THE STRUCTURES OF SPIRAMINES E, F AND G; THE NEW DITERPENE ALKALOIDS FROM SPIRAEA JAPONICA VAR. ACUMINATA FRANCH¹

Xiao-Jiang Hao,^a Manabu Node,^b* Jun Zhou,^a Si-Ying Chen,^a Tooru Taga,^c Yoshihisa Miwa,^c and Kaoru Fuji^d

Kunming Institute of Botany, Academia Sinica,^a Kunming 650204 China, Kyoto Pharmaceutical University,^b Yamashina-ku, Kyoto 607, Japan Faculty of Pharmaceutical Science, Kyoto University,^c Kyoto 607, Japan Institute for Chemical Research, Kyoto University,^d Uji, 611, Japan

Abstracts - Structures of spiramines E(1), F(2) and G(3) were elucidated by chemical and spectroscopic means.

In the previous paper,² we reported the isolation and structures of four new atisine type alkaloids, spiramines A~D, from the roots of Spiraea japonica var. acuminata which has been used as a folk medicine in China.³ In the course of the investigation on the constituents of the plant, we isolated three new atisine type alkaloids; spiramines E (1), F (2), and G (3). Here we report a full account on the structures of these alkaloids. The formula for spiramine E (1), amorphous, $[\alpha]_D$ - 97 ° (CHCl₃), was determined as C₂₆H₃₇NO₅ on the basis of high resolution mass spectrum and elemental analysis. An atisine type skeleton for spiramine E was deduced by comparing its ¹³C-nmr shift values with literature data of spiramines A ~ D_{14}^{14} Other spectroscopic analysis showed the presence of an exo-methylene group [δ 5.28, 5.03 (each 1H, t, J = 1.5 Hz, 2H-17); v 1650 cm⁻¹], a secondary acetoxy group [δ 1.68 (3H, s), 5.46 (1H, br s); v 1710, 1240 cm⁻¹], and a primary acetoxy group [δ 1.75 (3H, s), 4.16 (2H, t, J = 6 Hz, 2H-22)]. The presence of an ether linkage between C-7 and C-20 in spiramine E (1) was presumed by the signals of ¹H-nmr [δ 4.53 (1H, br s, H-20), 3.60 (1H, d, J = 5 Hz, H-(7β)], which were the same as those of spiramine A (4).² On irradiation at δ 5.46, both of the signals at δ 5.28 and 5.03 were changed to doublets with J = 1.5 Hz, demonstrating the location of the secondary acetoxy group on C-15, and the α -configuration of the 15-acetoxy group was presumed from the ¹³C-nmr shifts values of C-7 and C-15 in spiramine E (1) which were very close to those of spiramine A (4). Spectral data (Table 1) for spiramine F (2), amorphous, $[\alpha]_D$ -101° (CHCl3), C24H35NO4, indicated that this compound was the deacetyl spiramine E. In fact, acetylation of spiramine F (2) afforded spiramine E (1). In order to comfirm the deduced structures for spiramines E and F, spiramine F (2) was treated with sodium borohydride to give triol (6), which

had already been obtained from spiramine A (4) in the same way.² The existence of an ether linkage between C-7 and C-20 in spiramines E and F was chemically proved by the following oxidative cyclization using triol (6). Oxidation of triol (6) with $K_3Fe(CN)6^5$ gave deacetylspiramine F (5) which was identical with the product obtained by the hydrolysis of spiramine F (2). It was interesting that an ether linkage between C-7 and C-20 was formed from triol (6) while an oxazolidine ring was formed from dihydroajaconine (7).⁵ The difference of the two compounds is just the configuration of 15-hydroxy group.

