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Abstract -Reactions of N-cycloheptatrienylidene alkylamine Noxide 

with acetylene derivatives having electron attracting groups afford- 

ed 1-azaazulen-2(lH)vne derivatives through a unique condensation 

process leaving methyl formate or hydrogen. 

N-Cycloheptatrienylidene alkykmine m d e s  (I), one of fulvenoid dipoles,' are consid- 

ered to draw electrons away from the seven-membered ring moiety toward the N-oxide 

part, resulting in a zwi t te r  ionic form (1'). The lower chemical shifts of C1 of 1 (la: 145.6 

ppm, lb: 144.6 ppm)' compared with that (135.0 ppm) of C-phenyl-Wmethylnitrone3 in 13c 

nmr spectra indicated an  existence of a contribution of 1'. I t  is known that 1 has a 

bifunctional reactivity, i. e., 1 reacted as nitrones with dipoLarophiles such as isocyanates 

and isothiocyanateslb and behaved as cycloheptatrienes in the reaction with N-phenyl- 

1,3,4-triazoline-2,5-dione.la 

A s  a series of the cycloaddition reactions of troponoid  compound^,^ we investigated the 

reaction of Wcycloheptatrienylidene alkyLamine N-arides with acetylene derivatives in 

order to M y  whether the amine m d e s  behave as nitrones or as cycloheptatrienes in 

this reaction. Here the results will be reported. 

Reaction of Wcycloheptatrienylidene methylamine Noxide (la) with dimethyl acetylenedi- 

carboxylate (2a) a t  80'C for 15 min afforded 1-methyl-31nethoxycarbonyl-1-azaazulen- 

Z(1H)ane (3a) in 74% yield.5 Analogous reaction using N-cycloheptatrienylidene ethylamhe 

Noxide (lb) with 2a also gave the corresponding 1-azaazulen-2(1H)-one derivative (3b) in 

55% yield. The reactions of 1 with ethyl propidate (Zb) under the same reaction condi- 

tions gave the corresponding products (3c and 3d) in 38 and 21% yields, r espec t i~e ly .~  

While the reactions using phenylacetylene (2c) and diphenylacetylene (2d) afforded no 

product except the recovery of acetylene derivatives under several reaction conditions. 
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a: R1 = Me, 
b: R, =Et 

a: Rz = R3 = C02Me, a: Rl =Me. R3 = C02Me, 
b: R2 = H, R3 = CO2W h R, = Et, R, = C0,Me. 
c:RZ=H,R3=Ph, c: R,= Me. R3 = C02Et, 
d :Rz=R3=Ph d: R, = Et, R3 = C0,Et 

The structual elucidation of 3 w a s  accomplished on the basis of the spectral properties. 

In the ir spectra, the exjstence of the carbonyl groups w a s  shown by the strong absorp- 

tion bands a t  ca. 1680 cm-' for amido groups and ca. 1700 cm-' for ester groups. Uv 

spectra showed the characteristic absorption patterns as 1-azaazulen-2(1H)-ones with the 

maxima a t  220, 280, and 430 and 13c nmr spectra were compatible to the s t r u c  

tures shown in figure. 

The reaction is considered to  proceed via a [2+31-type cycloadduct (4), in which the C-N 

(Path A) or C-C (Path B) bond of the five membered ring could be cleaved to give a 

cycloheptatriene derivative (5 or 6) .  Subsequent migration of the angular proton and 

cleavage of the 0-N bond afforded a heptafulvene derivative (7). The subsequent wnden- 

sation reaction of 7 led to 1-azaazulen-2(1H)ane derivatives (3). The detailed elucidation 

of the reaction mechanism is now in ~ r o g r e s s . ~ " ' ~  
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11.3.' I3c N m r  (CDC13) 6 26.5, 51.4, 115.9, 130.1, 131.5, 134.3, 136.3, 146.2, 148.3, 165.1, 

165.6. 3b: Yellow crystals. mp 136-137'C (from dichloromethane-ethyl acetate). Hrms: 
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231.0894. M s  m/z (re1 intensity): 231 (M', 28), 186 (M++E~,  73), 159 (M'-CO~E~, 100). 
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164.6, 165.6. 3d: yellow oil. Hrms: m/z 245.1066. Calcd for  CI4Hl5NO3: m/z 245.1051.-Ms 

m/z (re1 intensity): 245 (M', 64), 200 (M+-oE~, 56), 173 (M+-CO~E~,  100). Uv (MeOH): 

428 nm (log E ,  4.08), 281 (4.42), 233 (4.06). Ir (oil): 1707, 1672 cm-l. 'H N m r  (CDC13) 
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HOMO .':\ 
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