TWO NEW COUMARONOCHROMONE DERIVATIVES, OBLONGIN AND OBLONGINOL FROM THE ROOTS OF *DERRIS OBLONGA* BENTH

Yun-Lian Lin a and Yueh-Hsiung Kuo b*

National Research Institute of Chinese Medicine,^a Taipei Hsien, Taiwan, ROC Department of Chemistry, National Taiwan University,^b Taipei, Taiwan, ROC

Abstract------ Two new coumaronochromone derivatives, oblongin and oblonginol, have been isolated from the roots of *Derris oblonga*. Their structures have been elucidated by spectroscopic and chemical methods.

Flavonoids, rotenones, stilbenes, coumarins, aurones, pterocarpans, coumestanes, triterpenes, and glycosides have been identified as constituents of the species of *Derris* (D.).¹ These species of genus *Derris* (Leguminosae) are indigenous to Taiwan: D. *trifoliata*, D. *laxiflora* and *D.oblonga*. The chemical studies of the former have been investigated -² The roots of these plants have been reported to possess insecticidal and piscicidal activities. ¹ In connection with our interest in flavonoids and in view of the biological activity of their roots, the chemical studies on the roots of D. *laxiflora* were undertaken. ³

Now we have investigated the ethanol extract from the roots of *D. oblonga*. Two new coumaronochromone derivatives, oblongin (1a) and oblonginol (2a), were isolated, and the structural elucidation of oblongin and oblonginol was based on the following evidence.

Oblongin (1a), mp 285-288°C, red needles from ethanol, was formulated as $C_{16}H_{10}O_6$ on the basis of elementary analysis and the mass spectrum (M⁺ at m/z 298) and gave positive Mg-HCl test. Its ir spectrum revealed the presence of hydroxy (3510 cm⁻¹), conjugated carbonyl (1630 cm⁻¹), and aromatic (1600, 1590, and 1510 cm⁻¹) groups. The ultraviolet absorption bands at $\lambda \stackrel{\text{MeOH}}{=}$ (log ϵ) 257 (4.41), 288 (4.30), and 323 sh (3.90) nm indicated the similar characteristic

HETEROCYCLES, Vol. 36, No. 7, 1993

absorption bands of isoflavone. 4.5 The addition of AICI₃ or AICI₃-HCI caused no bathochromic shift in the uv spectrum. The evidence suggests no chelated phenolic hydroxyl group. The 1H nm^π spectrum (Table 1) of 1a exhibited signals for methoxy [δ 3.87 (3H, s)], an ABX system of aromatic protons [8 8.05 (d, J=8.4 Hz), 7.02 (d, J=2.0 Hz), and 7.00 (dd, J=8.4 Hz, 2.0 Hz)], and two singlet aromatic protons [δ 7.42 and 7.16 (each 1H)]. Two phenolic hydroxy groups are discernible at δ 9.45 and 10.86 (each 1H, s). The compound formed a diacetate (1b) [mp 224-226°C; v_{cm} ⁻¹ 1760, 1745, and 1650; δ 2.36 and 2.35 (each 3H,s)] on reaction with Ac₂O and pyridine at room temperature. Comparison of 1H nmr data between 1a and 7-hydroxy-2', 4', 5'trihydroxyisoflavone (3), 6 we can found that the chemical shift and pattern of ABX system of ring A in 3 [δ 8.19 (d, J=6.9 Hz), 6.90 (dd, J=6.9, 3.0 Hz), and 6.86 (d, J=3.0 Hz)] are very similar to 1a. But 1a is not an isoflavone derivative due to absent of singlet singnal at δ 7.9-8.3 (a characteristic peak of H-2 in isoflavone). 6-8 The 1H nmr spectral data of 1a is also similar to those of its isomer 8-methoxycournestrol (4) 9 [mp > 300°C; red needles; v_{cm} ⁻¹ 1710; δ 7.69 (1H, d, J=9.0 Hz), 6.82 (1H, d, J=2.0 Hz), 6.81 (1H, dd, J=9.0, 2.0 Hz), 3.88 (3H, s), 7.31 (1H, s, H-7), and 7.10 (1H, s, H-10); the compound was also isolated on same source]. 1a is not a cournestan derivative asceribing to the carbonyl absorption is far lower than 1700 cm⁻¹ and different uv absorption data. 9 The structure of 1a can be assigned as a derivative of coumaronochromone, and the signal at low field δ 7.42 will be assigned to H-6' because it received the