Spectroscopic analysis of spiramine G (3), needles, mp 160-162 °C, $[\alpha]_D$ -16° (CHCl3), C22H31NO3, indicated the presence of an exo-methylene group [δ 4.92, 4.74 (each 1H, m), v 1650 cm⁻¹], a primary hydroxy group [δ 3.60 (2H, m, 2H-22); ¹³C-nmr, δ 60.3 (t)], a secondary hydroxy group [δ 3.20 (1H, ddd, J = 6, 8, 11 Hz), ¹³C-nmr, δ 76.2 (t)], and a carbonyl group [v 1700 cm⁻¹; ¹³C-nmr, δ 219.8 (s)]. The secondary hydroxy group was assigned to be of 7- α configuration by its chemical shift and the coupling constant value of ¹H-nmr which were similar to those of triol (6).² The location of the carbonyl group was deduced as follows: the NOE experiment between the signals of δ 4.92 (17-H) and δ 2.70 indicated the latter should be H-12 (Figure 1).

Fig. 1 NOE of spiramine G(3)

Fig. 2 Crystal structure of 3, showing the atom-labeling scheme

Irradiated at δ 2.70, the signal at δ 2.31 (1H, dt, J = 3, 20 Hz, 13 β -H) changed to a doublet of doublet (J = 3, 20 Hz, long range coupling with H-11) and the signal at δ 2.19 (1H, dd, J = 3, 20 Hz, 13 α -H) changed to a doublet (J = 20 Hz). This shows that there is no proton at C-14. A close inspection of ¹³C-nmr spectra of spiramine G (3) and triol (6) revealed that the quaternary carbon signal at δ 51.8 in spiramine G (3) was shifted to the down field about 10 ppm, which indicated that the carbonyl group was located at C-14. Three-dimensional single-crystal X-ray analysis provided the total structure for spiramine G (3) (Figure 2). Spiramine G (3) is the first C-20 diterpene alkaloid containing the carbonyl group at C-14.

carbon	E(1)	F(2)	(5)	G(3)
$\frac{1(t)}{2(t)}$	41.2	41.2	41.3	39.5
$\frac{2(1)}{3(1)}$	30.1	30 1	30.1	<i>4</i> 1 1
4(s)	34.6	34.8	34.6	33.5
5 (d)	44.8	44.5	44.6	48.4
6(t)	25.2	25.1	25.2	28.1
7	74.6 (d)	74.5 (d)	74.6 (d)	76.2 (d)
8 (s)	41.0	40.8	40.3	51.8
9(d)	44.6	44.9	44.6	49.4
10 (s)	34.6	33.6	34.6	38.2
11(t)	23.8	23.8	23.7	27.3
12(t)	36.9	36.9	37.1	38.6
13(t)	25.2	25.1	25.1	45.6
14	20.7 (t)	21.2 (t)	21.1 (t)	219.8 (s)
15	69.7 (d)	70.0 (d)	70.2 (d)	38.2 (t)
16(s)	150.3	150.2	155.6	146.3
17(t)	114.1	114.2	112.4	107.7
18(q)	26.1	26.0	26.5	26.3
19(t)	53.0	51.9	51.6	59.6
20	87.3 (d)	87.4 (d)	87.6 (d)	52.4 (t)
21(t)	53.4	57.7	57.5	58.0
$\frac{22(t)}{2}$	62.1	57.9	58.0	60.3
OCOCH3	1/1.1	1/1.1		
OCOCH3	1/0.9	•• •		
OCO <u>C</u> H3	21.0	21.0		
ОСО <u>С</u> Н3	21.2			

Table I. ¹³C Chemical Shifts^a for Spiramines and Their Derivatives

a Determined in CDCl3.

EXPERIMENTAL

All melting points were determined on a Yanagimoto melting point apparatus and are uncorrected. ¹H-Nmr spectra and double irradiation spectra were recorded on a JOEL-GX 400 spectrometer. ¹³C-Nmr were recorded on a VARIAN VXR-200 spectrometer and their assignments are given in Table 1. Optical rotations were measured with a JASCO DIP-181 polarimeter. Ir spectra were measured with a JASCO IR-180 spectrophotometer. Ms spectra were mesured with a JEOL JMSDX 300 mass spectrometer.

