ANNULATION OF HETEROCYCLES VIA RING TRANSFORMATION OF ISOXAZOLINE-2-OXIDES BY LEWIS ACID¹

Kazuho Harada,* Kuniaki Sasaki, Eisuke Kaji, and Shonosuke Zen

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Abstract - Novel heterocyclic-annulated furo[3,3a-*d*]isoxazoles were synthesized through the ring transformation reaction of heterocyclic ring-substituted isoxazoline-2-oxides promoted by Lewis acid such as titanium tetrachloride. Structural determinations by single crystal X-ray and nmr analyses are reported.

Previously we described novel ring transformation of 3,5-bis(methoxycarbonyl)-4-phenyl-2isoxazoline-2-oxides into benzofuro[3,3a-*d*]isoxazoles in the presence of Lewis acid such as $TiCl_4$.² To exploite this ring transformation, we used heteroaromatic ring-substituted isoxazoline-2-oxides in this ring transformation and wish to report here the synthesis of novel heterocyclic annulated furo[3,3a-*d*]isoxazoles (**4 a**, **4 b**, and **4 c**) through the ring transformation of indole- or furan- substituted isoxazoline-2-oxides (**3 a**, **3 b**, and **3 c**) by Lewis acid such as titanium tetrachloride(Scheme 1).

Isoxazoline-2-oxides (**3 a**, **3 b**, and **3 c**)³ were prepared⁴ by the reaction of the corresponding aldehydes (**2 a**, **2 b**, and **2 c**) with two molar amount of methyl nitroacetate (**1**) in the presence of diethylamine, then employed in a following manner. Compound (**3 a**) was allowed to react with four-fold molar excess of titanium tetrachloride in dichloromethane for **1**.5 h at room temperature, and then the reaction mixture was quenched with 10% aqueous sodium carbonate and extracted with chloroform. Purification by column chromatography on silica gel(hexane-ethyl acetate, **1**:1) afforded two fractions, *i.e.*, dimethyl **3**a,4-dihydro-6-tosyl-5a*H*-indo[2,3-*b*]furo-[3,3a-*d*] isoxazole-3,4-dicarboxylate (**4 a**)⁵ (58%, mp 86.0-88.0° C from benzene-petroleum ether) and methyl **3**a-chloro- α -hydroxy-2-methoxycarbonyl-1-oxido-8-tosylindo[2,3-*b*]-1-pyrroline-**3**-acetate (**5**)⁶ (22%, mp 190-193° C from ethyl acetate-hexane). On the other hand, when compound (**3b** and **3c**) were allowed to react with two-fold molar excess of titanium tetrachloride in dichloromethane for 1 h at 0° C, 6-hydroxyfuro[2,3-*b*]furo[3,3a-*d*]isoxazole (**4 b**)⁷ (33%, mp **1**34-136° C) and 7-hydroxyfuro[3,2-*b*]furo[3,3a-*d*] isoxazole(**4 c**)⁸ (28%, mp 96-98° C) were isolated from the complex reaction mixture, respectively.

Structures of these products were confirmed as follows : Compounds (4 a, 5, and 4 b) were

analysed by single crystal X-ray analyses⁹. The ORTEP drawing of **4 a,5**, and **4 b** are shown in Figure 1. The structure of **4c** was assigned by comparing the ¹H-¹H chemical shif correlation spectra (COSY) of 4c with those of 4b : H-5a appears as a singlet at δ 5.95 in the spectrum of **4b**. On the other hand, H-5a at δ 4.98 is coupled with methylene protons (H-6 and H-6) on the furan ring and the methylene protons are coupled with one ring proton(H-7) (J=11.0 and 6.0 Hz) in the spectrum of **4 c**. Other correlation of ¹H signals between the spectra of **4 b** and 4c are almost identical (Table 1). By these spectroscopic results, the structure of 4c was determined as a constitutional isomer of **4 b**, *i.e.*, 7-hydroxyfuro[3,2-b]furo[3,3a-d]isoxazole. The postulated mechanisms of the formation of 4 a,5, and 4 b are illustrated in Schemes 2 and 3. The formation of spiro-intermediate(B) from the nitrosonium intermediate(A)¹⁰ through an intramolecular ipso-attack¹¹ by oxygen atom of nitrosonium species in A leads to afford 4 a. On the other hand, intramolecular addition of nitrosonium species at C-2 of the indole ring in the intermediate(A), followed by chlorination with TiCl₄ gives product (5) (Scheme 2). The former mechanism is also adopted in the formation of **4b**, except introduction of a hydroxy group into the furan ring in the intermediate(C) through the acid-catalysed hydration to afford 4b (Scheme 3).

