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Abstract - 2-Oxopurine reacted with benzyl bromide and ethanol to give the 

covalent adduct 1,3,7-tribenzyl-6-ethoxy-2-oxopurine, as well as dibenzylated 

products. Carbon - carbon bond formation was observed in the reaction between 

2-oxopurine, dry silica gel, and benzyl bromide, giving rise to 6-hydroxy-1,3,8- 

mbenzyl-2-oxopurine. 

One subgroup of the biologically important purines, which to the best of our knowledge is not found in the 

nature and has not attracted much synthetic interest yet, is the group of 2-oxopurines. These compounds are 

exceptionally polarized molecules as shown by calculation of the dipole moment of the parent molecule.1 

Aromatic stabilization is absent, resulting in highly polarized double bonds with much of the electron density 

localized on the nitrogen atoms, thus leaving the carbon atoms electron deficient.2 In particular, some of the 6- 
unsubstituted 2-oxopurines seem to be so R-electron deficient at the 6-position that almost any nucleophile 

adds to this electrophilic position. In many of their properties the polarized, R-electron deficient azine ring 

systems resemble the carbonyl group, u., in the 1:l adduct formation with n u c ~ e o ~ h i l e s . ~ ~  In related studies 

to the one reported here, we and others have recently exploited the corresponding propensity of pyrimidin-2- 

ones to form covalent adducts.3 

6-Substituted 2-oxopurines are of considerable interest in several respects. For example, it has been reported 

that 6-substituted purines can inhibit endogenous protein degradation. 6-Substituted 2-oxopurines are therefore 

potentially useful as selective degradation inhibitors in treatment of cancer.5 Hence, we investigated the 

possibility of employing the electrophilic property of the 2-oxopurines for selective introduction of substituents 

to the 6-position. 

2-Oxopurine hydrochloride (1) was prepared by some modifications of the procedure previously reported by 

Holy.6 Cytosine was nitrated at the 5-position, followed by reduction to the diamino compound. Final ring 

closure with methyl orthoformate to form the imidazole moiety afforded the purine. 

In the present communication we wish to report on some very intriguing results from our preliminary studies. 

It is known that the parent 2-oxopurine undergoes a slow covalent adduct formation with barbituric acid in 

protic solvents with concomitant decomposition.' To avoid the slow reaction and resulting decomposition 

problems we chose to work with alkylated derivatives. When 2-oxopurine hydrochloride (1) was alkylated 
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with an excess of benzyl hmmide in acetonitrile, using potassium carbonate as the base, only the 1.3- and the 
1.7- diakylated isomers (2 and 3) were obtained.* The benzyl groups were chosen due to the nmr diagnostic 
value of the benzylic AB resonance quartets in the predicted covalent adduct~,3a-~ as well as to ensure high 

lipophilicity for easy chromatographic handling of the products. The regiochemical outcome of the alkylation 

of 2-oxopurine was revealed by long-range (3 bond) selective I N W  experiments after prior assignment of 
the  and l 3 ~  resonances as well as by NOE difference spectroscopylO (Scheme 1). In the assignment of the 

13c  resonances the general assumption that the signal at the highest field in the purine skeleton is due to C-5, 
is taken as the starting point.11.12 

Srlccuvc INEPT conclauons between bcnzyhc protons and carbon alwns w z r  lhrce bonds. (sohd lmcr in IIIc formulas of he 
rnolsulcs 2 and 3). Selslrd NOE r l k u  arc rndtcnled by cwcd armws. 

Scheme 1 

However, the major product obtained after flash chromatography with chloroform as the eluent was 1.3.7- 
tribenzyl-6-ethoxy-2-oxopurine (4) (Scheme 2).13 Evidently a small amount of ethanol present as stabilizer in 

the solvent added to the &position, with concomitant further alkylation. Selective INEPT and NOE difference 

specmscopies were again employed to prove the structure of the ethanol adduct &&&. When the 

alkylation of 2-oxopurine was carried out in the presence of a nucleophile such as ethanol, water,l4 or 

ethanethiol, the trialkylated ethoxy,l3 hydroxy,l4 or ethylthio adduct was the main hetemyclic product. In the 

reaction with ethanethiol, however, the yield of the adduct was reduced (30 9%) due to the reactivity of 

ethanethiol towards benzyl bromide; a substantial amount of benzyl ethyl sulfide was formed. Treatment of 

either 2 or 3 with benzyl bromide, ethanol and potassium carbonate however, did not yield 4. It is highly 

possible that 3.7-dibenzyl-2-oxopurine is the elusive intermediate giving rise to the ethoxy adduct (4). The 

ease of adduct formation was further illustrated by the fact that when 2-oxopurine was alkylated under dry 

conditions where every ef fml* was undertaken to exclude nucleophiles like ethanol and water, a trialkylated 

water adduct which is different from the other adducts was formed during the purification of the products on 

highly activated's silica gel. Nmr studies showed that the adduct formed most likely was 6-hydroxy-1.3.8- 
tribenzyl-2-oxopurine (5)16 (Scheme 2). The 1~ nmr signals of 5 were assigned by COSY spectra and the 

position of the N-1 and C-8 substituents by NOE difference spectroscopy and decoupling experiments. The 

NOES reported for 5 are small compared to the values reported for 2 and 3, hut this stems from the fact that the 

irradiated frequencies are very close to other nmr resonances in 516 and irradiation of the selected resonances 
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were performed at very low power levels to ensure that the nearby resonances were not saturated." 

Furthermore, a series of proton decoupling experiments were undertaken to verify the NOE results. Selective 
decoupling of H-8 (5.58 ppm) resulted in simplification of the resonances belonging to the nearby benzylic 

protons from an ABX pattern to a clean AB system. Similarly, decoupling of the resonances belonging to 
either HA (3.23 ppm) or  HB (3.42 ppm) of the benzylic group resulted in simplification of the resonance 
belonging to H-8 thereby confirming the C-8 alkylation. Decoupling of the resonances belonging to the two 

other benzylic AB quartets resulted only in the expected simplification of the AB quanets themselves. 
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Scheme 2 

The reason for the different substitution pattern of the water (5)  and the ethanol adducts (4) and the unexpected 

and highly interesting finding of C-alkylation in the water adduct, are at the moment not fully understood. 
However, it is only formed in the presence of activated silica gel so that this must clearly have a role in the 

reaction. It has been known for a long time that C-8 alkylations can occur in purines, for instance sodium 

theophyllinate gives rise to C-8 substituted products when reacted with allylic and benzylic halides.ls It has 
been suggested in the literature that C-8 alkylations of this type might occur more widely than is presently 

appreciated.19 One possible explanation for the C-8 alkylation might be found in the fact that unsubstituted 

purines are at the same time both nitrogen and carbon acids (at C-8), as well as they have ylide ~haracter.~o 

Alkylation using acetone as solvent gave a product due to addition of the enolate anion of the solvent. 

This initial study of the reactivity of the 2-oxopurine shows that oxygen and sulfur substituents can easily be 
i n d u c e d  to the &position by nucleophilic addition to the rr-electron deficient ring system. The results 

reported here shed new light on the reasons for the low yields reported in the literature, and in previous studies 
of 2-oxopurine alkylations.6 2-Oxopurines are here shown to posses an inherent lability, which when 

manipulated carefully can be exploited in the construction of potentially valuable purines. We envisage that 

the chemistry reported here might readily be extended to the addition of carbon nucleophiles, such as 

organometallic reagents, to facilitate carbon-carbon bond formation at the 6-position. 
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