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Abstract - The novel heterocyclic systems 5,6-dihydro-7&1,4,2-oxathiazepin-7-one 

(1) and Sfl-4,1,3-benzoxathiazepin-5-0ne (2 )  were prepared by the reaction of 

hydroximoyl chlorides (3) with mercapto-carboxylic acids, followed by cyclization 

with 1,3-dicyclohexylcarbodiimide (6) or 1-ethyl-3-(3-dimethy1aminopropyl)- 

carbodiimide HCI (7). 

As part of our investigation of novel heterocyclic systems, it was of interest to synthesize the previously 

unreported 5,6-dihydro-7H-l,4,2-oxathiazepin-7-one ring system (1) and its benw-fused analogue (2). 

The synthetic approach adopted for 1 involved the reaction of an arylhydroximoyl chloride (3)' with 3- 

mercaptopropionic acid (via in situ formation of the ninile oxide with methylamine) to give the corresponding 

oxime acid (4), followed by cyclization with a diimide to give 1 (cf. Masaki Similarly the use of 

thiosalicylic acid instead of 3-mercaptopmpionic acid was expected to afford the knzoxathiazepinone system 

(2) after diimide cyclization. Although reactions of hydroximoyl chlorides with sulfur nucleophiles are well 

kn0wn,3,~ there are few repons of reactions with mercapto-carboxylic acids in the literature.4 
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Thus the hydroximoyl chloride (3) and 3-mercaptopropionic acid (1 mol eq.) were dissolved in dry 

tetrahydrofuran and a solution of uiethylamine (1 mol eq.) in tetrahydrofuran added slowly at room 

temperature. After stirring overnight the reaction was worked up and the crude oxime acid (4a-d) isolated by 

bicarbonate exuaction and used without further purification. The oxime acids (4a-d) showed two nipleu in the 

IH nmr spectra5 for the methylenes (1 = 8 Hz) as well as a broad exchangeable singlet for the oxime and acid 

protons between 6 9-1 1. The infrared spectra5 of the oxime acids (4a-d) showed broad, strong bands around 

3300 and 2550 cm-I due to the hydroxyl group(s) and also exhibited a carbonyl stretch in the range of 1695- 

1715 cm-1. The oxime acid (4a-d) was then treated with either 1.3-dicyclohexylcarbodiimide (DCC) (6) 

(1 mol eq.) in tetrahydrofuran or 1-ethyl-3-(3-dimethylaminopropy1)carbodiide HC1 (7) (1 mol eq.) in 

methylene chloride (see Table 1) at m m  temperature and stirred overnight. Work up of the reaction followed 

by either radial chromatography (chloroform elution) or mturation of the crude product with ether gave the 3- 

substituted 5,6-dihydro-7H-1,4,2-oxathiazepin-7-one (la-d) as a colourless solid (Table 1). The 'H nnu 

spectra6 for (la-d) showed two mplets U = 7 Hz) for the methylenes and no exchangeable protons, consistent 

with ring closure, as was the increase in the frequency of the carbonyl stretch in the infrared spectra6 to 1765- 

1770 cm-I. The 13C nmr and mass spectra were also consistent with ring closure having occurred6 
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Table 1 Preparation of 1 and 4 

Compound Melting point Yield Diimide used for 

03 (%) cyclization 

(4a) 111-112 79 - 

(4b) 142-144~ 80 - 

(W 119-121 66 - 

(4) 100-101 85 - 

(la) 64-66 5gB (6) 

(lb) 144-146 3gB (7) 

( 1 ~ )  87-90 94c (7) 

(Id) 90-93 38B (7) 

A L k 4  mp 1 4 6 T  

B Yield after radial chromatography. 

c Yield after hituration with ether. 

When thiosalicylic acid was reacted with the hydroximoyl chloride (3) using the procedure described above, the 

corresponding oxime acid (5a-c) was obtained and used without further purification (Table 2). The 'H nmr 

spectra7 of the oxime acids (5a-c) showed a broad exchangeable singlet for the oxime and acid protons between 

8 9.5-10.5 and a carbonyl stretch in the infrared spectra7 of 1680-1690 cm-1, as well as broad, strong bands 

around 3200 cm-I due to the hydmxyl gmup(s). The oxime acid (5a-c) was cyclized using DCC (6) as 

described previously and recrystallization of the crude product from benzenenight petroleum afforded the 2- 

substituted SY-4,1,3-benzoxathiazepin-5-one (2a-c) (Table 2). 