Isolation of spiramines:

Fraction B² (30 g) was chromatographed on alumina column and eluted with CH₂Cl₂, Et₂O, EtOAc, and MeOH respectively to give five fractions. Fraction 4 (eluted with EtOAc, 2.4 g) was subjected to SiO₂ flash column and eluted with hexane - Et₂NH (20 : 1) to give I (520 mg) and II (589 mg) fraction. Fraction I (520 mg) was subjected to the SiO₂ flash column (eluted with hexane-Et₂NH, 30 : 1) and SiO₂ preparative tlc (developed with hexane-Et₂O, 1 : 1) gave spiramine E (1) (40 mg) and spiramine F (2) (70 mg). Fraction II was subjected to SiO₂ flash column (eluted with Et₂O-Et₂NH-hexane, 10 : 1 : 10) to give spiramine F (2) (210 mg) and two other components. Fraction 5 (eluted with MeOH, 2.3 g) was subjected to SiO₂ flash column and eluted with hexane-Et₂NH-Et₂O (10 : 3 : 10) to give spiramine G (3) (45 mg) and a mixture of spiramine C and D.²

Spiramine E (1): amorphous, $[\alpha]_D^{20}$ -97° (c 1.9, CHCl3); ms m/z 443. 269 (50), 370 (100); Anal. Calcd for C26H37NO5: C, 70.43; H, 8.85; N, 3.16. Found. C, 70.63; H, 8.54; N, 3.12. Ir (CHCl3) v 1710, 1650, 1240 cm⁻¹; ¹H-nmr (C₆D₆) δ 5.46 (1H, brs, H-15 β), 5.28, 5.03 (each 1H, t, J = 1.5 Hz, 2H-17), 4.51 (1H, br s, H-20), 4.16 (2H, t, J = 6 Hz, 2H-22), 3.60 (1H, d, J = 5 Hz, H-7 β), 2.98, 2.64 (each 1H, dt, J = 6, 13.5 Hz, 2H-21), 2.60, 2.16 (each 1H, d, J = 11 Hz, 2H-19), 2.55 (1H, m, H-12), 1.80 (1H, m, H-6 α), 1.75 (3H, s, OCOCH3), 1.73 (1H, m, H-6 β), 1.68 (3H, s, OCOCH3), 0.63 (3H, s, 18-CH3).

Spiramine F (2): amorphous, $[\alpha]_D^{18}$ -101° (c 2.5, CHCl₃), ms m/z 401.257 Calcd 401.257 for C24H35NO4. Ir (CHCl₃) v 3450, 1705, 1650 cm⁻¹; ¹H-nmr (C₆D₆) δ 5.38 (1H, br s, H-15 β), 5.23, 5.02 (each 1H, br s, 2H-17), 4.49 (1H, br s, H-20), 3.75 (2H, m, 2H-22), 3.53 (1H, d, J = 5 Hz, H-7 β), 3.42, 2.86 (each 1H, m, 2H-21), 2.81, 2.73 (each 1H, m, 2H-19), 2.35 (1H, m, H-12), 1.78 (1H, m, H-6 α), 1.68 (1H, m, H-6 β), 1.71 (3H, s, OCOC<u>H</u>3), 0.61 (3H, s, 18-C<u>H</u>3), 0.60 (1H, m, H-5 β).

Spiramine G (3): needles, mp 160 - 162 °C (Et₂O), $[\alpha]_D^{20}$ -16 °C (c 0.95, CHCl₃), ms m/z 359.249 Calcd 359.249 for C₂₂H₃₁O₃N. Ir (CHCl₃) v 3500, 1705, 1650 cm⁻¹; ¹H-nmr (CDCl₃) δ 4.29, 4.74 (each 1H, m, 2H-17), 3.60 (2H, m, 2H-22), 3.48 (1H, d, J = 8 Hz, OH), 3.20 (1H, ddd, J = 6, 8, 11 Hz, H-7 β), 3.07 (1H, dt, J = 2.5, 11 Hz, H-15 β), 2.70 (1H, m, H-12), 2.40 (2H, m, 2H-21), 2.52, 2.45, 2.20, 2.12 (each 1H, 2 x AB type, 2H-20 and 2H-19), 2.31 (1H, dt, J = 3, 20 Hz, H-13 β), 2.25 (1H, dt, J = 2, 17 Hz, H-15 α), 2.19 (1H, dd, J = 3, 20 Hz, H-13 α), 1.95 (1H, m, H-11), 1.67 (1H, m, H-11), 0.80 (3H, s, 18-CH₃).

