SYNTHESIS OF 2(1*H*)-QUINOLINONEQUINONES AND 2-ALKOXY-QUINOLINEQUINONES USING OXIDATIVE DEMETHYLATION WITH CERIUM (IV) AMMONIUM NITRATE

Yoshiyasu Kitahara, Shinsuke Nakahara, Masaro Shimizu, Takanobu Yonezawa, and Akinori Kubo* Meiji College of Pharmacy, 1-35-23 Nozawa, Setagaya-ku, Tokyo 154, Japan

Abstract — 2,5,8(1*H*)-Quinolinetriones (12), 2,5,6(1*H*)-quinolinetriones (13), 2-alkoxy-5,8-quinolinediones (14), 2,8-dimethoxy-5,6-quinolinedione (15), and 2,6-dimethoxy-7,8-quinolinediones (16) were synthesized by oxidative demethylation of the corresponding 2(1H)-quinolinones (7) and 2-alkoxyquinolines (11) with cerium (IV) ammonium nitrate.

Streptonigrin (1), a highly substituted 5,8-quinolinedione, was first reported as an antitumor antibiotic produced by *Streptomyces flocculus*.¹ It was later found to be one of the most potent inhibitors of avian myeloblastosis virus reverse transcriptase (AMV-RT), but its remarkable cytotoxic activity seemed to be disadvantageous with respect to a specific inhibitor of retrovirus.² Recently, we observed that synthetic 6-methoxy-5,8-quinolinediones (2a, b) and 8-methoxy-5,6-quinolinediones (2c, d) were much less toxic than 1, while the activity of 2ad against AMV-RT was comparable to that of 1.³ Furthermore, we examined the inhibition of AMV-RT by a series of quinolinequinones, isoquinolinequinones, and quinoxalinequinones.³ We wish to report here the synthesis of various 2(1*H*)-quinolinonequinones and 2-alkoxyquinolinequinones.

5,7,8-Trimethoxyquinoline (5a) and 5,6,8-trimethoxyquinolines (5b-d) prepared from the corresponding trimethoxyanilines (4a-d), were oxidized with *m*-chloroperoxybenzoic acid to give 6a-d. The *N*-oxides (6a-d) were treated with acetic anhydride followed by aqueous potassium hydroxide to furnish the 2(1H)-quinolinones (7a-d). On the other hand, condensation of trimethoxyanilines (4a-d) and ethyl acetoacetate (8) in refluxing

toluene containing a catalytic amount of pyridine afforded the corresponding β -ketoanilides (10e-h). Acid catalyzed cyclization of 10e-h gave 4-methyl-2(1*H*)-quinolinones (7e-h). Furthermore, 4-phenyl-2(1*H*)quinolinones (7i-k) were prepared from the anilines (4e, a, c) and ethyl benzoylacetate (9), respectively. Treatment of the 2(1*H*)-quinolinones (7b-g, i-k) with sodium hydride followed by methyl iodide afforded the

corresponding N-methyl-2(1H)-quinolinones (71-t, 49-84% yield) and 2-methoxyquinolines (111-t, 14-34%

1911

yield). In contrast, ethylation of 2-quinolinones (**7f**, **g**, **i**, **k**) with ethyl iodide gave the corresponding *N*-ethyl-2(1*H*)-quinolinones (**7u**-**x**, 16-41% yield), but the major product was 2-ethoxyquinolines (**11u**-**x**, 45-80% yield). Oxidative demethylation of 5,8-dimethoxy-2(1*H*)-quinolinones (**7i**, **r**, **w**) and 5,7,8-trimethoxy-2(1*H*)quinolinones (**7a**, **e**, **j**, **o**, **s**) with cerium (IV) ammonium nitrate (CAN) in aqueous acetonitrile containing suspended pyridine-2,6-dicarboxylic acid *N*-oxide⁴ afforded the corresponding *p*-quinones (**12i**, **r**, **w**, **a**, **e**, **j**, **o**, **s**) in 24-78% yields; but no *o*-quinones. In contrast, 5,6,8-trimethoxy-2(1*H*)-quinolinones unsubstituted at N_1 or C_7 (**7b**, **c**, **f**-**h**, **k**, **l**, **p**, **u**) were oxidized with CAN under the same conditions to furnish the corresponding quinones (45-92% yield), which consisted of *p*-quinones (**12b**, **c**, **f**-**h**, **k**, **l**, **p**, **u**, 28-84% yield) and *o*-quinones (**13b**, **c**, **f**-**h**, **k**, **l**, **p**, **u**, 6-31% yield). Other 5,6,8-trimethoxy-2(1*H*)-quinolinones (**7d**, **m**, **n**, **q**, **t**, **v**, **x**) gave *p*quinones (**12d**, **m**, **n**, **q**, **t**, **v**, **x**) and/or *o*-quinones (**13m**, **t**) in 7-36% yields.