HOOC 

Ar THF, 25°C 

(3) HS Ar 
, (5 )  
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T a b l e  2 Preparation of 2 and 5 

Compound Melting point Yield '3C n m  dataA 

("c) (%) C=N, C=O 

( W  110-111 82 144.5, 168.1 

(5b) 97-98 95 149.7, 168.1 

( 5 ~ )  121-122 98 149.0, 168.1 

@a) 129-132 53 167.1, 167.3B 

(2b) 136-139 72 167.5, 173.0 

( 2 ~ )  114-116 57 165.8, 171.5 
A Values are in ppm, CDC13 solvent for 2, CDCIflMSO-d6 for 5. 
B The assignment is tentative. 

The benzoxathiazepinones (2a-c) showed no exchangeable protons in the 'H nmr spectra8 and an increase in 

the frequency of the carbonyl suetch in the infrared spectra8 to 1715-1725 cm-1, consistent with ring closure, as 

were the l3C nmr spectra r ab l e  2) and mass spectra.8 
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Specual data for compounds (4a-d). 4a: Ir (KBr) vmax 3270,2550, 1715 cm-I. IH Nmr (CDC13/DMSO-G, 200 MHz) G 

2.45 (ZH, 5 1 = 8 Hz, CHzCOOH), 3.15 (ZH, I, J = 8 Hz, SCHz), 6.90 (IH, dd, J = 4  and6 Hz, thienyl H4), 7.20 (lH, d, J = 6 

Hz, thienyl H5). 7.30 (IH, d. J = 4 Hz, thienyl H3), 10.20 (2H, bs, NOH and COOH). 13c Nmr (CDC131DMSO-a, 50.3 

M H z )  6 27.1 (SCHz), 34.7 (CHZCOOH), 126.7, 126.8 and128.0 (thienyl C3, C4 and CS), 138.1 (thienyl CZ), 144.0 

(C=NOH), 173.3 (COOH). Ci-ms mh (%) 232 (M+l, 47). 126 (100). High res.-rns m/z 232.0C9, calcd for C ~ H I O N O ~ S ~ ,  
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232.010. 4b: Ir (KBr) vmax 3295,2550, 1705 cm-I. IH Nmr (CDCl3/DMSO-d6,200 MHz) 8 2.30 (2H, t, J = 8 Hz, 

CHzCOOH), 2.80 (2H, 1, J = 8 Hz, SCHZ), 7.2CL7.50 (5H, m, aromatic protons), 10.80 (ZH, bs, NOH and COOH). 13C Nmr 

(CDC13DMSO-d6. 50.3 MHz) 6 26.2 (SCHz), 34.5 (CHzCOOH). 128.1 and 128.2 (phenyl C2. C3. C5 and C6). 129.0 

(phenyl C4), 133.6 (phenyl Cl), 151.8 +NOH), 172.9 (COOH). Ci-ms m h  (46) 226 (M+1,4), 101 (100). 4c: Ir W r )  

vman 3250,2550, 1695 cm-I, IH Nmr (CDCl3.200 MHz) S 2.50 (2H, t. J = 8 Hz. CHZCOOH), 2.95 (2H. t. J = 8 Hz. 

SCHz), 3.80 (3H, s, MeO), 3.85 (3H, s, M a ) ,  6.85 (IH, d, J = 9 Hz, aromatic H5). 6.95 (IH, d, J = 3 Hz, aromatic H2), 7.05 

(IH, dd, J = 3 and 9 Hz, aromatic H6), 10.70 (2H, bs, NOH and COOH). I3c Nmr (CDCl3.50.3 MHz) 6 26.7 (SCHz), 34.7 

(CHzCOOH), 56.0 @Me0 and 4-MeO), 111.1 (aromatic C2 and C5), 121.6 (aromatic C6), 125.1 (aromatic CI), 149.0, 