1502

Table 1 ¹H nmr data (δ -values) for **1a** and **2a** (300 MHz, DMSO-d₆,TMS as

<u>H</u>	1a1	2a	н	1a	<u>2a</u>
5	8.05 d (8.4)*		6'	7.42 s	7.31 s
6	7.00 dd	6.25 br s	-OMe	3.87 s	3.85 s
	(8.4, 2.0)		-OH	9.45 s	9.50 s
8	7.02 d (2.0)	6.51 br s		10.86 s	10.85 s
3'	7.16 s	7.14 s			<u>12.87 s</u>

internal standard)

* Figures in parenthese are coupling constants in Hz.

Table 2 ¹³C nmr data (δ-values) for **1a** and **2a** (75 MHz, DMSO-d₆,

с	1a	2a	С	1a	2a
2	163.7 s	164.0 s	10	102.9 s	102.8 s
3	115.2 s	112.5 s	1'	115.0 s	112.5 s
4	172.4 s	178.1 s	2'	143.0 s	143.3 s
5	126.8 d	162.2 s	3'	98.3 *d	99.2 d
6	113.3 d	97.4 d	4'	145.6 s	146.8 s
7	163.6 s	163.6 s	5'	146.5 s	145.9 s
8	99.2 *d	94.9 d	6'	103.1 d	99.8 d
9	154.5 s	<u>154.6 s</u>	OMe	56.2 q	5 <u>6.2 q</u>

TMS as internal standard)

* Assignment may be interchangeable.

Assignments established by off-resonance and DEPT methods

deshield effect from carbonyl group. The signal of H-6' in lupinalbin A (5) ¹⁰ expresses at lower field & 7.81. From the above evidence, **1a** was elucidated as coumaronochromone skeleton with

three oxygenated at C-7, C-4', and C-5'. Finally, the methoxy was assigned to locate at C-5' due to H-6' (§ 7.42) and methoxy group having 23.5 % of NOE. The proposed structure 7, 4'dihydroxy-5-methoxycoumaronochromone, was also supported by ms fragmentation [m/z (%) 289 (M +, 100), 283 (M+-CH₃, 93), and 255 (M+-CH₃-CO,23) and 1³C nmr data (Table 2)]. Oblonginol (2a), mp > 300°C, red needles from methanol, had the molecular formula $C_{16}H_{10}O_7$ on the basis of elemental analysis and the mass spectrum (M⁺ at m/z 314) and gave positive Mg-HCl test. Its ir spectrum shows the presence of hydroxyl (3400 cm⁻¹), conjugated carbonyl (1660 cm⁻¹) and aromatic (1620, 1605, and 1515 cm⁻¹) groups. The uv absorption bands at λ_{MeOH}^{MeOH} (loge): 257 (4.54), 284 (4.26), 306 (4.10), and 339 (4.19) nm are similar to those of 1a. The presence of a bathchromic shift (22 nm) with AlCl₃, which did not undergo any change with the addition of HCI, showed the presence of chelated OH group with carbonyl. The 1H nmr at δ 9.50, 10.85, and 12.87 for three phenolic hydroxy groups. The latter data is discernible to chelated hydroxy proton. The compound formed a triacetate (2b) (Ac₂O/Py; 60 °C overnight) [mp 255-257°C; υ cm⁻¹1770, and 1650; δ 2.34, 2.35, and 2.49 (each 3H, s)]. The presence of a methoxy! group [δ 3.85 (3H, s)], a pair with meta couplng of aromatic protons [δ 6.51 and 6.26 (each 1H, d, J=2.4 Hz)], and two singlet aromatic protons (§ 7.31 and 7.14) was revealed from its 1H nmr spectrum. The structure of 2a was suggested to be a derivative of 1a by the similarity of its 1H nmr spectral pattern to that of 1a, except for an extra hydroxyl group which would be assigned to locate at C-5 position due to the presence of a pair of aromatic protons with meta coupling constant and chelated hydroxy proton. The ¹³C nmr data (Table 2) and ms fragmentation [m/z (%) 314 (M⁺, 100), 299 (M⁺-CH₃, 78), and 271 (M⁺-CH₃-CO, 16)] supported the proposed structure. From the above evidence, oblonginol (2a) can be assigned as 5,7,5'-trihydroxy-4'-methoxycoumaronochromone based on the following evidence. The NOE was evidently observed between methoxy and H-3' (8 7.14) (12.8% enhance). According to Dewick's report .11

the natural occurring derivatives of coumaronochromone are scarce.