Acetvlation of spiramine F (2)

Spiramine F (80 mg, 0.2 mmol) was dissolved in 2 ml (21 mmol) of Ac₂O and 2 ml (25 mmol) of pyridine. The solution was allowed to stand overnight at room temperature. After addition of water (10 ml), the reaction mixture was made basic (pH 8 - 9) with 5% aqueous NaHCO₃, and extracted with CHCl₃. The extracts were dried over Na₂SO₄, and evaporated. The residue was subjected to SiO₂ flash column (eluted with ether-hexane-Et₂NH, 10 : 3 : 10) to give 75 mg (85%) of spiramine E (1) which was identified by ¹H-nmr, ir, and tlc.

Reduction of spiramine F (2)

To a solution of spiramine F (2) (70 mg, 0.17 mmol) in MeOH (7 ml) was added 120 mg (3.2 mmol) of NaBH4 at 0 °C, and the mixture was stirred for 8 h at room temperature. Removal of the solvent was followed by partition between H₂O and CHCl₃. The organic layer was washed with H₂O, dried over Na₂SO₄, and evaporated *in vacuo* to give 58 mg (92%) of triol (6) which was identified by ¹H-nmr, ir, and tlc.² <u>Oxidative cyclization of triol (6) using K₃Fe(CN)6⁵</u>

To a solution of 200 mg (0.55 mmol) of triol (6) in 10 ml of MeOH was added a solution of 700 mg (2.1 mmol) of K3Fe(CN)6 in 10 ml of H2O and 8 ml of 8 % aqueous KOH solution and stirred for 30 min at room

temperature. The reaction mixture was extracted with CH₂Cl₂ (3x40 ml), washed with H₂O, dried over Na₂SO₄, and the solvent was removed to give 170 mg of residue. The residue was subjected to preparative tlc (developed with Et₂O-hexane-Et₂NH, 4 : 2 : 1) to give 110 mg (77%) of deacetylspiramine F (5): amorphous, $[\alpha]_D^{20}$ -110° (c 1.5, CHCl₃), ms m/z 259.248 Calcd 259.246 for C₂₂H₃₃NO₃. Ir (CHCl₃) v 3650, 3400, 1650 cm⁻¹, ¹H-nmr (CDCl₃) δ 5.01, 4.99 (each 1H, br s, 2H-17), 4.55 (1H, br s, H-20), 3.91 (1H, br s, H-15), 3.75 (1H, d, J = 5 Hz, H-7), 3.55 (2H, m, 2H-22), 3.30 (2H, m, 2H-21), 0.73 (3H, s, 18-CH₃).

Hydrolysis of spiramine F (2):

Spiramine F (30 mg, 0.075 mmol) was dissolved in 5 ml (4.5 mmol) of 5% KOH-MeOH and left standing overnight at room temperature. Removal of the solvent was followed by the partition between H₂O and CH₂Cl₂. The organic layer was washed with brine, dried over Na₂SO₄, and evaporated *in vacuo* to give 20 mg(100%) of deacetylspiramine F (5) which was identified with the authentic sample by ¹H-nmr, ir and tlc.

X-Ray Analysis of Spiramine G

Crystal data : C₂₂H₃₃NO₃, MW=359.5, orthorhombic, P2₁2₁2₁, a =11.408(2), b =12.906(2), c = 13.031(3) Å, V=1918.6 Å³, Z=4, DX=1.244 g cm⁻³. The colorless crystal with dimensions 0.3 x 0.3 x 0.3 mm was used for the data collection on a Rigaku AFC-5RU diffractometer with a 2θ - ω scan mode using graphite-monochromated Cu K α radiation (λ =1.54178 Å). The structure was solved by direct methods using MULTAN78⁶, and refined to R=0.052 and Rw=0.079 for 1823 observed reflections with Fo larger than 3 σ (Fo).

