1-DEAZA-2'-DEOXYADENOSINE: PHOSPHONATE AND PHOSPHORAMIDITE BUILDING BLOCKS FOR SOLID-PHASE OLIGONUCLEOTIDE SYNTHESIS

Frank Seela* and Thomas Wenzel

Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-4500 Osnabrück, Germany

<u>Abstract</u>— The synthesis of the 3'-[(2-cyanoethyl)diisopropylphosphoramidite] (3b) and the 3'-phosphonate (3a) of 1-deaza-2'-deoxyadenosine (1b) is described. For this purpose compound 1b was protected at the 6-amino group with a benzoyl residue. Ensuing 4,4'-dimethoxytritylation of 1b and phosphitylation afforded the P(III) derivatives(3a) and (3b). They were successfully employed in solid-phase oligodeoxyribonucleotide synthesis of $d(c^1A-c^1A-c^1A-A-A-A)$ (6). ¹³C-Nmr and ¹⁵N-nmr spectra of the compounds(1-5)are discussed.

INTRODUCTION

Oligonucleotides containing imidazo[4,5-*b*]pyridine (1-deazapurine) nucleosides (e.g. 1b) cannot form regular Watson-Crick base pairs with complementary dT-residues. This has already been demonstrated in the case of oligomers containing 1,7-dideazaadenosine (2b).¹ However, in the case of 1b, Hoogsteen base pairing is still possible allowing the formation of duplexes of an unusual structure. Furthermore, differences in protonation, glycosylic bond stability, and interaction with nucleoside-metabolizing enzymes are expected for such oligonucleotides compared to those containing 2'-deoxyadenosine (2a). In the following we describe the synthesis of suitably protected oligonucleotide building blocks (3a,b) of 1-deaza-2'-deoxyadenosine (c¹A_d, 1b) and their use in solid-phase oligodeoxyribonucleotide synthesis.

RESULTS AND DISCUSSION

The nitronucleoside (1a) has already been synthesized² and the amino compound (1b) was obtained by deoxygenation³ from the ribonucleoside or by enzymatic transglycosylation.⁴ We have prepared 1b from 1a by reduction with Raney nickel-catalyst/hydrazine in 90% yield.

As the assignment of the anomeric configuration of 1a was tentative we have used ¹H-nmr NOE difference spectroscopy.⁵ According to Table 1 the configuration at the glycosylic bond was β -D and the position of glycosylation was N-9.

Irradiation		N	OE (%)		
	H-8	H-1'	H _α -2'	Н _β -2'	H-4'
H-1'	4.6	-	6.9	-	1.8
H-8	-	4.4	-	3.4	-

Table 1. NOE Data of 1a upon Irradiation of H-1' and H-8.^{a,b)}

a) DMSO-<u>d6</u> at 23°C. b) Purine numbering.

1-Deaza-2'-deoxyadenosine (1b) exhibits a pK_a of 4.6 determined at 280 nm and 265 nm.⁶ Compared to 1,7dideaza-2'-deoxyadenosine (2b: $pK_a 6.1$)¹ the nucleoside is less basic but easier to protonate than 2'deoxyadenosine (2a: $pK_a 3.8$). The ¹⁵N-nmr data of 1b are shown in Table 2.

Compound	N-1	N-3	N-7	N-9	NH2 -313.7	
1b	. <u></u>	-150.1	-142.4	-210.5		
2a	-145.1	-157.8	-140.4	-207.6	-299.1	
		Coupl	ing Constants [Hz]	,,,,,,,		
Compound	N-1	N-3	N-7	N-9	NH2	
	H-2	H-2	H-8	H-1' and H-8		
1b	-	d, 10	d, 15	dd, 4 and 9	t, 90	
2a	d, 17	d, 15	d, 12	d, 10	t, 88	

Table 2. ¹⁵N-Nmr Chemical Shifts and [¹⁵N, ¹H] Coupling Constants^a) of Compounds (1b) and (2a)⁷ measured in DMSO-<u>d6</u>.^{b)}

a) Relative to nitromethane. b) Purine numbering.

The imidazole nitrogens of 1b (Table 2) show very similar chemical shifts to those of 2a. Nitrogen-3 can be assigned according to the coupling with H-2. As it can be seen from the Table 2 the exocyclic amino group of 1b is upfield shifted compared to the parent nucleoside (2a). This is in line with an increase of the electron density within the π -system of the 1-deazapurine over the purine moiety.

Next, the exocyclic amino group of 1b was benzoylated *via* the transient protection of the sugar hydroxyls⁸ and compound(4)was isolated crystalline (mp 127°C, acetone). In order to ensure the compatibility of the benzoyl group in 4 with that of bzA_d , hydrolysis was carried out in conc. aqueous NH₄OH at 50°C. Tlc monitoring confirmed that deprotection gave back nucleoside(1b) as the only reaction product. Quantitative kinetic data were obtained uv spectrophotometrically.⁹ The half-life of 4 was 115 min, which was increased

compared to $bz^{6}A_{d}$ (71 min¹) but was still in a range suitable for oligonucleotide synthesis. The 4,4'dimethoxytrityl residue was introduced under standard conditions affording 5 (mp 129°C, hexane-ether). To our knowledge ¹³C-nmr chemical shifts have not been unambiguously assigned in the case of 1-deazapurine nucleosides. We have made a complete assignment in the case of the compounds of Table 3 on the basis of J(C,H) coupling constants. The chemical shifts of C-1, C-2, C-8, and those of the sugar moiety were assigned by 2D ¹H, ¹³C-correlation spectra. Using the gate decoupled mode carbon-5 exhibits a dd multiplicity due to couplings to H-1 and H-8, whereas C-4 shows a td multiplicity resulting from couplings to H-2, H-8, and H-1'.

