REVISED ASSIGNMENT OF OLEFINIC PROTON SIGNALS IN THE ¹H-NMR SPECTRA OF DIENOID-TYPE ERYTHRINAN ALKALOIDS¹

Yoshisuke Tsuda,^{*a} Shinzo Hosoi,^a Takehiro Sano,^{*b} Hideki Suzuki,^b and Jun Toda^b

Faculty of Pharmaceutical Sciences,^a Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan and Showa College of Pharmaceutical Sciences,^b 3-3365 Higashi-tamagawagakuen, Machida-shi, Tokyo 194, Japan

<u>Abstract</u> — Previous assignment of the olefinic proton signals (H-1 and H-2) in the ¹H-nmr spectra of dienoid-type erythrinan alkaloids was interchanged on the basis of the synthesis of the stereoisomers, nOe experiments, and theoretical calculations.

Dienoid-type erythrinan alkaloids are known more than 40 species in the plants of Genus *Erythrina* (Leguminosae) and *Cocculus* (Menispermaceae).² All of them bear 3α -methoxy (or hydroxy) group and exhibit three olefinic proton signals in the ¹H-nmr spectra at around δ 5.8, 6.0, and 6.5 (in CDCl₃) with the multiplicities

of broad singlet (s), doublet (d, J=10 Hz), and doubletdoublet (dd, J=10 and 2 Hz), respectively. The corresponding signals in the 8-oxo alkaloids appear at δ 6.0, 6.3, and 6.9 with similar multiplicities. These proton signals have been assigned as those of H-7, H-1, and H-2, respectively, assuming that the vicinal coupling between

H-2 and H-3 β is *ca.* 2 Hz.^{3,4} However, recent synthesis of the various 3 β -isomers and 3,8-dioxo derivatives⁵⁻⁸ throw a doubt on the previous assignment, suggesting that the previous assignment for H-1 and H-2 has to be interchanged.

Olefinic Proton Signals of 3,8-Diones 3,8-Dioxo derivatives show the signals of H-7, H-1, and H-2 at $ca. \delta 6.4, 7.7$, and 6.4 as s, d (J=10 Hz), and d (J=10 Hz), respectively. This assignment was supported by AM1 calculations⁹ of the electron densities of the corresponding positions and proved by observation of nOe's for 40: irradiations of the singlet at $\delta 6.26$ and the doublet at $\delta 6.39$ gave 4.7% and 10% enhancements of the intensity on the doublet signal at $\delta 7.56$, respectively, while irradiation of the doublet at $\delta 7.56$ produced 17% and 4% enhancements of the two protons at $\delta 6.26$ (s) and 6.39 (d). The dimethoxy derivative (37) gave similar results.

Olefinic Proton Signals of 3β -Substituted Alkaloids All synthetic 8-oxo- 3β -methoxy (or 3β -hydroxy) alkaloids showed olefinic protons at similar positions with the corresponding 3α -isomers (*ca*. δ 5.9, 6.3, and 6.8), but with different multiplicities of s, dd (J=10, 5 Hz), and d (J=10 Hz). Supposing the previous assignment is correct and the chemical shifts are comparable with those of 3α -isomers, the coupling constant of 5 Hz for H-1 is too large to assign as an allylic coupling with H-3 α , instead it is rather the value of a vicinal coupling, suggesting that this proton should be attributed to H-2. Thus olefinic protons should be assigned as shown in Figure 1. Removal of 8-oxo group from these compounds produced up-field shifts on the above protons by 0.1-0.2, 0.1-0.2, and 0.2 ppm as expected. Thus they are assigned as H-7, H-2, and H-1, respectively.

Olefinic Proton Signals of 3α -Isomers Since the chemical shifts of olefinic protons should not be much affected by the stereochemistry of the 3-OR substituents, the above evidence suggests that the olefinic proton signals at δ 5.8, 6.0, and 6.5 (for the natural alkaloids) should be assigned to H-7, H-2, and H-1, respectively. The corresponding signals for 8-oxo derivatives are at δ 6.0, 6.3, and 6.9. Comparing the latter values with those of 3,8-diones, the shift values are -0.4, -0.1, and -0.8 ppm, respectively, being compatible to the common shift rule. If the previous assignment was taken, those values were -0.4, +0.5, and -1.5 ppm, respectively, violating the common shift rule at H-2. Therefore, the small coupling (2-2.5 Hz) for H-1 is attributed to an allylic coupling between H-1 and H-3 β , and the vicinal coupling constant between H-2 and H-3 β is 0 Hz, suggesting the dihedral angle between H-3 β and H-1 (and H-2) is *ca*. 90°. In contrast, $J_{2,3\alpha}$ =4-5 Hz and $J_{1,3\alpha}(allylic)=0$ Hz for 3 β -isomers.