EXPERIMENTAL

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Ir spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H and ¹³ C nmr spectra run on a Bruker AM 300 at 300 MHz in CDCl₃ or DMSO-d₆ solution with tetramethylsilane (TMS) as an internal standard. Chemical shifts are given in δ-values and coupling constants (J) are given in hertz (Hz). Elms and uv spectra were taken on a JEOL-JMS-100 spectrometer and Hitachi U-3200 spectrophotometer, respectively.

Extraction and Isolation

The roots (6.1 kg) of *Derris oblonga* were crushed into small pieces and dried at 50°C to give 279 g of raw material, which was extracted with 95% ethanol (80 l) three times (8 h, each time) at 60°C. The combined extracts were evaporated *in vacuo* to give a residue (293 g), which was subsequently subjected to partition with ether and H₂O (each 1 l). The upper layer left a black viscous mass (270 g) which was followed to column chromatography on silica gel with hexane-CHCl₃, CHCl₃, and CHCl₃-MeOH gradient solvent system. The 5% MeOH in CHCl₃ eluent was repeatedly chromatographed over Sephadex LH-20 (50% CHCl₃ in MeOH) and silica gel column (CHCl₃-5% MeOH in CHCl₃), and then oblongin (18 mg) and oblonginol (35 mg)were isolated. Oblongin (1a): mp 285-288°C;ir (KBr) (v_{cm} -1) 3510, 3120, 1630, 1600, 1590, 1510, 1280, 1095, 1025, 960, 840, 770; Anal. Calcd for C₁₆H₁₀O₆: C, 64.43; H, 3.38. Found C, 64.56; H, 3.32; 1H nmr: Table 1; ¹³C nmr: Table 2. Oblonginol (2a): mp > 300°C; $\lambda_{max}^{MeOH} + AlCl_3 (log ε)$ 235 (4.26), 271 (4.45), 292 (4.39), 308 (4.11), and 378 (4.12)nm. $\lambda_{max}^{MeOH} + AlCl_3 + HCl (log ε)$ 235 (4.26), 271 (4.46), 291 (4.37), 308 (4.08), and 377 (4.13); ir (KBr) (v_{cm} -1) 3400, 1660, 1620, 1605, 1515, 1360, 1275, 1205, 1125, 1035, 820, 785, Anal.Calcd for C₁₉H₁₀O₇: C, 61.15; H, 3.14.

Found C, 61.04; H, 3.20; 1H nmr : Table 1; 13C nmr: Table 2.

Acetylation of 1a and 2a with Acetic Anhydride and Pyridine

Oblongin (1a) (8 mg, 0.027 mmol) or oblonginol (8 mg, 0.025 mmol) was allowed to react with Ac_2O (0.5 ml, 5.3 mmol) and pyridine (0.5 ml) at room temperature or 60°C overnight, respectively. Usual work-up gave diacetate (1b) (7 mg, 67%) [mp 224-226°C; ir (KBr) (v_{cm} -1) 1760, 1745, 1650, 1605, 1505, 1195, 1090, 960, 905, 785; 1H nmr (CDCl₃) δ 8.40 (1H, d, J=8.4 Hz, H-5), 7.44 (1H, d, J=2.0 Hz, H-8), 7.28 (1H, dd, J=8.4, 2.0 Hz, H-6), 7.74 (1H, s, H-6'), 7.30 (1H, s, H-3'), and 3.94, 2.35, and 2.36 (each 3H, s)] and triacetate (2b) (8 mg, 73 %) [mp 255-258°C; ir (KBr) (v_{cm} -1) 1770, 1650, 1610, 1495, 1200, 1110, 1030, 975, 900; 1H nmr (CDCl₃) δ 7.68 and 7.28 (each 1H, s, H-6', H-3'), 7.38 and 6.95 (each 1H, d, J=2.0 Hz, H-8, H-6), and 3.92, 2.34, 2.35, and 2.49 (each 3H, s)], respectively.

ACKNOWLEDGEMENT

This research was supported by the National Science Council of ROC.