In order to confirm the *p*-quinone structure for 12a, e, j, we examined oxidation of 5,8-diethoxy-7-methoxy-2(1H)-quinolinones (7a', e', j'), prepared by the same method used for the corresponding 5,7,8-trimethoxy-2(1H)-quinolinones (7a, e, j). The 2(1H)-quinolinones (7a', e', j') were oxidized with CAN to give the corresponding 7-methoxy-2,5,8(1H)-quinolinetriones, which were identical to the quinones (12a, e, j) from 5,7,8-trimethoxy-2(1H)-quinolinones (7a, e, j), respectively.

Finally, we examined oxidative demethylation of 2-alkoxyquinolines (111-x) with CAN. 5,6,8-Trimethoxyquinoline (111) and 5,7,8-trimethoxyquinolines (110, s) furnished the corresponding *p*-quinones (141, o, s, 37-62% yield) and *o*-quinones (151, 160, s, 11-31% yield). Other 2-alkoxyquinolines (11m, n, p-r, t-x) gave only *p*-quinones (14m, n, p-r, t-x) in 57-89% yields. The spectral data of 2(1H)-quinolinonequinones (12, 13) and 2-alkoxyquinolinequinones (14-16) are given in Table I.

TABLE I. 2-Quinolinonequinones and 2-Alkoxyquinolinequinones

•	Yield) Appearance	mp	Formula	Analysis or Hrms ^{b)}		Ms m/z (%)	lr (KBr)	¹ H-Nmr (270 MHz) ^{c)}	
	(%)	(Recrystn. solv.)	(°C)		Calcd (Found)			(cm-1)	δ (CDCl ₃ , $J = Hz$)	
					<u> </u>	п	- 19			
2,5,8 12a	(1 <i>H</i>)- 31 [56]	Quinolinetriones Yellow needles (CH ₂ Cl ₂ -ether)	ca. 270	C ₁₀ H ₇ NO ₄	2 (2	05.0375 05.0372	5 2)	205 (M+, 100)	1650	3.98 (3H, s, OCH ₃), 6.34 (1H, s, C ₆ -H), 7.22 (1H, d, $J = 9.2$, C ₃ -H), 8.32 (1H, d, $J = 9.2$, C ₄ -H)
12b	28	Red needles (CH ₂ Cl ₂ -ether)	>300	$C_{10}H_7NO_4$	58.54 (58.21	3.44 3.49	6.83 6.66)	205 (M+, 100) 176 (62)	1676 1654	3.98 (3H, s, OCH ₃), 6.23 (1H, s, C ₇ -H), 7.07 (1H, d, $J = 9.6$, C ₃ -H), 8.23 (1H, d, $J = 9.6$, C ₄ -H)
12c	31 (CH	Red needles 3OH-CHCl3-ether)	ca. 260 (decomp.)	C ₁₁ H ₉ NO ₄	60.28 (60.22	4.14 4.16	6.39 6.27)	219 (M+, 100) 191 (32)	1712 1666	2.03 (3H, s, C ₇ -CH ₃), 4.20 (3H, s, OCH ₃), 6.79 (1H, d, $J = 9.6$, C ₃ -H), 7.91 (1H, d, $J = 9.6$, C ₄ -H), 9.60 (1H, br, NH)
12d	36	Orange needles (ether)	173-176	C ₁₂ H ₁₁ NO ₄	61.80 (61.59	4.75 4.73	6.01 5.85)	233 (M+, 100) 218 (95) 190 (57)	1682 1658 1620	1.08 (3H, t, $J = 7.6$, CH ₂ CH ₃), 2.54 (2H, q, $J = 7.6$, CH ₂ CH ₃), 4.20 (3H, s, OCH ₃), 6.79 (1H, d, $J = 9.6$, C ₃ -H), 7.91 (1H, d, J = 9.6, C ₄ -H), 9.47 (1H, br, NH)
12e	37 [73]	Orange prisms (CH ₂ Cl ₂ -hexane)	ca. 250	C ₁₁ H ₉ NO ₄	60.28 (60.12	4.14 4.16	6.39 6.32)	219 (M+, 100)	1640	2.59 (3H, d, $J = 1.0$, C ₄ -CH ₃), 3.89 (3H, s, OCH ₃), 5.98 (1H, s, C ₆ -H), 6.63 (1H, q, $J = 1.0$, C ₃ -H), 9.20 (1H, br, NH)
12f	69	Orange needles (CH ₂ Cl ₂ -hexane)	260-262	C ₁₁ H ₉ NO ₄	60.28 (59.92	4.14 3.95	6.39 6.35)	219 (M+, 100) 204 (25)	1678 1666	2.59 (3H, d, $J = 1.2$, C ₄ -CH ₃), 3.93 (3H, s, OCH ₃), 6.05 (1H, s, C ₇ -H), 6.56 (1H, q, $J = 1.2$, C ₃ -H), 9.48 (1H, br, NH)
