AN ONE-POT SYNTHESIS OF 5,11-ETHENOISOXAZOLO[5"',4":3',4']-FURO[2",3":7',8']NAPHTHO[2',3':4,5]FURO[3,4-*d*]ISOXAZOLES FROM 2-ISOXAZOLINE-2-OXIDES¹

Kazuho Harada,* Kuniaki Sasaki, Eisuke Kaji, and Shonosuke Zen

School of Pharmaceutical Sciences, Kitasato University Shirokane, Minato-ku, Tokyo 108, Japan

Abstract - 4-Aryl-3,5-bis(methoxycarbonyl)-2-isoxazoline-2-oxides were allowed to react with titanium tetrachloride by one-pot synthesis to afford novel fused heterocycles, 5,11-ethenoisoxazolo[5"',4"':3',4']furo[2",3":7',8']naphtho[2',3':4,5]furo[3,4-*d*]isoxazoles, which were also formed by stepwise synthesis *via* Diels-Alder dimerization of 3a,4-dihydro-5a,*H*-benzofuro[3,3a-*d*]isoxazoles attainable from the above isoxazoline-2-oxides. The structure determination of the dimer by single crystal X-ray analysis is reported.

In previous papers,² unique ring transformation of 4-aryl-3,5-bis(methoxycarbonyl)-2-isoxazoline-2-oxides(1) was demonstrated for the synthesis of dimethyl 7-substituted 3a,4-dihydrobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylates(2) by the action of Lewis acid such as titanium tetrachloride. We describe herein a facile one-pot synthetic method for novel fused polycyclic heterocycles; 5,11-ethenoisoxazolo[5"',4"':3',4']furo[2",3":7',8']naphtho[2',3':4,5]furo[3,4-d]isoxazoles(3) by the reaction of 1 with titanium tetrachloride. (Scheme 1) In a typical procedure, titanium tetrachloride (0.45 ml, 4 mmol)) was added to a solution of isoxazoline-2-oxide(1 a: R=Cl)³ (313 mg, 1 mmol) in dichloromethane (10 ml) at 0° C and the resulting mixture was stirred at room temperature for 15 h. After the reaction mixture was quenched with 10% aqueous sodium carbonate and extracted with chloroform, purification by column chromatography on silica gel (hexane-ethyl acetate, 3:1) afforded 72 mg of compound (3 a)⁴ in a yield of 23%,⁵ mp 245-246° C (from chloroform-methanol). This procedure was applied to 1 b(R=Br)³ and 1 c(R=F)³ to afford 3 b⁶ (22%, mp 225-226° C) and 3 c⁷ (26%, mp 273-276° C), respectively. The structure of 3 a was determined by single crystal X-ray analysis.⁸ A perspective drawing of the molecule of 3 a is illustrated in Figure 1. The structure of 3 a reveals that the molecule results from Diels-Alder dimerization of **2** \mathbf{a} , in which $C_{\mathbf{s}}=C_7-C_8=C_9$ and $C_8=C_7$ moieties correspond to diene and dienophile components respectively, in the Diels-Alder reaction for 3 a. The stereochemistry of **3 a** was confirmed to be *endo* configuration, *i.e.*, as depicted in Figure 1, the bulky cyclohexene ring (C₁₀-C₁₁-C₁₂-C₁₃-C₁₄-C₁₅) (dienophile component) is under the bridge (C₆-C₇- C_s - C_s) (diene). The molecule is also assigned to be anti π -facial diastereomer⁹ with respect to

the furan ring $(C_2 - C_3 - C_4 - C_5 - O_2)$.

The reaction pathway for **3 a** as a Diels-Alder dimer of **2 a** was supported by the following experiments : A solution of **2 a** (500 mg, 1.6 mmol) in 5 ml of toluene was refluxed overnight. After removal of the solvent, the residue was chromatographed on silica gel (hexane-ethyl acetate, 1:1) to afford **3a** (390 mg) in a yield of 78%. The similar Diels-Alder dimerization of **2b** and **2c** occurred to give **3b** (75%) and **3c** (72%), respectively (Scheme 1). These results clearly show that this one-pot formation of **3** from **1** proceeds *via* the initial ring transformation² into the intermediate (**2**) followed by the dimerization *in situ* to give **3** (Scheme 2). Further detailed studies are now in progress.

Scheme 2

ACKNOWLEDGMENT

The authors thank the Suzuken Memorial Foundaton and the Japanese Ministry of Education, Science and Culture (Grant-in-Aid for General Scientific Research, No 01571161) for support of this study.

REFERENCES AND NOTES

- 1. Part IX of a series on "Synthetic Reactions of Isoxazoline-2-oxides". Part VIII : K. Harada, Y. Shimozono, E. Kaji, H. Takayanagi, H. Ogura, and S. Zen, *Chem. Pharm. Bull.*, 1992, **40**, 1921.
- S. Zen, K. Takahashi, E. Kaji, H. Nakamura, and Y. litaka, *Chem. Pharm. Bull.*, 1983, **31**, 1814;
 E. Kaji, K. Takahashi, and S. Zen, *Chem. Pharm. Bull.*, 1985, **33**, 8.
- 3. K. Takahashi, E. Kaji, and S. Zen. Nippon Kagaku Kaishi, 1983, 1678.
- 4. lr ν_{max} (KBr)cm⁻¹ : 1750(COOCH₃), 1620(C=N). Ms(m/z) : 626(M⁺), 628(M⁺+2). Nmr : summarized in Tables 1 and 2. Anal. Calcd for C₂₆H₂₄N₂O₁₂Cl₂: C, 49.52; H, 3.86; N, 4.47; Cl, 11.30. Found : C, 49.52; H, 4.07; N, 4.26; Cl, 11.86.
- Compound (2 a) was also isolated in a yield of 30%. When the reaction was carried out for 30 min, compound (2 a) was obtained as a major product (86% yield) and 3 a was not isolated : See Ref. 2.
- 6. lr ν_{max}(KBr)cm⁻¹ : 1755(COOCH₃), 1620(C=N). Ms(m/z) : 655(M⁺), 657(M⁺+2). Nmr : Tables 1 and 2. Anal. Calcd for C₂₆H₂₄N₂O₁₂Br₂ : C, 43.60; H, 3.38; N, 3.91; Br, 22.31. Found : C, 43.89; H, 3.50; N, 3.85; Br, 22.43.
- Ir ν_{max}(KBr)cm⁻¹: 1750(COOCH₃), 1620(C=N). Ms(m/z): 594(M⁺). Nmr: Tables 1 and 2.
 Anal. Calcd for C₂₆H₂₄N₂O₁₂F₂: C, 52.25; H, 3.23; N, 4.71. Found: C, 52.16; H, 3.33; N, 4.59.