REFERENCES

a) R. B. Filho, O. R. Gottlieb, A. P. Mourao, A. I. da Rotha, and F. S. Oliveira, *Phytochemistry*, 1975, 14, 1454; b) M. C. Do Nascimento and W. B. Mors, *Phytochemistry*, 1981, 20, 147; c) H. Y. Hsu, Y. P. Chen, and M. Hang, "The Chemical Constituents of Oriental Herbs", 1982, p. 528; d) H. H. Harper, *J. Chem. Soc.*, 1939, 1099; e) Y. L. Chen and C. S. Tsai, *J. Taiwan Pharm. Assoc.*, 1955, 7, 31; f) A. Wetter and J. Jadot, *Phytochemistry*, 1976, 15, 747; g) Y. Obara, H. Matsubara, and K. Munakata, *Agr. Biol. Chem.*, 1976,40, 1245; h) M. Marlier, G. Darsenne, and J. Casimir, *Phytochemistry*, 1976, 15, 183; i) T. Komada, T. Yamakawa, and Y. Minoda, *Agr. Biol. Chem.*, 1980, 44, 2387; j) Y. Obara and H. Matsubara, *Meijo Daigaku Gakujutsu Hokoku*, 1981, 17, 40; (Chem. Abstr., 1981, 95, 200536c); k) S. H. Harper, *J. Chem. Soc.*,

1506

1940, 309; I) S. H. Harper and W. G. E. Underwood, J. Chem. Soc., 1965, 4203; m) M. C. Do Nascimento, R. L. de Vaoconcellos Dias, and W. B. Mors, *Phytochemistry*, 1976, 15, 1553; n)
A. P. John and A. Pelter, J. Chem. Soc., 1966, 606; o) S. S. Chibber and R. P. Sharma, *Phytochemistry*, 1979, 18, 1082; 1980, 19, 1857; *Indian J. Chem. Sect. B*, 1979, 17B, 649; p)
A. Pelter and P. Stainto, J. Chem. Soc. (C), 1966, 701; q) C. P. Falshaw, R. A. Harmer, W. D.
Ollis, R. F. Wheeler, V. B. Lalitha, and N. V. Subba Rao, J. Chem. Soc. (C), 1969, 374; r) A.
P. Johnson, A. Pelter, and P. Stainton, J. Chem. Soc. (C), 1966, 192; s) M. C. Do Nascimento, and W. B. Mors, *Phytochemistry*, 1972, 11, 3023; t) M. Garcia, M. H. C. Kano, D. M. Vieira, M.
C. Do Nasciments, and W. B. Mors, *Phytochemistry*, 1986, 25, 2425.

2. A. G. R. Nair and T. R. Seetharaman, J. Natural Products, 1986, 49, 700.

- 3. a) Y. L. Lin, Y. L. Chen, and Y. H. Kuo, Chem. Pharm. Bull., 1991, 39, 3132.
 - b) Y. L. Lin, Y. L. Chen, and Y. H. Kuo, Chem. Express, 1991, 6, 747.

c) Y. L. Lin, Y. L. Chen, and Y. H. Kuo, Chem. Phar. Bull., 1992, 40, 2295.

- 4. P. M. Dewick, "The Flavonoids Advances in Research", ed. J. B. Harborne and T. J. Mabry (ed), Chapman and Hall, London, **1982**, p.536.
- 5. E. Wong, "The Flavonoids", ed. J. B. Harborne, T. J. Mabry, and H. Mabry, Academic press, San Francisco, part 2, **1975**, p 751. p773, p782.
- 6. D. T. Burns, B. G. Dalgarno, P. E. Gargan, and J. Grimshaw, Phytochemistry, 1984, 23, 167.
- K. Kyogoku, K. Hatayama, K. Suzuki, S. Yokomori, K. Maejima, and M. Komatsu, *Chem. Pharm.* Bull., 1973, 21, 1436.
- 8. T. Saitoh, H. Noguchi, and S. Shibata, Chem. Pharm. Bull., 1978, 26, 144.
- 9.a) R. R. Spencer, E. M. Bickoff, R. E. Lundin, and B. E. Knuckles, J. Agr. Food Chem., 1966,
 14, 162; b) E. M. Bickoff, R. R. Spencer, B. E. Knuckles, and R. E. Lundin, J. Agr. Food Chem.,
 1966, 14, 444.
- 10. S. Tahara, J. L. Ingham, and J. Mizutani, Agr. Biol. Chem., 1985, 49, 1775.
- 11. P. M. Dewick, "The Flavonoids", ed. J. B. Harborne, Chapman and Hall, London, **1988**, p. 180. Received, 10th November, 1992