12g	38	Orange prisms (CH ₂ Cl ₂ -ether)	213-215	C ₁₂ H ₁₁ NO ₄	61.80 (61.77	4.75 4.66	6.01 5.88)	233 (M+, 100) 205 (26)	1638	2.02 (3H, s, C ₇ -CH ₃), 2.57 (3H, d, $J = 1.0$, C ₄ -CH ₃), 4.16 (3H, s, OCH ₃), 6.55 (1H, q, $J = 1.0$, C ₃ -H), 9.56 (1H, br, NH)
12h	39	Orange needles (CH ₂ Cl ₂ -hexane)	194-195	C ₁₃ H ₁₃ NO ₄	63.15 (62.99	5.30 5.27	5.67 5.66)	247 (M+, 100) 232 (77) 204 (58)	1656 1626	1.08 (3H, t, $J = 7.6$, CH ₂ CH ₃), 2.52 (2H, q, $J = 7.6$, CH ₂ CH ₃), 2.57 (3H, d, $J = 1.0$, C ₄ -CH ₃), 4.15 (3H, s, OCH ₃), 6.55 (1H, q, $J = 1.0$, C ₃ -H), 9.56 (1H, br, NH)
12i	49	Orange needles (CH ₂ Cl ₂ -hexane)	195-198 (decomp.)	C ₁₅ H ₉ NO ₃	71.71 (71.39	3.61 3.32	5.58 5.57)	251 (M+, 100) 250 (88)	1660 1650	6.68 (1H, s; C ₃ -H), 6.78 and 6.93 (each 1H, d, $J = 10.2$, C ₆ -H, C ₇ -H), 7.2-7.5 (5H, m, C ₆ H ₅), 9.59 (1H, br, NH)
12j	24 [27]	Orange needles (CH ₂ Cl ₂ -hexane)	>290	C ₁₆ H ₁₁ NO ₄	2 (2	81.0688 81.0712	} 2)	281 (M+, 100) 280 (77)	1638	3.81 (3H, s, OCH ₃), 6.01 (1H, s, C ₆ -H), 6.43 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅), 10.69 (1H, br, NH)
12k	29	Orange needles (CH ₂ Cl ₂ -hexane)	219-220	$C_{17}H_{13}NO_4$ -1/2CH ₂ Cl ₂	62.23 (62.20	4.18 4.00	4.15 4.16)	295 (M+, 100) 266 (47)	1656 1640	2.03 (3H, s, C ₇ -CH ₃), 4.05 (3H, s, OCH ₃), 6.60 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅), 9.72 (1H, br, NH); 5.30 (1H, 1/2 CH ₂ Cl ₂)
121	69	Red needles (CH ₂ Cl ₂ -ether)	190-191	C ₁₁ H ₉ NO ₄	60.28 (60.01	4.14 4.15	6.39 6.34)	219 (M+, 100) 204 (51)	1676 1648	3.90 and 3.93 (each 3H, s, NCH ₃ , OCH ₃), 6.02 (1H, s, C ₇ -H), 6.84 (1H, d, $J = 9.6$, C ₃ -H), 8.04 (1H, d, $J = 9.6$, C ₄ -H)
12m	14	Red needles (CHCl ₃ -ether)	172-173	$C_{12}H_{11}NO_4$	61.80 (61.70	4.75 4.77	6.01 5.96)	233 (M+, 100) 218 (61)	1696 1656	2.03 (3H, s, C ₇ -CH ₃), 3.89 (3H, s, NCH ₃), 4.14 (3H, s, OCH ₃), 6.82 (1H, d, $J = 9.6$, C ₃ -H), 7.97 (1H, d, $J = 9.6$, C ₄ -H)
12n	7	Orange needles (ether-hexane)	90-93	C ₁₃ H ₁₃ NO ₄	247.0844 (247.0844)			247 (M+, 100) 232 (86)	1662 1622	1.08 (3H, t, $J = 7.6$, CH ₂ CH ₃), 2.54 (2H, q, $J = 7.6$, CH ₂ CH ₃), 3.90 (3H, s, NCH ₃), 4.14 (3H, s, OCH ₃), 6.82 (1H, d, $J = 8.9$, C ₃ -H), 7.97 (1H, d, $J = 8.9$, C ₄ -H)
120	24	Red needles (CH ₂ Cl ₂ -hexane)	187-188	C ₁₂ H ₁₁ NO ₄	61.80 (61.67	4.75 4.73	6.01 5.92)	233 (M+, 100) 204 (21)	1678 1630	2.57 (3H, d, $J = 1.0$, C ₄ -CH ₃), 3.85 and 3.87 (each 3H, s, NCH ₃ , OCH ₃), 5.93 (1H, s, C ₆ -H), 6.69 (1H, q, $J = 1.0$, C ₃ -H)
12p	82	Orange needles (CH ₂ Cl ₂ -ether)	211-212	C ₁₂ H ₁₁ NO ₄	61.80 (61.80	4.75 4.66	6.01 5.93)	233 (M+, 100) 218 (48)	1666 1628	2.57 (3H, d, $J = 1.0$, C ₄ -CH ₃), 3.87 and 3.89 (each 3H, s, NCH ₃ , OCH ₃), 5.99 (1H, s, C ₇ -H), 6.62 (1H, q, $J = 1.0$, C ₃ -H)