Table 1	¹ H-Numr Chennical Shifts(ppm) and Coupling Constants(Hz) for 3a,3b, and 3c (300 MHz, in CDCI ₃)						Table 2	Selected ¹³ C-Nmr Chemical Shifts(ppm, 75 MHz, in CDCl ₃)		
	H—1	4.54	d	4.49	d	4.54	d	C-1	77.35	77.43
H-2a	4.55	s	4.56	s	4.56	s	C-2a	78.92	79.45	78.90
H-3	5.87	d	6.09	d	5.88	d	C-3	126.70	131.63	126.70
H-4a	2.98	dd	3.08	dd	2.98	dd	C-4a	42.37	44.67	42.36
H–5	3.67	dd	3.97	dđ	3.68	dd	C–5	49.35	50.95	49.35
H-5a	4.74	d	4.72	d	4.73	d	C–5a	87.73	88.16	87.73
H-7	4.83	d	4.83	đ	4.83	d	C-7	81.13	81.17	81.14
H-7a	4.04	d	4.02	d	4.05	d	C–7a	58.92	58.93	58.93
H-11	3.54	dd	3.54	dd	3.55	dd	C-10a	102.59	102.23	102.56
H-11a	3.20	dd	3.15	dd	3.20	dd	C-11	40.02	41.12	40.18
H–14a	3.97	d	3.97	d	3.97	d	C-11a	35.85	36.07	35.85
H15	6.10	dd	6.37	dd	6.13	dd	C–11b	98.32	98.19	98.30
CH3	3.65	3.69	3.66	3.70	3.65	3.69	C-14a	59.56	59.49	59.56
CH3	3.84	3.88	3.84	3.89	3.84	3.88	C-15	122.05	127.00	122.00
J _{1 ,14a}	7.0		7.0		7.0					
J _{4a, 11a}	9.0		9.0		9.0					
J _{7 70}	9.2		9.0		9.0					

3.0

2.3

2.0

3.0

2.5

2.0

J_{5.5a}

J_{5.15}

J_{11,11a}

3.0

2.3

2.0

8. X-Ray crystallography was carried out on a Rigaku AFC-5R diffractometer, and the cell parameters and the intensity data were measured with graphite monochromated Cu K α radiation. The crystal data Cu H, N,O, CL, EW=627.39 triclinic, space group P1

COOCH₃

O10

COOCH₃

COOCH

radiation. The crystal data : $C_{26}H_{24}N_2O_{12}CI_2$, FW=627.39, triclinic, space group P1, a=13.174(4)Å, b=19.400(7)Å, c=10.751(3)Å, α =94.66(3)°, β =90.70(2)°, γ =80.30(3)°, V=2699(2)Å³, Z=4, Dcal=1.544 gcm³, D_m=1.54 gcm³, μ for Cu K α =28.02 cm¹. The structure was solved by the program MITHRIL(C.J. Gilmore : MITHRIL, an integrated direct method computer program, *J. Appl. Cryst.*,1984, **17**, 42, Univ. of Glasgow, Scotland) and refined anisotropically by using a total of 3744 reflections (I>3 σ (I)) to give R=0.055, R_w=0.042. A pair of enantiomers was solved as a unit. Only one of them is depicted in Figure 1. Selective bond distances(Å), bond angles(°), and torsion angles(°): O(1)-N(1) 1.409(7), C(3)-C(6) 1.530(9), C(3)-C(5) 1.543(9), C(6)-C(7) 1.51(1), C(7)-C(8) 1.303(9), C(8)-C(9) 1.540(9), C(5)-C(9) 1.521(9), C(6)-C(10) 1.562(9), C(9)-C(11) 1.580(9), C(10)-C(11) 1.567(9), C(11)-C(12) 1.492(9), C(12)-C(13) 1.299(9); C(3)-C(6)-C(10) 103.8(6), C(5)-C(9)-C(11) 110.8(6), C(6)-C(7)-C(8) 112.8(7), C(7)-C(8)-C(9) 117.3(7); O(1)-C(3)-C(6)-C(7) -178.8(6), C(6)-C(7)-C(8)-C(9) 2(1), C(5)-C(9)-C(11)-C(12) 171.9(6), C(11)-C(12)-C(13)-C(14) - 6(1), O(4)-C(15)-C(10)-C(6) - 40.6(8).

 F. Fringuelli and A. Taticchi, "Dienes in The Diels-Alder Reaction" John Wiley & Sons, New York 1990, Chap. 1 and 6; R. Casas, T. Parella, V. Branchadell, A. Oliva, and A. Guingant, *Tetrahedron*, 1992, **48**, 2659.

Received, 16th September, 1992