Compd	C-8 ^{c)}	C-5 ^{d)}	C-6 ^{d)}	C-1 ^{c)}	C-2 ^{c)}	C-4 ^{d)}	CO ^{d)}	C-1' ^{C)}	C-2 ^{,c)}
 1a	147.9	127.2	143.7	112.1	144.8	150.0	-	84.1	39.4
1b	139.4	123.6	147.2	102.3	144.2	146.4	-	84.5	39.3
3a	142.0	126.6	137.1	109.1	144.8	147.0	166.1	83.8	37.8
4	142.2	126.8	137.2	109.1	144.8	147.0	166.2	84.0	39.5
5	142.2	126.7	137.1	109.0	144.9	147.1	166.2	83.6	39.2
	C-3'c)	C-4' ^{C)}	C-5' ^{C)}	<u>С</u> Н3СН	2 ^{N^{C)} CH}	H3CH2N ^{C)}	осн ₃ с)	C-DMTr ^{d)}	
1a	70.5	88.1	61.5		-		-	-	
1b	71.4	88.1	62.2	-	-		-	-	
3a	72.9	84.9	63.8	8.5	45	.2	54.9	85.5	
4	70.9	88.0	61.9	-	-		-	-	
5	70.8	85.8	64.1	-	-		54.9/55.0	85.5	

Table 3. ¹³C-Nmr Chemical Shifts of Imidazo[4,5-b]pyridine Nucleosides.^{a,b})

a) Spectra were measured in DMSO-d₆ rel. to TMS. b) Purine numbering. c) From [¹H, ¹³C] correlation spectra. d) From ¹H, ¹³C gated-decoupled spectra.

Compound (5) was converted into the phosphonate¹⁰ [3a (³¹P-nmr (DMSO-<u>d</u>₆): $\delta = 2.56$ ppm; J(P,C-3') = 5.0 Hz and J(P,C-4') = 5.0 Hz, ¹J(P,H) = 587 Hz] as well as into the β -cyanoethylphosphoramidite¹¹ [3b (³¹P-nmr (DMSO-<u>d</u>₆): $\delta = 148.2$ ppm (dd, J(P-H) = 5.7 Hz, 11.0 Hz) and $\delta = 148.2$ ppm (dd, J(P-H) = 6.2 Hz, 11.3 Hz)].

The phosphonate (3a) was then used in solid-phase oligonucleotide synthesis¹¹ using an ABI-380B synthesizer. The protocol of detritylation, activation (pivaloyl chloride), coupling, and capping followed the ABI user bulletin.¹² Oxidation with iodine in pyridine/H₂O/THF was carried out on the oligomeric level. The (MeO)₂Tr-protected oligonucleotide was split off from the polymer support by conc. aq. NH₄OH and purified by RP-18 hplc. Detritylation was accomplished with 80% HOAc/H₂O within 30 min and was followed by neutralization. The oligomer (6) d(c¹A-c¹A-c¹A-A-A) was again submitted to RP-18 hplc, desalted, and lyophilized. The composition of 6 was derived from enzymatic digestion with snake-venom phosphodiesterase followed by alkaline phosphatase¹⁰ and analysis by RP-18 hplc (Figure).

Figure. Hplc profiles of 6; a) and its enzymatic digest b) after tandem hydrolysis with snake-venom phosphodiesterase and alkaline phosphatase in 0.1 M Tris-HCl (pH 8.3). Gradient a) 0-20% MeCN in 0.1 M (Et₃NH)OAc (pH 7.0)/MeCN, 95:5; b) in the absence of MeCN.

The incorporation of $c^{1}A_{d}$ (1b) into an oligonucleotide opens the possibility to synthesize oligonucleotides forming duplexes by exclusive Hoogsteen base pairing. This work is under current investigation.

ACKNOWLEDGEMENTS

We thank Prof. Dr. I. Mikhailopulo and Dr. H. Rosemeyer for helpful discussion. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

REFERENCES

- 1. F. Seela and T. Wenzel, <u>Helv. Chim. Acta</u>, 1992, 75, 1111.
- G. Cristalli, S. Vittori, A. Eleuteri, M. Grifantini, R. Volpini, G. Lupidi, L. Capolongo, and E. Pesenti, J. Med. Chem., 1991, 34, 2226.
- 3. T. Sugawara, T. Ishikura, T. Itoh, and Y. Mizuno, Nucleosides, Nucleotides, 1982, 1, 239.
- 4. I.A. Mikhailopulo, A.I. Zinchenko, S.B. Bokut, N.V. Dudchik, V.N. Baraj, E.N. Kalinichenko, H. Rosemeyer, and F. Seela, 1992, in preparation.
- 5. H. Rosemeyer, G. Tóth, and F. Seela, Nucleosides, Nucleotides, 1989, 8, 587.
- A. Albert and E. P. Serjant, 'The Determination of Ionization Constants', Chapman & Hall Ltd., London, 1971.
- 7. H. Rosemeyer and F. Seela, Helv. Chim. Acta, 1988, 71, 1573.
- 8. G.S. Ti, B.L. Gaffney, and R.A. Jones, J. Am. Chem. Soc., 1982, 104, 1316.
- 9. F. Seela and K. Kaiser, Helv. Chim. Acta, 1988, 71, 1813.
- 10. B. C. Froehler, P. G. Ng, and M. D. Matteucci, Nucleic Acids Res., 1986, 14, 5399.
- 11. N. D. Sinha, J. Biernat, J. McManus, and H. Köster, Nucleic Acids Res., 1984, 12, 4539.
- 12. Applied Biosystems, 'User Bulletin', 1990, pp. 6-15.

Received, 24th August, 1992