Table 1. Selected ¹H-Nmr Shifts(ppm) and Coupling Constants(Hz) for **4b** and **4c** (300 MHz, in CDCl₃)

	4ь		4c	_
H–3a	4.32	d	4.20	d
H-4	5,23	d	4.66	d
H-5a	5.95	s	4.98	M
H-6	_		2.36	m
H-6'			2.45	m
H-7	5.68	dd	5.85	dd
H8	2.35	dd		
H8'	2.72	dd		
J _{3a. 4}	6.5		6.3	
J _{54.6}			8.0	
J _{54.6'}			5.0	
J _{6.6} ,			15.0	
J_{67}			6.0	
Jet 7			11.0	
J _{7 8}	3.0			
J _{7 8} ,	5.0			
J _{8,8} ,	14.0			

451

Table 2. Crystallographic Data for Compounds 4a, 5, and 4b

	4a	5	4b
Formula	C ₂₂ H ₂₀ N ₂ O ₈ S	C22H21N208CIS	C ₁₁ H ₁₃ NO ₈
F.	472.47	508.93	287.23
Crystal dimensions	0.2x0.2x0.3	0.2x0.3x0.2	0.2x0.3x0.2
(mm)			
Crystal System	monoclinic	monoclinic	triclinic
Space group	<i>P</i> 21/a	P21/a	PĪ
Lattice parameters			
a/Å	10.796(4)	12.210(1)	8.870(1)
¢∕Å	30.556(8)	14.616(2)	12.159(1)
c/Å	13.565(4)	13, 151 (1)	6.0696(6)
α/deg			102.08(1)
β/deg	99.93(2)	102.037(7)	90.59(1)
γ/deg			71.110(8)
V/Å ³	4408(4)	2295.4(4)	604.5(1)
Ζ	8	4	2
Dc/gcm ⁻³	1.424	1.473	1.578
μ(Cu <i>Kα</i>)/cm ⁻¹	17.18	27.70	11.40
2 <i>θ</i> max/deg	110.1	140.2	140.4
Scan mode	ω-2θ	ω-2θ	ω-2θ
No.of Observation	1591	2734	1513
(Fo>3.00o(Fo))			
No.of Variables	595	351	181
R	0.060	0.047	0.049
R _e	0.038	0.043	0.049

ACKNOWLEDGMENT

The authors thank the Suzuken Memorial Foundation and the Japanese Ministry of Education, Science and Culture(Grant-in-Aid for General Scientific Research, No 04671305) for support of this study.

REFERENCES AND NOTES

- 1. Part X of a series on "Synthetic Reactions of Isoxazoline-2-oxides".
- S. Zen, K. Takahashi, E. Kaji, H. Nakamura, and Y. litaka, *Chem. Pharm. Bull.*, 1983, 31, 1814 : K. Takahashi, E. Kaji, and S. Zen, *Synth. Commun.*, 1984, 14, 139 ; K. Takahashi, E. Kaji, and S. Zen, *Nippon Kagaku Kaishi*, 1984, 1933 ; S. Zen, E. Kaji, and K. Takahashi, *Nippon Kagaku Kaishi*, 1986, 55.
- 3 a : Yield 76%; mp 181.5-184⁻ C; Ir v(KBr)cm⁻¹ : 1758(*ester*), 1735(*ester*), 1620(C=N); ms(m/z): 472(M⁺); ¹H nmr(300MHz, in CDCl₃) : 2.35(s,3H,CH₃), 3.73(s,3H,COOCH₃), 3.91(s,3H,COOCH₃), 4.98(d, J_{4,5}=3.5 Hz,1H,H-4), 5.13(d, J_{4,5}=3.5 Hz,1H,H-5), 7.2-8.1(m,9H, aromatic protons); *Anal.* Calcd for C₂₂H₂₀N₂O₈S : C, 55.92; H, 4.27; N, 5.93. Found : C, 55.81; H, 4.30; N, 5.88.

3b : Yield 87%; mp 104-106[•] C; lrv(KBr)cm⁻¹ : 1760(ester), 1740(ester), 1635(C=N), ms(m/z): 269(M⁺) ; ¹H nmr(CDCl₃) : 3.79(s,3H,COOCH₃), 3.86(s,3H,COOCH₃), 4.84(d,J_{4,5}=2.5 Hz,1H, H-4), 4.92(d,J_{4,5}= 2.5 Hz,1H,H-5), 6.42(d,J=3.0 Hz,1H,furan proton), 7.43(d,J=3.0 Hz,1H,furan proton), 7.47(s,1H,furan proton) ; *Anal*. Calcd for C₁₁H₁₃NO₆ : C, 46.00; H, 4.56; N, 4.88. Found : C, 46.17; H, 4.58; N, 4.72.