This revised assignment (listed in Table I) was proved by nOe experiments for 16 and 31, although decoupling experiments did not give a definite conclusion. For 16, irradiation of the proton at δ 6.69 produced 4.4% and 9.5% enhancements on the signals at δ 5.86 and 6.31, while irradiation of either proton at δ 5.86 or 6.31 resulted in an nOe enhancement only on the poton at δ 6.69 by 3.7% or 11%. For 31, nOe enhancements between H-7 at

Table I. Revised Assignment of Olefinic Protons for Dienoid-type Erythrinan Alkaloids (in CDCl3)

.1e	ы <i>L</i> -Н	 г-н	г-н		Stadio	NO-E 84	'n-С	l @outaV	I
								R Series	9α-0
(9	J (8 1d)07.2	(01 'P)86'S	(2,01,bb)92.8			or-OMe	۷	Erysotrine	I.
(Ì	1 (s 1d)£7.2	(01 'p 19)06.c	6.62(dd, 10, 2)			44 41	B	Erythraline	τ.
Ğ	(\$)72(\$)	(01 'P)66'S	(7 '01 'PP)95'9				č	Soccuvinine Coccuvinine	£ 4
(0	(s)t/'c	(01 '0)/6'C	(Z '01 'DD)CC'0			19 19	α σ		
(1	I (s rd)c'.c	2'88(q' 10)	(C.Z. 101, 100)86.0				4	u-cryunoiaine	ć.
(†	(s)1/.c	(II 'P)06'C	(2,11,0b) 44 (dd, 11, 2)				Ð	b-ruyuroidine	9.
(1	1 (s 1d)77.č	(01 'P)\$0.9	(Z '01 'PP)/S'9			HO-10	v	FLYUTRAIDE	L
	(s 1d)80.č	(01 'P 4)86.2	(7, 10, 10, 2)		₽WO-\$11	α−OMe	¥	Erythristemine	8 -
(#(s_rd)85.c	(01 'P)88.c	o.32(dd, 10, 2)			, . J · ·	•	1. 1. 1 . 1 .	
(t	(s 1d)08.c	6.09(br d, 10)	0.66(dd, 10, 2.5)		HO-d1	α-ΩWe	v	ក ការប្រាណាទេ	6
(9	I (s 1d)80.c	(01 'p Jq)26.c	0.46(dd, 10, 2.5)		≎NO-q11		v	rty urascine	01
(1	1 (s 1d)27.2	6.00(br d, 10)	6.60(dd, 10, 2.5)		но-яп	- 	B	 Γιλημιμμο	II.
(j	(\$)20.9	6.32(br d, 10)	(E '01 'PP)06'9	0=8		aMO-20	¥	Erysoramidine	21
()	(\$)00.8	(01 'P 4)/27.9	(2 '01 'PP)(8'9	0=8			8	8-Oxoerythraline	61
(0	(\$)(0)	(01 to 10)05.0	(2 '01 PP38'9	0=8			u n	2010100000	5 L: + T.
()	(\$)98.5	(01 'P)16'9	(7 '01 'PP)69'9	0=8		н н	E		91
(†	e.02(s) 1	(01 'P)\$7.9	(7, 10, 2) (6, 7) (7) (7) (7)	O=8		61 E1	Ę	8-Oxo-a-erythroidine	41.
0	ri (\$)96'S	(ZI 'P)52'9	6,77(dd. 12, 2.5)	O=8		ни	9	s-Oxo-B-ervthroidine	8 I -
(8	6.02(s)	(01 'P)02'9	(7) (9) (9) (7) (7) (7) (7)	O=8		** **	Н		6 L
(8	(s)26.2	(01 °P)\$7.9	6.68(dd, 10, 2)	O=8			I		0 7 .
(9	(s)00.8	6.30(br d, 10)	(£ '01 'PP)16'9	O=8		α-OH	¥		12:
(t (a)£0.8	6.34(br d, 11)	6.85(dd, 11, 2)	O=8	HO-911	∞-OMe	B	9-Οχοειγιμτίπε	Z Z 4
(†	, (s)80.ð	6.35(br d, 10)	(5.2,01,bb)99.0	O=8	01A	aMO-10	¥	Erytharbine	£ 7 3
(2	1 (\$)70.8	6.32(br d, 10)	(5.2 ,01 ,bb)£9.8	O=8	0IA	a-OMe	8	Crystamidine	Þ Z 4
()	(\$)60.8	(01 'P)25.6	(2 '01 'pp)86'9	O=8	۷۱۵	ю-ОН	A		52.
(1	(s)70.8	(01 'P)67.9	(7 '01 'PP)16'9	O=8	010	α–OH	В		97,
,								Series 8	0-86
Ģ	(0)08.2	(2.01.56)21.6	(01)02.9			₽WO-8	¥		12
()	; (s 19)58.č	(\$ '01 'PP)11'9	(01 °P)/9'9				B		87
(9	(\$)\$6.5	(\$ '01 'PP)\$E'9	6.92(br d, 10)	0=8		14 44	¥		67
Ğ	(\$)96.5	(\$ '01 'PP)0E'9	(01 'P)68'9	0=8			B		ŐĒ
(5	(\$)08.6	(\$ '01 'PP)EE'9	(01 'P)0('9	0=8			_л Я		10
6	(s)58.č	(7 '01 'PP)52'9	(01 TP)79'9 (01 TP)79'9	O=8		ни	니		28
0	(\$)20'9 (\$)20'9	(\$ '01 'PP)87'9	(01 P)£6'9	0=8		HO-A	a		7£
	s)18.č	(7 '01 'PP)67'9	(01 'P)02'9	0=8		" "	E		35
(1	(s)00.9	(2.30(dd. 10, 5)	(01 'P)26'9	O=8	010	P-OMe	¥		98
,	(-)	((()=8 'O=	=E)	ioxo Derivatives:	(G-8 ,
(; (s)9£.8	(01 'P)14.8	(01 'p)\$ <i>L</i> .7				¥		45
i	(\$)95.9	(01 'P)SE'9	(01 'P)ZL'L				ñ		88
(0	2 (2)82.0 2 (2)82.0	(01 'D)85'9	(01 'p)\$/'/				 		07 69
10	s (s)(7.9	(01 'P)75'9	(01 'P)E9'L				Н		17
	· /-\-	(UL PIEE 9	(01 'P)\$5'2				I		Ζ\$
() ()	s)26.3	(01 'm)cc'0	(

