SSiSMe₃ and NaOMe, in DMEU to Afford the Corresponding Hydroxypyridines.

	Molar Ratio	Reaction Time	Temp			mp (°C) or bp (°C /torr)	
Starting Material 1	1:Me ₃ SiSSiMe ₃ :NaOMe	h	°C	Product 2	Yield (%)	Found	Literature ¹⁶
2-methoxypyridine (1a)	1: 1.8:1.5	18	180	2-hydroxypyridine (2a)	73	mp 103–105	105–107
3-methoxypyridine (1b)	1:1.8:1.5	24	180	3-hydroxypyridine (2b)	61	mp 125–127	126–129
4-methoxypyridine (1c)	1:1.8:1.5	24	180	4-hydroxypyridine (2c)	60	bp 140–143 /760	230–235/12
${\bf 2}\text{-methoxy-6-methylpyridine} \ ({\bf 1d})$	1:1.8:1.5	15	180	2-hydroxy-6-methyl- pyridine (2d)	70	mp 158-160	158–160
2-methoxyquinoline (1e)	1:1.8:1.5	4	140	2-hydroxyquinoline (2e)	87	mp 196198	198–199
6-chloro-2-methoxypyridine (1f)	1:1.8:1.5	24	120	6-chloro-2-hydroxypyridine (2f)	70	mp 127–129	128–130
methyl 6-methoxynicotinate (1g)	1:2.8:2.5	24	180	6-hydroxynicotinic acid (2g)	55	mp >330	>330
2,4-dimethoxypyridine (1h)	1:2.8:2.5	24	180	2,4-dihydroxypyridine (2h)	75	mp 243-246	245

^aThe products contained 2-hydroxy-6-methylthiopyridine in <5% yield.

experiment, we treated nicotinate(1g) with 1.5 equivalents of NaSSiMe₃ at 110 °C for 18 h. The mono-demethylated product, methyl 6-hydroxynicotinate, was obtained in 40% yield. Thus we conclude that the removal of a methyl group from the methyl ether unit with NaSSiMe₃ is faster than that from a methyl ester group.

The feasibility of bis-O-demethylation of dimethoxypyridines with NaSSiMe₃ (~2.5 equivalents) was proven in the conversion of 2,3-dimethoxypyridine (1h) to 2,3-dihydroxypyridine (2h, 75% yield). This method allowed facile removal of two methyl groups in one flask without the necessity of isolation of any intermediate.

EEXPERIMENTAL

All compounds were of reagent grade and purified before use. Merck silica gel (60 H) was used for column chromatography. The following instruments were used for recording the spectral data: Perkin-Elmer 882 Infrared Spectrophotometer; Bruker AC 200 and MSL 200 ¹H-nmr Spectrometers; and VG 7-250 GC-Mass Spectrometer. Elemental analyses were performed on a Perkin-Elmer 2400 Elemental Analyzer. 2-Methoxypyridine and 2-chloro-6-methoxypyridine were purchased from Aldrich Chemical Co. Hexamethyldisilthiane was from Fluka Chemical Co. and was stored in serum capped bottles under nitrogen over molecular sieves 4A. 3-Methoxypyridine and 4-methoxypyridine were prepared from 3-chloropyridine and 4-chloropyridine, respectively, with sodium methoxide in DMF.¹⁷ 2-Methoxy-6-methylpyridine, 2,3-dimethoxypyridine, 2-methoxyquinoline were synthesized from commercially available 2-hydroxy-6-methylpyridine, 2,3-dihydroxypyridine, and 2-hydroxyquinoline, separately, by the method involving silver carbonate. Methyl 6-methoxynicotinate was prepared from 6-hydroxynicotinic acid by use of diazomethane. ¹⁹

2-Hydroxypyridine (2a): The standard procedure was described as follows.

To a two-necked flask equipped with a stirring bar and a rubber septum were added hexamethyldisilathiane (321 mg, 1.8 mmol), sodium methoxide (81 mg, 1.5 mmol), and anhydrous 1,3-dimethyl-2-imidazolidinone (3.0 ml). After 1 h of stirring at room temperature under an atmosphere of nitrogen, the mixture was added 2-methoxypyridine

(1a, 0.11 g, 1.0 mmol) and the solution was heated at 180 °C for 18 h. The reaction mixture was diluted with water and saturated with NH₄Cl at room temperature, and the resultant solution was extracted with CH_2Cl_2 (3 × 50 ml). The combined organic layers were washed with water (3 × 25 ml), dried over anhydrous Na₂SO₄, and condensed under reduced pressure. The residue was chromatographed on a column of silica gel with a mixture of CH_2Cl_2 and MeOH (20:1) as eluant to give pure 2a (0.070 g) in 73% yield. The demethylation conditions and results for various methoxypyridines are summarized in the Table.