Atom	x	у	z	Beq(Å ²)
C(1)	0.3986(2)	0.9730(2)	0.6254(2)	3.56(12)
C (2)	0.3339(2)	0.8706(2)	0.6174(2)	3.87(12)
C (3)	0.4140(3)	0.7774(2)	0.6412(2)	4.26(14)
C (4)	0.5350(3)	0.7818(2)	0.5907(2)	3.66(10)
C (5)	0.5938(2)	0.8853(2)	0.6186(2)	3.27(10)
C (6)	0.7242(2)	0.8931(2)	0.5887(2)	3.78(12)
C (7)	0.7768(2)	0.9957(2)	0.6172(2)	3.71(12)
C (8)	0.7113(2)	1.0880(2)	0.5702(2)	3.05(10)
C (9)	0.5780(2)	1.0807(2)	0.5961(2)	3.01(8)
C (10)	0.5206(2)	0.9738(2)	0.5728(2)	2.83(8)
C (11)	0.5114(2)	1.1749(2)	0.5519(2)	3.48(10)
C (12)	0.5962(3)	1.2472(2)	0.4939(3)	3.87(10)
C (13)	0.6898(3)	1.2829(2)	0.5682(2)	4.01(12)
C (14)	0.7549(2)	1.1927(2)	0.6145(2)	3.72(12)
C (15)	0.7309(2)	1.1014(2)	0.4553(2)	3.54(12)
C (16)	0.6563(3)	1.1859(2)	0.4088(2)	4.24(14)
C (17)	0.7107(3)	1.3818(2)	0.5905(3)	5.22(16)
C (18)	0.6055(4)	0.6879(2)	0.6307(3)	5.17(14)
C (19)	0.5263(3)	0.7715(2)	0.4737(2)	3.69(10)
C (20)	0.5105(2)	0.9577(2)	0.4559(2)	2.87(8)
C (21)	0.4641(3)	0.8469(2)	0.3134(2)	3.65(12)
C (22)	0.3867(3)	0.9240(2)	0.2576(2)	3.97(12)
N (1)	0.4626(2)	0.8573(2)	0.4257(2)	3.14(8)
O (1)	0.8992(2)	1.0008(2)	0.5920(2)	4.46(8)
O (2)	0.8056(2)	1.0540(2)	0.4067(2)	4.62(10)
O (3)	0.4364(2)	1.0252(2)	0.2455(2)	4.34(8)

 Table II. Atomic Coordinates and Isotropically Equivalent Thermal Paramaters with Their Standard Deviation in Parentheses for Non-hydrogen Atoms of Spiramine G (3)

H atoms were located in a ΔF map. Non-H atoms were anisotropically and H atoms were isotropically refined by H atoms were located in a ΔF map. Non-H atoms were anisotropically and H atoms were isotropically refined by the block-diagonal least-squares. All computations were undertaken on a FACOM M780 in the Data Processing Center of Kyoto University, using KPPXRAY program system.⁷ The atomic scattering factors used were obtaind from International Tables for X-ray Crystallography IV(1974).

 Table III.
 Bond Lengths (Å) and Bond Angles (degree) with Their Standard Deviations in Parentheses for Spiramine G (3)