150.6 and 154.9 (aromatic C3, C4 and C=NOH), 176.4 (COOH). Ci-ms m h  (%) 286 (M+1,3), 164 (100). High res.-ms mh 

286.074, calcd for C12H16NOgS. 286.075. 4d: Ir (film) vm, 3240,2550, 1715 cm-I. IH Nmr (CDCI3.2W MHz) 62.55 

(2H, t, J = 8 Hz, CHzCOOH), 3.00 (2H. t, J = 8 Hz, SCHz), 3.90 (3H, s, MeO), 6.90 (IH, d, J = 9 Hz, aromatic HS), 7.45 

(IH, dd, J = 3 and 9 Hz, aromatic H6), 7.70 (IH, d, J = 3 Hz, aromatic H2). 10.40 (2H, bs, NOH and COOH). I 3 c  Nmr 

(CDCl3.50.3 MHz) 6 26.7 (SCHz), 34.7 (CHzCOOH), 56.4 (MeO), 11 1.8 (aromatic C3 and C5), 126.4 (aromatic Cl), 128.9 

and 133.2 (aromatic C2 and C6), 153.0 and 157.3 (aromatic C4 and C=NOH), 176.4 (COOH). Ci-ms m/z (46) 3341336 

(M+l, 1018). 212 (100). High m m s  mh 333.976, &d forC11H13N04BrS. 333.975. 

6. Spectral data for compounds (la-d). la: Ir (KBr) vm, 1770 cm-l. IH Nmr (CDCl3.200 MHz) S 2.75 (2H, L J = 7 Hz, 

CHzCOON). 3.25 (2H, t. J = 7 Hz, SCHz), 7.10-7.50 (3H, m, thienyl protons). I3c  Nmr (CDC13, 50.3 MHz) 6 28.3 

(SCHZ), 33.4 (CH2COON). 127.8.130.2 and 131.2 (thienyl C3, C4 and C5), 133.0 (thienyl C2), 157.5 (C=N), 168.0 (CrO). 

Ci-ms m/z (%) 214 (M+1,4), 89 (100). High res-ms m/z 213.997, calcd for CgHsN02S2.213.999. lb: Ir Wr) vman 

1765 cm-l. IH Nmr (CDCl3, 200 MHz) 6 2.55 (W, 1, I = 7 Hz, CHZCOON), 2.85 (2H, 1, J = 7 Hz, SCHz), 7.40 (5H. m, 

aromatic protons). I3c  Nmr (CDCl3.50.3 MHz) 6 27.0 (SCHz), 33.3 (CH2COON). 128.8 and 129.0 (phenyl C2, C3, C4, 

C5 and C6). 130.8 (phenyl CI). 165.4 and 167.7 (C=Nand C=O). Ci-ms m h  (90) 208 (M+1.7). 73 (100). High 1s.-ms m/z 

208.043, calcd for C~OHION@S, 208.043. lc: Ir (KBr) vm, 1765 cm-l. IH Nmr (CDCl3,uX) MHz) 6 2.55 (2H. t. J = 7 

Hz, CH2COON). 2.90 (2H, l, J = 7 Hz, SCHz), 3.85 (6H, s, 3-Me0 and 4-MeO), 6.80-7.10 (3H. m, aromatic protons). 13c 

Nmr (CDCb, 50.3 MHz) 6 27.2 (SCH2). 33.2 (CH2COON). 55.9 (3-Me0 and 4-MeO), 111.0 and 111.4 (aromatic C2 and 

C5). 122.0 (aromatic C6), 123.0 (aromatic CI), 149.0 and 151.0 (aromatic C3 and 01). 165.0and 168.0 (C=N and C=O). Ci- 

ms m/z (90) 268 (M+I, 8). I64 (100). High m - m s  m/z 268.065, calcd fw C12H14NOqS. 268.064. Id: Ir (KBr) vm, 1770 

cm-I. IH Nmr (CDCl3.200 MHz) 6 2.65 (2H, 1, J = 7 Hz, CHzCOON), 3.00 (ZH, t, J = 7 Hz, SCHz), 3.90 (3H, s, MeO), 

6.95 (lH, m, aromatic H5). 7.45 (IH. m, aromatic H6). 7.75 (IH. m, aromatic H2). I3c  Nmr (CDC13.50.3 MHz) S 27.4 
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(SCHz), 33.3 (CH2COON). 56.5 (MeO), 111.9 and 112.1 (aromatic C3 and C5), 124.5 (aromatic Cl), 129.6 and 133.5 

(aromatic CZ and C6), 157.9 (ammatic C4), 163.0 (C=N), 167.8 (C=O). Ci-ms mlz (46) 3161318 (M+l, 718). 212 (100). 