2-Hydroxy-6-methylthiopyridine: mp 183–185 °C (ethyl acetate); ir (CHCl₃) 1643, 1583, 1450 cm⁻¹; ¹H-nmr (CDCl₃/TMS): δ 2.54 (3H, s), 6.24 (1H, d, J = 7.2 Hz), 6.40 (1H, d, J = 8.4 Hz), 7.30 (1H, dd, J = 7.2, 8.4 Hz); ms (70 eV) m/z (%) 141 (M⁺, 100), 95 (32), 67 (18). Hrms Calcd for C₆H₇NOS: 141.0248, Found: 141.0253.

Methyl 6-Hydroxynicotinate: mp 162–164 °C (CH₂Cl₂); ir (CHCl₃) 1720, 1680, 1659, 1409 cm⁻¹; ¹H-nmr (CDCl₃/TMS): δ 3.85 (3H, s), 6.51 (1H, d, J = 9.4 Hz), 7.97 (1H, dd, J = 2.4, 9.4 Hz), 8.18 (1H, d, J = 2.4 Hz). Anal. Calcd for C₇H₇NO₃: C, 54.90, H, 4.61, N, 9.15. Found: C, 54.61, H, 4.48, N, 9.05.

ACKNOWLEDGEMENT

For financial support, we thank the National Science Council of Republic of China (grant No. NSC 81-0208-M001-31 and NSC 81-0208-M007-59) and Academia Sinica.

REFERENCES

- A. P. Kozikowski, Y. Xia, E. R. Reddy, W. Tückmantel, I. Hanin, and X. C. Tang, J. Org. Chem., 1991, 56, 4636.
- 2. S. G. Hegde, J. Org. Chem., 1991, 56, 5726.
- 3. M.-J. Shiao, L.-M. Shyu, and C.-F. Chen, Heterocycles, 1990, 31, 523.
- 4. M.-J. Shiao, P. Shieh, and J.-S. Lai, Synth. Commun., 1988, 18, 1397.
- 5. M.-J. Shiao, P. Shieh, and J.-S. Lai, J. Chin. Chem. Soc., 1986, 35, 233.
- 6. E. W. Thomas, J. Org. Chem., 1986, 51, 2184.

- 7. M.-J. Shiao, T. Y. R. Tsai, and K. Wiesner, Heterocycles, 1981, 16, 1879.
- 8. E. Klingsberg, *Pyridine and Its Derivatives, Part III*; Interscience: New York, 1962, Chapter 12.
- 9. T. W. Balko and R. S. Brinkmeyer, J. Heterocycl. Chem., 1987, 24, 901.
- 10. J. den Hertog and D. T. Burrman, Recl. Trav. Chim-Pay-Bas., 1956, 75, 252.
- W. J. Thompson, J. H. Jones, P. A. Lyle, and J. E. Thies, J. Org. Chem., 1988, 53, 2052.
- L. Testaferri, M. Tiecco, M. Tingoli, D. Bartoli, and A. Massoli, *Tetrahedron*, 1985,
 41, 1373.
- C. C. Leznoff, P. I. Svirskaya, V. Yedidia, J. M. Miller, J. Heterocycl. Chem., 1985,
 22, 145.
- 14. S. Hanessian and Y. Guindon, Tetrahedron Lett., 1980, 21, 2305.
- 15. J. R. Hwu and S.-C. Tsay, J. Org. Chem., 1990, 55, 5987.
- 16. Compounds are available from Aldrich Chemical Co.
- 17. D. L. Comins and D. H. Lamunyon, Tetrahedron Lett., 1988, 29, 777.
- 18. M.-J. Shiao and K.-Y. Tarng, Heterocycles, 1990, 31, 819.
- 19. K. Yamano and H. Shirahama, Tetrahedron, 1992, 48, 1457.

Received, 6th August, 1992