12q	19	Orange needles (CH ₂ Cl ₂ -hexane)	138-139	C ₁₃ H ₁₃ NO ₄	63.15 (63.12	5.30 5.27	5.67 5 <i>.</i> 64)	247 (M+, 100) 232 (58)	1686 1650	2.01 (3H, s, C_7 -CH ₃), 2.55 (3H, d, $J = 1.0$, C_4 -CH ₃), 3.84 (3H, s, NCH ₃), 4.08 (3H, s, OCH ₃), 6.60 (1H, q, $J = 1.0$, C_3 -H)
12r	78	Orange needles (CH ₂ Cl ₂ -hexane)	186-188	C ₁₆ H ₁₁ NO ₃	72.45 (72.30	4.18 4.30	5.28 5.13)	265 (M+, 100) 264 (90)	1644	3.93 (3H, s, NCH ₃), 6.71 (1H, s, C ₃ -H), 6.70 and 6.83 (each 1H, d, $J = 10.2$, C ₆ -H, C ₇ -H), 7.1-7.5 (5H, m, C ₆ H ₅)
125	39	Orange needles (CH ₂ Cl ₂ -hexane)	244-246	C ₁₇ H ₁₃ NO ₄	29 (2	95.0844 95.0828)	295 (M+, 100) 294 (93)	1662 1630	3.86 and 3.93 (each 3H, s, NCH ₃ , OCH ₃), 5.84 (1H, s, C ₆ -H), 6.72 (1H, s, C ₃ -H), 7.1-7.5 (5H, m, C ₆ H ₅)
12t	13	Orange prisms (CH ₂ Cl ₂ -hexane)	178-180	C ₁₈ H ₁₅ NO ₄	69.89 (69.63	4.89 5.00	4.53 4.45)	309 (M+, 100) 294 (63)	1654 1630	2.02 (3H, s, C ₇ -CH ₃), 3.91 and 3.97 (each, 3H, s, NCH ₃ , OCH ₃), 6.64 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅)
12u	84	Orange needles (CH ₂ Cl ₂ -hexane)	152-154	C ₁₃ H ₁₃ NO ₄	63.15 (63.02	5.30 5.31	5.67 5.61)	247 (M+, 100) 232 (90) 204 (40)	1654 1626	1.40 (3H, t, $J = 6.9$, CH ₂ CH ₃), 2.56 (3H, d, $J = 1.0$, C ₄ -CH ₃), 3.88 (3H, s, OCH ₃), 4.51 (2H, q, $J = 6.9$, CH ₂ CH ₃), 5.98 (1H, s, C ₇ -H), 6.61 (1H, q, $J = 1.0$, C ₃ -H)
12v	19	Orange needles (ether-hexane)	114-115	C ₁₄ H ₁₅ NO ₄	64.36 (64.09	5.79 5.83	5.36 5.29)	261 (M+, 100) 246 (97)	1692 1660 1632	1.41 (3H, t, $J = 6.9$, CH ₂ CH ₃), 2.01 (3H, s, C ₇ -CH ₃), 2.54 (3H, d, $J = 0.7$, C ₄ -CH ₃), 4.08 (3H, s, OCH ₃), 4.43 (2H, q, $J = 6.9$, CH ₂ CH ₃), 6.59 (1H, q, $J = 0.7$, C ₃ -H)
12w	61	Orange prisms (CH ₂ Cl ₂ -hexane)	122-123	C ₁₇ H ₁₃ NO ₃	73.11 (72.99	4.69 4.55	5.02 4.96)	279 (M+, 100) 278 (87) 264 (18)	1672 1656	1.45 (3H, t, $J = 6.9$, CH ₂ CH ₃), 4.54 (2H, q, $J = 6.9$, CH ₂ CH ₃), 6.68 and 6.82 (each 1H, d, $J = 10.2$, C ₆ -H, C ₇ -H), 6.69 (1H, s, C ₃ -H), 7.1-7.5 (5H, m, C ₆ H ₅)
12x	15	Yellow powder (hexane)	114-116	C19H17NO4	70.58 (70.42	5.30 5.35	4.33 4.26)	323 (M+, 93) 308 (100)	1656 1628	1.46 (3H, t, $J = 6.9$, CH ₂ CH ₃), 2.02 (3H, s, C ₇ -CH ₃), 3.97 (3H, s, OCH ₃), 4.52 (2H, q, $J = 6.9$, CH ₂ CH ₃), 6.62 (1H, s, C ₃ -H), 7.1-7.5 (5H, m, C ₆ H ₅)
2,5,6 13b	(1 <i>H</i>)- 31	Quinolinetriones Orange needles (CH ₂ Cl ₂ -ether)	275-278	C ₁₀ H ₇ NO ₄	2) (2	05.0375 05.0374)	205 (M+, 26) 177 (M+-CO, 100) 148 (43)	1686 1666 1650	4.16 (3H, s, OCH ₃), 6.17 (1H, s, C ₇ -H), 6.94 (1H, d, <i>J</i> = 9.6, C ₃ -H), 8.20 (1H, d, <i>J</i> = 9.6, C ₄ -H)
13c				G UNO	10.00	1 14	6 30	210 (14 22)	1696	2.17/2H = 0.0000000000000000000000000000000000