* The assignment in the references must be revised as those shown in this Table. # The values in benzene- d_6 .

Non-aromatic:

a sui

... c D € W⁶O (O) €J **O**9M Aromatic:

H

L Î

Ð

В

299

 δ 5.80 and H-1 at δ 6.70 (4.4%) and between H-1 and H-2 at δ 6.33 (11-13%) were observed. Theoretical calculations also supported the above assignment: the electron densities calculated by AM19 for a model

compound of 3-OR structure revealed that the order is C-7>C-2>C-1. The above assignment is applicable not only to aromatic alkaloids but also to non-aromatic ones such as erythroidines, in which H-1 and H-2 appeared at slightly higher field than those of aromatic alkaloids.

Atom electron density

For homoerythrinan alkaloids of dienoid-type, Johns and co-workers¹⁰ assgined the olefinic protons of H-1, H-2, and H-7 at *ca*. δ 6.2, 5.8, and 5.5 (in benzene-*d*₆), based on detailed decoupling experiments of the 3 α - and 3 β -isomers. This is in agreement with our revised assignment for erythrinan alkaloids.

REFERENCES

- 1. Part XXXVIII of Synthesis of *Erythrina* and Related Alkaloids. Part XXXVII: S. Hosoi, K. Ishida, M. Sangai, and Y. Tsuda, *Chem. Pharm. Bull.*, 40, in press.
- S. F. Dyke and S. N. Quessy, "Erythrina and Related Alkaloids", in "The Alkaloids" ed. by R. G. A. Rodrigo, Vol. 18, p. 1, 1981, Academic Press., New York.
- 3. D. H. R. Barton, P. N. Jenkins, R. Letcher, and D. W. Widdowson, J. Chem. Soc. Chem. Commun., 1970, 391.
- 4. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1617.
- 5. T. Sano, J. Toda, N. Kashiwaba, T. Ohshima, and Y. Tsuda, Chem. Pharm. Bull., 1987, 35, 479.
- 6. T. Sano, J. Toda, N. Maehara, and Y. Tsuda, Can. J. Chem., 1987, 65, 94.
- 7. Y. Tsuda, S. Hosoi, F. Kiuchi, T. Sano, J. Toda, and R. Yamamoto, Heterocycles, 1984, 22, 2255.
- T. Sano, J. Toda, M. Shoda, R. Yamamoto, H. Ando, K. Isobe, S. Hosoi, and Y. Tsuda, Chem. Pharm. Bull., 1992, 40, 3145.
- 9. MOPAC Ver. 5.00 (QCPE No. 445), J. J. P. Stewart, QCPE Bull. 1989, 9, 10; Tsuneo Hirano, JCPE

News letter, 1989, 1, 36; Revised as Ver. 5.01 by Jiro Toyoda, for Apple Macintosh.

- a) J. S. Fitzgerald, S. R. Johns, J. A. Lamberton, and A. A. Sioumis, Aust. J. Chem., 1969, 22, 2187; b)
 S. R. Johns, J. A. Lamberton, and A. A. Sioumis, *ibid.*, 1969, 22, 2219.
- 11. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1211.
- 12. K. Ito, M. Haruna, Y. Jinno, and H. Furukawa, Chem. Pharm. Bull., 1976, 24, 52.
- 13. E. Dagne and W. Steglich, Phytochemistry, 1984, 23, 449.
- 14. A. S. Chawla, A. H. Jackson, and P. Ludgate, J. Chem. Soc., Perkin Trans. I, 1982, 2903.
- 15. K. Ito, H. Furukawa, and M. Haruna, Yakugaku Zasshi, 1973, 93, 1611.
- 16. S. Ghosal, A. Chakraborti, and R. S. Srivastava, Phytochemistry, 1972, 11, 2101.
- 17. D. S. Millington, D. H. Steinman, and K. L. Rinehart. Jr., J. Am. Chem. Soc., 1974, 96, 1909.

Received, 27th October, 1992