Bond	Length	Bond	Length	Bond	Length
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.517(4) 1.530(5) 1.534(4) 1.500(4) 1.561(3) 1.557(4) 1.542(4) 1.507(4) 1.225(3) 1.516(4)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 1.551(3) \\ 1.538(4) \\ 1.541(3) \\ 1.534(4) \\ 1.551(4) \\ 1.545(4) \\ 1.513(5) \\ 1.331(4) \\ 1.465(4) \\ 1.465(4) \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.542(4) 1.545(4) 1.536(4) 1.436(3) 1.524(4) 1.525(4) 1.510(4) 1.460(4)
C(21) = C(22)	1.510(4)	C(21) - N(1)	1.470(4)	C(22) - O(3)	1.433(4)
Bond	Angle	Bond	Angle	Bond	Angle
C (2) - C (1) - C (10) $C (3) - C (4) - C (5)$ $C (5) - C (4) - C (18)$ $C (4) - C (5) - C (6)$ $C (6) - C (7) - O (1)$ $C (7) - C (8) - C (14)$ $C (9) - C (8) - C (15)$ $C (1) - C (10) - C (9)$ $C (5) - C (10) - C (20)$ $C (11) - C (12) - C (13)$ $C (12) - C (13) - C (14)$ $C (8) - C (14) - C (13)$ $C (16) - C (15) - O (2)$ $C (10) - C (20) - N (1)$ $C (19) - N (1) - C (20)$	$114.3(2) \\108.9(2) \\112.0(3) \\114.7(2) \\111.9(2) \\111.8(2) \\111.2(2) \\110.6(2) \\107.3(2) \\108.9(2) \\108.3(3) \\111.6(2) \\111.5(2) \\123.0(3) \\114.4(2) \\111.7(2) \\111.7(2) \\111.7(2) \\108.9(2) \\108.$	C (1) - C (2) - C (3) C (3) - C (4) - C (18 C (5) - C (4) - C (19 C (4) - C (5) - C (10 C (8) - C (7) - O (1) C (7) - C (8) - C (15 C (10)-C (8) - C (15 C (10)-C (9) - C (11) C (1) - C (10)-C (20 C (11)-C (10)-C (10)-C (20 C (12)-C (10)-C (10)	112.2(2) 107.2(2) 109.8(2) 109.8(2) 110.3(2) 111.4.1(2) 102.7(2) 114.1(2) 114.7(2) 114.7(2) 111.6(2) 110.1(2) 108.9(2) 113.2(2) 109.6(2) 114.3(2) 110.5(2)	C (2) - C (3) - C (4) C (3) - C (4) - C (1) C (18)-C (4) - C (1) C (6) - C (5) - C (1) C (7) - C (8) - C (9) C (9) - C (8) - C (1) C (1) - C (10)-C (5) C (5) - C (10)-C (5) C (5) - C (10)-C (5) C (5) - C (10)-C (1) C (13)-C (12)-C (1) C (13)-C (12)-C (1) C (14)-C (13)-C (1) C (14)-C (13)-C (1) C (4) - C (15)-O (2) C (4) - C (19)-N (1) C (21)-C (22)-O (3) C (20)-N (1) - C (2)) 114.8(2) 9) 111.5(3) 9) 107.5(2) 0) 112.2(2)) 110.0(2) 4) 106.5(2) 0) 114.9(2)) 108.1(2)) 110.8(2) 2) 110.5(2) 6) 107.8(3) 7) 124.4(3) 13.0(2) 114.9(3) 111.23.6(2) 114.9(3)

REFERENCES

- 1. Preliminary communication: X. Hao, J. Zhou, S. Chen, K.Fuji, and M.Node, Acta Botanica Yunnanica, 1991, 13, 452.
- a) X. Hao, M. Node, T. Taga, Y. Miwa, J. Zhou, S. Chen, and K. Fuji, *Chem. Pharm. Bull.*, 1987, 35, 1670.

b) M. Node, X. Hao, J. Zhou, S. Chen, T. Taga, Y. Miwa, and K. Fuji, Heterocycles, 1990, 30, 635.

- 3. "Zhong Yao Da Ci Dian", ed. by Jiangshu new medical College, Shanghai people's publishing House, 1971, p. 117.
- 4. For known atisine type alkaloids, see: N.W. Mody and S.W. Pelletier, Tetrahedron, 1978, 34, 2421.

- 5. S. W. Pelletier, N. V. Mody, H. D. Desai, J. F. Moore, J.Nowacki, and B. S. Joshi, J. Org. Chem., 1983, 48, 1787.
- 6 P. Main, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. M. Woolfson, *Multan 78 system*, Universities of York, Great Britain, and Louvain, Bergium, 1987.
- 7 T. Taga, T. Higashi, and H. Iizuka, KPPXRAX system, Kyoto University, Japan, 1985.

Received, 28th September, 1992