	26 (CH ₃	Red prisms OH-CHCl ₃ -ether)	230-232 (decomp.)	C ₁₁ H9NU4	60.28	4.14	6.24)	219 (M ¹ , 55) 191 (M ⁺ -CO, 100) 176 (54)	1640	C_3 -H), 7.95 (1H, d, $J = 9.6$, C_4 -H), 10.05 (1H, br, NH)
13f	26 (CH ₃ 16	Red prisms ₃ OH-CHCl ₃ -ether) Orange needles (CH ₂ Cl ₂ -hexane)	230-232 (decomp.) 275-277 (decomp.)	C ₁₁ H9NO4 C ₁₁ H9NO4	60.28 (60.23 60.28 (60.12	4.14 4.18 4.14 4.16	6.24) 6.39 6.33)	219 (M ⁺ , 55) 191 (M ⁺ -CO, 100) 176 (54) 219 (M ⁺ , 25) 191 (M ⁺ -CO, 100) 162 (51)	1640 1674 1658 1622	2.17 (3H, s, C ₇ -CH ₃), 4.18 (3H, s, OCH ₃), 6.39 (1H, d, $J = 9.6$, C ₃ -H), 7.95 (1H, d, $J = 9.6$, C ₄ -H), 10.05 (1H, br, NH) 2.59 (3H, d, $J = 0.9$, C ₄ -CH ₃), 4.05 (3H, s, OCH ₃), 6.00 (1H, s, C ₇ -H), 6.45 (1H, q, $J = 0.9$, C ₃ -H), 9.38 (1H, br, NH)
13f 13g	26 (CH ₃ 16 23	Red prisms OH-CHCl ₃ -ether) Orange needles (CH ₂ Cl ₂ -hexane) Red needles (CH ₂ Cl ₂ -ether)	230-232 (decomp.) 275-277 (decomp.) 260-261	C ₁₁ H9NO4 C ₁₁ H9NO4 C ₁₂ H ₁₁ NQ4	60.28 (60.23 (60.12 61.80 (61.50	4.14 4.18 4.14 4.16 4.75 4.67	6.24) 6.39 6.33) 6.01 5.88)	219 (M ⁺ , 53) 191 (M ⁺ -CO, 100) 176 (54) 219 (M ⁺ , 25) 191 (M ⁺ -CO, 100) 162 (51) 233 (M ⁺ , 29) 205 (M ⁺ -CO, 100) 190 (47) 176 (53)	1660 1640 1674 1658 1622 1688 1654 1628	2.17 (3H, s, C ₇ -CH ₃), 4.18 (3H, s, OCH ₃), 6.39 (1H, d, $J = 9.6$, C ₃ -H), 7.95 (1H, d, $J = 9.6$, C ₄ -H), 10.05 (1H, br, NH) 2.59 (3H, d, $J = 0.9$, C ₄ -CH ₃), 4.05 (3H, s, OCH ₃), 6.00 (1H, s, C ₇ -H), 6.45 (1H, q, $J = 0.9$, C ₃ -H), 9.38 (1H, br, NH) 2.15 (3H, s, C ₇ -CH ₃), 2.56 (3H, d, $J = 1.0$, C ₄ -CH ₃), 4.14 (3H, s, OCH ₃), 6.37 (1H, q, $J = 1.0$, C ₃ -H), 9.65 (1H, br, NH)
13f 13g 13h	26 (CH ₃ 16 23 14	Red prisms OH-CHCl ₃ -ether) Orange needles (CH ₂ Cl ₂ -hexane) Red needles (CH ₂ Cl ₂ -ether) Orange needles (CH ₂ Cl ₂ -hexane)	230-232 (decomp.) 275-277 (decomp.) 260-261 243-245	C ₁₁ H9NO4 C ₁₁ H9NO4 C ₁₂ H ₁₁ NO4 C ₁₃ H ₁₃ NO4	60.28 (60.23 60.28 (60.12 61.80 (61.50 63.15 (62.98	4.14 4.18 4.14 4.16 4.75 4.67 5.30 5.22	6.39 6.39 6.33) 6.01 5.88) 5.67 5.51)	219 (M ⁺ , 33) 191 (M ⁺ -CO, 100) 176 (54) 219 (M ⁺ , 25) 191 (M ⁺ -CO, 100) 162 (51) 233 (M ⁺ , 29) 205 (M ⁺ -CO, 100) 190 (47) 176 (53) 247 (M ⁺ , 17) 219 (M ⁺ -CO, 64) 204 (100)	1674 1674 1658 1622 1688 1654 1654 1654	2.17 (3H, s, C ₇ -CH ₃), 4.16 (3H, s, OCH ₃), 6.39 (1H, d, $J = 9.6$, C ₃ -H), 7.95 (1H, d, $J = 9.6$, C ₄ -H), 10.05 (1H, br, NH) 2.59 (3H, d, $J = 0.9$, C ₄ -CH ₃), 4.05 (3H, s, OCH ₃), 6.00 (1H, s, C ₇ -H), 6.45 (1H, q, $J = 0.9$, C ₃ -H), 9.38 (1H, br, NH) 2.15 (3H, s, C ₇ -CH ₃), 2.56 (3H, d, $J = 1.0$, C ₄ -CH ₃), 4.14 (3H, s, OCH ₃), 6.37 (1H, q, $J = 1.0$, C ₃ -H), 9.65 (1H, br, NH) 1.18 (3H, t, $J = 7.6$, CH ₂ CH ₃), 2.57 (3H, d, $J = 1.0$, C ₄ -CH ₃), 2.62 (2H, q, $J = 7.6$, CH ₂ CH ₃), 4.14 (3H, s, OCH ₃), 6.37 (1H, q, $J = 1.0$, C ₃ -H), 10.04 (1H, br, NH)