High res.-ms mlz 315.%3, calcd forC11H11N03BrS. 315.964. 

7. Spectral data for compounds (Sa-c). 5a: Ir Wr) vmax 3200, 1630 cm-I. IH Nmr (CDCIflMSO-d6, UX) MHz) 6 7.10- 

7.25 (4H, m, thienyl H5 and thiosalicylic ring H3, H4 and H5), 7.40 (IH, d, J = 5 Hz, thienyl H4 ), 7.60 (IH, d, J = 3 Hz, 

lhienyl HZ), 7.95 (IH, dd, J = 2 and 7.5 Hz, thiosalicylic ring H6), 10.40 (ZH, bs, NOH and COOH). Ci-ms mlz (%) 280 

(M+I, 2.6). 110 (100). 5b: II (KBr) vmax 3100, 1690 cm-I. IH Nmr (CDC13DMSO-d6.200 MHz) 6 7.00-7.40 (6H. m, 

phenyl H3. H4 and H5 and thiosalicylic ring H3. H4 and H5), 7.65 (2H. m, phenyl H2 and H6). 7.90 (IH, m, lhiosalicylic 

ring H a ,  11.50 (ZH, bs, NOH and COOH). Ci-ms d z  (8) 274 (M+1,6), 104 (100). High res.-ms m/z 274.056, calcd for 

C I ~ H I Z N O ~ S ,  274.054. 5c: Ir (KBr) vm, 3240,1690 cm-l. IH Nmr (CDCIJIDMSO-d6.200 MHz) 6 7.00 (IH, ddd, I = 

1, 2 and 8 Hz, thiosalicylic ring H3), 7.15-7.40 (5H. m, dichlorophenyl ring H3. H5 and H6 and thiosalicylic ring H4 and 

HSf, 7.50 (IH, m, thiosalicylic ring H6), 10.80 (ZH, bs, NOH and COOH). Ci-ms m/z (%) 342 (M+1,1.3). 188 (100). 

8. Spectral data for compounds (2a-c). 2a: Ir (KBr) vm, 1715 cm-I. 'H Nmr (CDC13.200 MHz) 6 7.35-7.60 (SH, m, thienyl 

H4 and H5 and thiosalicylic ring H3. H4 and HS), 8.00 (IH, m, thiosalicylic ring H6), 8.20 (IH, d, J = 2.5 Hz, thienyl HZ). 

Ci-ms mlz (%) 262 (M+1,8), 153 (100). High res.-ms d z  262.000, calcd for CI~H~NOZSZ, 262.000. 2b: II (KBr)vm, 

I725 cm-I. IH Nmr (CDCl3.200 MHz) 6 7.40-7.65 (6H, m, phenyl H3, H4 and H5 and thiosalicylic ring H3, H4 and HS), 

8.00 (3H. m, phenyl HZ and H6 and thiosalicylic ring H6). Ci-ms mlz (%) 256 (M+l, 1.5). 104 (100). High res.-ms m/z 

256.040, calcd for C 1 4 H l r n S .  256.043. Zc: Ir (KBI) Vm 1720 cm-I. IH N m  (CDCl3.200 MHz) 6 7.25-7.55 (6H, m, 

dichlorophenyl ring H3. H5 and H6 and thiosalicylic ring H3, H4 and H5), 8.05 (IH, m, thiosalicylic ring H6). Ci-ms m/z 

(46) 324/326 (M+I, 1.811.6). 172 (100). High res.-ms d z  323.966, calcd for C ~ ~ H ~ N ~ C I Z S ,  323.965. 
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