ON THE REGIOSELECTIVITY IN THE HURD-MORI REACTION

Mikako Fujita, Takeo Kobori,* Tamejiro Hiyama,§ and Kiyosi Kondo

Sagami Chemical Research Center, 4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

Abstract - Various α -substituted (Y) acetone hydrazones were subjected to the Hurd-Mori reaction to give the 4-methyl-5-Y-substituted 1,2,3-thiadiazoles and/or 4-Y-CH2 derivatives. The ratio of the two products changed drastically depending on the kind of the substituent Y and was parallel to the relative rate of enolization of the two α -carbons in the parent ketones.

Because the Hurd-Mori reaction¹ is extremely convenient for construction of 1,2,3-thiadiazole ring, this reaction has been applied to the synthesis of many biologically active compounds by us^2 and others.^{3,4} The regioselectivity in the reaction of some mono substituted acetone hydrazones (1) has been examined. In general, 4-methyl-5substituted **(Y)** products **(2)** result predominantly from substrates (1) ($Y = n$ -alkyl, C₂H₅OCO, Ph, or Cl).^{4,5} To define the scope and limitation of the Hurd-Mori reaction, we also have studied the reaction of 1 having a wide variety of substituent Y. Herein we report that the regioselectivity changed depending on the kind of Y, and regioisomers (3) could be produced almost exclusively in certain cases.

[§] Present address: Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4255 Nagatsuta, Midori-ku, Yokohama, Kanagawa 227, Japan.

Entry	Υ	Z	Combined yield (%) of 2 and 3	Ratio of 2:3
1	CH ₃	Tos	95 ^{a)}	$20^{a,b)}$ 80 [°]
2	CH ₂ CH ₃	Tos	92	67. 33 ^{c)}
3	CH(CH ₃) ₂	$CO2C2H5$	73	15: 85^{a}
4	CH(CH ₃) ₂	Tos	93	33:67
5	C(CH ₃) ₃	$CO2C2H5$	86	0:100
6	C(CH ₃) ₃	Tos	94	0:100
$\overline{7}$	$CH2$ \prec	Tos	87	67.33
8	$N(CH_3)_2$	$CO2C2H5$	73	0:100
9		$CO2C2H5$	53	81:19
10		Tos	55	87:13
11	ጉон	$CO2C2H5$	66	85:15
12	-OH O	Tos	52	88. 12
13	$-NO2$	$CO2C2H5$	51	65: 35
14	S	$CO2C2H5$	94	$\overline{2}$ 98:
15	s -	Tos	78	3 97:
16	SCH ₃	$CO2C2H5$	87	99: 1
17	C1	$CO2C2H5$	92^{a}	$90:10^{a}$
18	Br	$CO2C2H5$	85 ^a	$86:14^{a}$
19	F	$CO2C2H5$	$83^{a)}$	a) 20:80

Table 1. The Hurd-Mori Reaction of Mono Substituted Acetone Hydrazone (1)

a) Determined by 'H nmr spectroscopy.

b) The ratio of 90 : **10 has been reported in Ref. 4.**

C) The ratio reported in Ref. *5* **is 75** : **25.**

Hydrazones (1) were treated with 3 molar equiv. of thionyl chloride at room temperature. For example, **4,4-dimethyl-2-pentanone N-ethoxycarbonylhydrazone** (0.77 g, 3.9 mmol) and thionyl chloride (0.84 ml, 11.6 mmol) in 1,2-dichloroethane (6.1 ml) were mixed at room temperature and stirred for 1 day. The mixture was neutralized with aqueous N aHCO₃ and worked up. Purification by silica gel column chromatography afforded **4-(2,2-dimethylpropy1)-1,2,3** thiadiazole (0.52 g, 86% yield).

The reaction was applied to various hydrazones (1), and the results are summarized in Table 1.6 As can be seen, thiadiazoles (2) and/or (3) were obtained in moderate to high yields. In the cases of $Y = ArO$, PhS, CH₃S, Cl, and Br, 4-methyl-5-substituted products (2) were produced preferentially (Entries 9-18) as usual. In contrast, those having an alkyl group for Y afforded unusual regioisomers (3) predominantly in the order of $CH_3 < CH_2CH_3$ and PhCH₂ < CH(CH₃)₂ (Entries 1-4 and 7). In particular, hydrazones (1) where $Y = C(CH)_3$ produced 3 as a sole product (Entries 5 and 6). In addition, dimethylamino and fluoro groups favored the formation of 3 (Entries 8 and 19).

We found that the selectivity $(3/(2+3))$ was parallel to the relative rate constant $(k_b/(k_a+k_b))$ of acid-catalyzed enolization of two α -carbons in the corresponding mono substituted acetones 4 (Figure 1).7.8

Figure 1. The ratio of $3/(2+3)$ vs. $k_b/(k_a+k_b)$ **6:** Ref. **7,o:** Ref. 8; Substituent Y is shown).

Based on these observations, the regioselectivity of the Hurd-Mori reaction of acetone hydrazones with a substituent other than those tested will be estimated. **As** 1,2,3-thiadiazole ring is often employed as a key part of biologically active compound, the findings described here should be informative for the synthesis of 1,2,3-thiadiazoles of the desired type.

REFERENCES

- 1. C. D. Hurd and R. I. Mori, 1. *Am. Chem. Soc.,* 1955,77,5359
- *2.* T. Kobori, M. Fujita, T. Hiyama, and K. Kondo, *Synlett,* 1992, 95; *T.* Kobori and D. Tsunemoto, *Eur. Pat. Appl.,* 1989,335,390 *[Chem. Abstr.,* 1991,114,61829~ I.
- 3. For example, W. V. Curran, M. L. Sassiver, **J.** H. Boothe, and L. Jacob, I. *Heterocycl. Chem.,* 1985, *22,* 479; V. J. Lee, W. V. Curran, T. F. Fields, and K. Learn, *ibid.,* 1988, 25, 1873; J. A. Lowe, **111,** T. F. Seeger, A. A. Nagel, H. R. Howard, P. A. Seymour, J. H. Heym, F. E. Ewing, M. E. Newman, A. W. Schmidt, J. S. Furman, L. A. Vincent, P. R. Maloney, G. L. Robinson, L. S. Reynolds, and F. J. Vinick, J. *Med. Chem.,* 1991, *34,* 1860.
- 4. E. W. Thomas, E. E. Nishizawa, D. C. Zimmermann, and D. J. Williams, **J.** *Med. Chem.,* 1985, 28,442.
- 5. 0. Zimmer and H. Meier, *Chem. Ber,,* 1981,114, 2938.
- 6. Hydrazones (1) ($Z = CO_2C_2H_5$, $Y = CH_3$, CH_2CH_3 , or CH_2Ph) afforded only 3 in 14-30% yields, and 1 ($Z = CO_2C_2H_5$ or Tos, $Y = OCH_3$) also gave 3 as a sole isolable product but in 6-10% yields.
- 7. C. Rappe and W. H. Sachs, 1. *Org. Chem.,* 1967,32,3700.
- 8. J. Jullien and N-T-Lai, *Bull. Soc. Chim. Fr.,* 1970, 3948.

Received, 12th August, 1992