.

TABLE I. (Continued)

	Yield (%)	Appearance (Recrystn. solv.)	mp (°C)	Formula	Analys Calc C	is or Hr d (Foun H	ms id) N	Ms m/z (%)]	r (KBr) (cm ⁻¹)	¹ H-Nmr (270 MHz) δ (CDCl ₃ , $J = Hz$)
131	9	Red powder (CH ₂ Cl ₂ -ether)	235-240 (decomp.)	C ₁₁ H9NO4	60.28 (60.09	4.14 4.15	6.39 6.11)	219 (M+, 17) 191 (M+-CO, 100) 162 (21) 134 (32)	1666 1650	3.84 (3H, s, NCH ₃), 4.04 (3H, s, OCH ₃), 5.99 (1H, s, C ₇ -H), 6.71 (1H, d, $J = 9.6$, C ₃ -H), 8.00 (1H, d, $J = 9.6$, C ₄ -H)
13n	n 5	Dark red needles (CHCl ₃ -ether)	196.5-198	C ₁₂ H ₁₁ NO ₄	61.80 (61.75	4.75 4.79	6.01 5.93)	233 (M ⁺ , 24) 205 (M ⁺ -CO, 100) 190 (62)	1684 1648	2.10 (3H, s, C ₇ -CH ₃), 3.81 and 3.91 (each 3H, s, NCH ₃ , OCH ₃), 6.61 (1H, d, $J = 9.6$, C ₃ -H), 7.92 (1H, d, $J = 9.6$, C ₄ -H)
13p	10	Red needles (CH ₂ Cl ₂ -ether)	260-262	$C_{12}H_{11}NO_4$	61.80 (61.50	4.75 4.77	6.01 5.92)	233 (M+, 14) 205 (M+-CO, 100)	1672 1650	2.55 (3H, s, C ₄ -CH ₃), 3.77 (3H, s, NCH ₃), 4.02 (3H, s, OCH ₃), 5.99 (1H, s, C ₇ -H), 6.50 (1H, s, C ₃ -H)
13t	9	Red prisms (CH ₂ Cl ₂ -hexane)	184-186	C ₁₈ H ₁₅ NO ₄	3 (3	09.1001 09.1016	j)	309 (M+, 4) 281 (M+-CO, 100) 266 (26)	1646	2.09 (3H, s, C ₇ -CH ₃), 3.81 and 3.93 (each, 3H, s, NCH ₃ , OCH ₃), 6.46 (1H, s, C ₃ -H), 7.1-7.5 (5H, m, C ₆ H ₅)
13u	6	Red prisms (CH ₂ Cl ₂ -hexane)	213-215	C ₁₃ H ₁₃ NO ₄	2 (2	47.0844 47.0849	↓ ≯)	247 (M ⁺ , 14) 219 (M ⁺ -CO, 100) 191 (38) 162 (68)	1656	1.45 (3H, t, $J = 6.9$, CH ₂ CH ₃), 2.53 (3H, d, $J = 1.3$, C ₄ -CH ₃), 4.03 (3H, s, OCH ₃), 4.33 (2H, q, $J = 6.9$, CH ₂ CH ₃), 5.99 (1H, s, C ₇ -H), 6.49 (1H, q, $J = 1.3$, C ₃ -H)
2-A	koxy-	5,8-quinolinedione	s							
141	62	Yellow needles (CH ₂ Cl ₂ -ether)	211-212	C ₁₁ H ₉ NO ₄	60.28 (59.97	4.14 4.13	6.39 6.32)	219 (M+, 100) 189 (37)	1676 1664	3.92 (3H, s, C ₆ -OCH ₃), 4.16 (3H, s, C ₂ -OCH ₃), 6.24 (1H, s, C ₇ -H), 7.03 (1H, d, $J = 8.6$, C ₃ -H), 8.30 (1H, d, $J = 8.6$, C ₄ -H)
