ON THE REGIOSELECTIVITY IN THE HURD-MORI REACTION

Mikako Fujita, Takeo Kobori,* Tamejiro Hiyama,§ and Kiyosi Kondo

Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

Abstract - Various α -substituted (Y) acetone hydrazones were subjected to the Hurd-Mori reaction to give the 4-methyl-5-Y-substituted 1,2,3-thiadiazoles and/or 4-Y-CH₂ derivatives. The ratio of the two products changed drastically depending on the kind of the substituent Y and was parallel to the relative rate of enolization of the two α -carbons in the parent ketones.

Because the Hurd-Mori reaction¹ is extremely convenient for construction of 1,2,3-thiadiazole ring, this reaction has been applied to the synthesis of many biologically active compounds by us^2 and others.^{3,4} The regioselectivity in the reaction of some mono substituted acetone hydrazones (1) has been examined. In general, 4-methyl-5-substituted (Y) products (2) result predominantly from substrates (1) (Y = *n*-alkyl, C₂H₅OCO, Ph, or Cl).^{4,5} To define the scope and limitation of the Hurd-Mori reaction, we also have studied the reaction of 1 having a wide variety of substituent Y. Herein we report that the regioselectivity changed depending on the kind of Y, and regioisomers (3) could be produced almost exclusively in certain cases.

[§] Present address: Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4255 Nagatsuta, Midori-ku, Yokohama, Kanagawa 227, Japan.

Entry	Y ·	Z	Combined yield (%) of 2 and 3	Ratio of 2 : 3
1	CH₃	Tos	95 ^{a)}	80: 20 ^{a,b)}
2	CH ₂ CH ₃	Tos	92	67: 33 ^{c)}
3	CH(CH ₃) ₂	$\rm CO_2C_2H_5$	73	15: 85 ^{a)}
4	CH(CH ₃) ₂	Tos	93	33: 67
5	C(CH ₃) ₃	$\rm CO_2C_2H_5$	86	0:100
6	C(CH ₃) ₃	Tos	94	0:100
7	CH2	Tos	87	67: 33
8	N(CH ₃) ₂	$\rm CO_2C_2H_5$	73	0:100
9	0-	$\rm CO_2C_2H_5$	53	81:19
10	0-√_>	Tos	55	87: 13
11	о-{	$\rm CO_2C_2H_5$	66	85: 15
12	о-{_у-он	Tos	52	88: 12
13	0	$\rm CO_2C_2H_5$	51	65: 35
14	s –	$\rm CO_2C_2H_5$	94	98: 2
15	s - 🏹	Tos	78	97: 3
16	SCH ₃	$\rm CO_2C_2H_5$	87	99: 1
17	CI	$CO_2C_2H_5$	92 ^{a)}	90:10 ^{a)}
18	Br	$CO_2C_2H_5$	85 ^{a)}	86:14 ^{a)}
19	F	$CO_2C_2H_5$	83 ^{a)}	20 : 80 ^{a)}

Table 1. The Hurd-Mori Reaction of Mono Substituted Acetone Hydrazone (1)

a) Determined by ¹H nmr spectroscopy.

b) The ratio of 90 : 10 has been reported in Ref. 4.

c) The ratio reported in Ref. 5 is 75 : 25.

Hydrazones (1) were treated with 3 molar equiv. of thionyl chloride at room temperature. For example, 4,4-dimethyl-2-pentanone *N*-ethoxycarbonylhydrazone (0.77 g, 3.9 mmol) and thionyl chloride (0.84 ml, 11.6 mmol) in 1,2-dichloroethane (6.1 ml) were mixed at room temperature and stirred for 1 day. The mixture was neutralized with aqueous NaHCO₃ and worked up. Purification by silica gel column chromatography afforded 4-(2,2-dimethylpropyl)-1,2,3-thiadiazole (0.52 g, 86% yield).

The reaction was applied to various hydrazones (1), and the results are summarized in Table 1.6 As can be seen, thiadiazoles (2) and/or (3) were obtained in moderate to high yields. In the cases of Y = ArO, PhS, CH₃S, Cl, and Br, 4-methyl-5-substituted products (2) were produced preferentially (Entries 9-18) as usual. In contrast, those having an alkyl group for Y afforded unusual regioisomers (3) predominantly in the order of CH₃ < CH₂CH₃ and PhCH₂ < CH(CH₃)₂ (Entries 1-4 and 7). In particular, hydrazones (1) where Y = C(CH)₃ produced 3 as a sole product (Entries 5 and 6). In addition, dimethylamino and fluoro groups favored the formation of 3 (Entries 8 and 19).

We found that the selectivity (3/(2+3)) was parallel to the relative rate constant $(k_b/(k_a+k_b))$ of acid-catalyzed enolization of two α -carbons in the corresponding mono substituted acetones 4 (Figure 1).^{7,8}

Figure 1. The ratio of 3/(2+3) vs. $k_b/(k_a+k_b)$ (•: Ref. 7,0: Ref. 8; Substituent Y is shown).

Based on these observations, the regioselectivity of the Hurd-Mori reaction of acetone hydrazones with a substituent other than those tested will be estimated. As 1,2,3-thiadiazole ring is often employed as a key part of biologically active compound, the findings described here should be informative for the synthesis of 1,2,3-thiadiazoles of the desired type.

REFERENCES

- 1. C. D. Hurd and R. I. Mori, J. Am. Chem. Soc., 1955, 77, 5359
- T. Kobori, M. Fujita, T. Hiyama, and K. Kondo, Synlett, 1992, 95; T. Kobori and D. Tsunemoto, Eur. Pat. Appl., 1989, 335, 390 [Chem. Abstr., 1991, 114, 61829w].
- For example, W. V. Curran, M. L. Sassiver, J. H. Boothe, and L. Jacob, J. Heterocycl. Chem., 1985, 22, 479; V. J. Lee, W. V. Curran, T. F. Fields, and K. Learn, *ibid.*, 1988, 25, 1873; J. A. Lowe, III, T. F. Seeger, A. A. Nagel, H. R. Howard, P. A. Seymour, J. H. Heym, F. E. Ewing, M. E. Newman, A. W. Schmidt, J. S. Furman, L. A. Vincent, P. R. Maloney, G. L. Robinson, L. S. Reynolds, and F. J. Vinick, J. Med. Chem., 1991, 34, 1860.
- 4. E. W. Thomas, E. E. Nishizawa, D. C. Zimmermann, and D. J. Williams, J. Med. Chem., 1985, 28, 442.
- 5. O. Zimmer and H. Meier, Chem. Ber., 1981, 114, 2938.
- 6. Hydrazones (1) ($Z = CO_2C_2H_5$, $Y = CH_3$, CH_2CH_3 , or CH_2Ph) afforded only 3 in 14-30% yields, and 1 ($Z = CO_2C_2H_5$ or Tos, $Y = OCH_3$) also gave 3 as a sole isolable product but in 6-10% yields.
- 7. C. Rappe and W. H. Sachs, J. Org. Chem., 1967, 32, 3700.
- 8. J. Jullien and N-T-Lai, Bull. Soc. Chim. Fr., 1970, 3948.

Received, 12th August, 1992