3c : Yield 73%; mp 102-105[•] C; $Ir_{V}(KBr)cm^{-1}$: 1750(ester), 1710(ester), 1640(C=N), ms(m/z): 269(M⁺); ¹H nmr(CDCl₃) : 3.80(s,3H,COOCH₃), 3.87(s,3H,COOCH₃), 5.03(d,J_{4,5}=3.0 Hz,1H, H-4), 5.07(d,J_{4,5}= 3.0 Hz,1H,H-5), 6.33(d,J=4.0 Hz,1H,furan proton), 6.37(dd,J=2.0 and 4.0 Hz, 1H,furan proton), 7.41(d,J=2.0 Hz,1H,furan proton) ; *Anal.* Calcd for C₁₁H₁₃NO₈: C, 46.00; H, 4.56; N, 4.88. Found : C,46.10; H, 4.60; N, 4.79.

- 4. K. Takahashi, E. Kaji, and S. Zen, *Nippon Kagaku Kaishi*, **1983**,1678; L. Kh. Vinograd and N.N. Suvorov, *Khim. Geterotsikl. Soedin.*, 1970, **11**, 1505 (*Chem. Abstr.*, 1971, **74**, 53610h).
- Irv(KBr)cm⁻¹: 1750(ester), 1610(C=N); ms(m/z): 472(M⁺); ¹H nmr(CDCl₃): 2.40(s,3H,CH₃), 3.76(s,3H,COOCH₃), 3.89(s,3H,COOCH₃), 4.30(d,J_{3a,4}=6.5 Hz,1H,H-3a), 4.82(d,J_{3a,4}=6.5Hz, 1H,H-4), 6.25(s,1H,H-5a), 7.2-7.8(m,8H, aromatic protons); *Anal.* Calcd for C₂₂H₂₀N₂O₈S: C, 55.92; H, 4.27; N, 5.93. Found : C, 55.98; H, 4.58; N, 5.54.
- Irv(KBr)cm⁻¹: 3475(OH), 1740(ester), 1700(ester); ms(m/z): 508(M⁺); ¹H nmr(CDCI₃): 2.39(s,3H,CH₃), 3.31(d,J=6.0 Hz,1H,OH), 3.74(s,3H,COOCH₃), 3.90(s,3H,COOCH₃), 4.13 (d,J_{3,3}=2.0 Hz,1H,H-3), 5.08(dd,J_{3,3}=2.0 Hz,J=6.0 Hz,1H,H-3'), 6.46(s,1H,H-8a), 7.12-7.40(m, 4H, H-4,H-5,H-6 and H-7), 7.28(d,J=8.5 Hz,2H, tosyl-H), 7.92(d,J=8.5 Hz,2H, tosyl-H); Anal. Calcd for C₂₂H₂₁N₂O₈CIS: C, 51.96; H, 4.13; N, 5.51; S, 6.30; CI, 6.98. Found : C, 51.77;

H, 4.16; N, 5.68; S, 6.33; Cl, 6.89.

- Ir v(KBr)cm⁻¹: 3500(OH), 1740(ester), 1590(C=N); ms(m/z): 287(M⁺); ¹H nmr: summarized in Table 1; *Anal.* Calcd for C₁₁H₁₃NO₈: C, 46.00; H, 4.56; N, 4.88. Found: C, 46.17; H, 4.58; N, 4.72.
- Irv(KBr)cm⁻¹: 3425(OH), 1730(ester), 1570(C=N); ¹H nmr : summarized in Table 1; Anal. Calcd for : C₁₁H₁₃NO₈ : C, 46.00; H, 4.56; N, 4.88. Found : C, 46.01; H, 4.58; N, 4.62.
- X-Ray structure analyses of 4 a,5, and 4 b were carried out on a Rigaku AFC-5R diffractometer, and the cell parameters and the intensity data were measured with graphite monochromated Cu Kα (λ=1.54179Å) radiation at 23° C. The crystal data are summarized in Table 2. The structures were solved by the direct method using the program MITHRIL (C.J. Gilmore : MITHRIL, an integrated direct method computer program, *J. Appl. Cryst.*, 1984, 17, 42, Univ. of Glasgow, Scotland). The parameters of non-hydrogen atoms were refined by the full-matrix least-squares method with anisotropic temperature factors. The hydrogen atoms were located from a difference Fourier synthesis, and refined only the temperature factors isotropically.
- 10. K. Takahashi, E. Kaji, and S. Zen, Chem. Pharm. Bull., 1985, 33, 8.
- A. R. Butler, "Organic Reaction Mechanism 1979", ed. by A.C. Knipe and W.E. Watts, John Wiley and Sons, Ltd., New York, 1981, p. 275; H. Suzuki, *Yuki Gosei Kagaku Kyokai Shi*, 1979, **37**, 290.

Received, 23th October, 1992