14n	n 64	Yellow needles (CHCl ₃ -hexane)	163-164	$C_{12}H_{11}NO_4$	61.80 (61.74	4.75 4.79	6.01 5.99)	233 (M+, 100) 218 (49)	1668	2.11 (3H, s, C ₇ -CH ₃), 4.13 and 4.14 (each 3H, s, 2OCH ₃), 7.00 (1H, d, $J = 8.6$, C ₃ -H), 8.22 (1H, d, $J = 8.6$, C ₄ -H)
14n	57	Yellow needles (ether)	94-96	C ₁₃ H ₁₃ NO ₄	63.15 (63.10	5.30 5.33	5.67 5.62)	247 (M+, 73) 232 (100) 204 (33)	1664 1620	1.12 (3H, t, $J = 7.6$, CH ₂ CH ₃), 2.62 (2H, q, $J = 7.6$, CH ₂ CH ₃), 4.14 (6H, s, 2OCH ₃), 7.00 (1H, d, $J = 8.6$, C ₃ -H), 8.21 (1H, d, J = 8.6, C ₃ -H)
140	47	Yellow needles (CH ₂ Cl ₂ -hexane)	214-215	C ₁₂ H ₁₁ NO ₄	61.80 (61.63	4.75 4.82	6.01 5.96)	233 (M+, 100) 203 (35)	1696 1640 1622	2.72 (3H, d, $J = 1.0$, C ₄ -CH ₃), 3.89 (3H, s, C ₇ -OCH ₃), 4.11 (3H, s, C ₂ -OCH ₃), 6.05 (1H, s, C ₆ -H), 6.83 (1H, q, $J = 1.0$, C ₃ -H)
14p	89	Yellow needles (CH ₂ Cl ₂ -hexane)	216-217	$C_{12}\mathrm{H}_{11}\mathrm{NO}_4$	61.80 (61.57	4.75 4.76	6.01 5.95)	233 (M+, 100) 218 (28) 203 (31)	1672 1656	2.72 (3H, d, $J = 0.7$, C ₄ -CH ₃), 3.90 (3H, s, C ₆ -OCH ₃), 4.13 (3H, s, C ₂ -OCH ₃), 6.19 (1H, s, C ₇ -H), 6.81 (1H, q, $J = 0.7$, C ₃ -H)
14q	79	Yellow needles (CH ₂ Cl ₂ -hexane)	191-192	C ₁₃ H ₁₃ NO ₄	63.15 (63.04	5.30 5.31	5.67 5.61)	247 (M ⁺ , 100) 232 (48) 219 (31) 204 (30)	1660 1632	2.09 (3H, s, C ₇ -CH ₃), 2.70 (3H, s, C ₄ -CH ₃), 4.08 and 4.11 (each 3H, s, 2OCH ₃), 6.78 (1H, s, C ₃ -H)
14r	89	Yellow prisms (CH ₂ Cl ₂ -hexane)	137-139	C ₁₆ H ₁₁ NO ₃	72.45 (72.27	4.18 4.31	5.28 5.32)	265 (M+, 100) 264 (69)	1680 1662	4.18 (3H, s, OCH ₃), 6.89 (1H, s, C ₃ -H), 6.81 and 7.00 (each 1H, d, $J = 10.2$, C ₆ -H, C ₇ -H), 7.2-7.5 (5H, m, C ₆ H ₅)

14s	37	Yellow needles (CH ₂ Cl ₂ -hexane)	241-242	C ₁₇ H ₁₃ NO ₄	69.15 (68.96	4.44 4.49	4.74 4.70)	295 (M+, 100) 294 (94)	1692 1642 1622	3.88 (3H, s, C ₇ -OCH ₃), 4.17 (3H, s, C ₂ -OCH ₃), 5.96 (1H, s, C ₆ -H), 6.86 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅)
14t	57	Yellow prisms (CH ₂ Cl ₂ -hexane)	155-156	C ₁₈ H ₁₅ NO ₄	69.89 (69.82	4.89 4.78	4.53 4.46)	309 (M+, 100) 294 (30) 280 (50)	1658 1630	2.09 (3H, s, C ₇ -CH ₃), 3.98 (3H, s, C ₆ -OCH ₃), 4.17 (3H, s, C ₂ -OCH ₃), 6.81 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅)
14u	77	Yellow needles (CH ₂ Cl ₂ -hexane)	177-180	C ₁₃ H ₁₃ NO ₄	63.15 (63.06	5.30 5.33	5.67 5.60)	247 (M ⁺ , 70) 232 (54) 219 (100) 203 (57)	1660	1.42 (3H, t, $J = 6.9$, CH ₂ CH ₃), 2.71 (3H, d, $J = 0.7$, C ₄ -CH ₃), 3.90 (3H, s, OCH ₃), 4.59 (2H, q, $J = 6.9$, CH ₂ CH ₃), 6.18 (1H, s, C ₇ -H), 6.78 (1H, q, $J = 0.7$, C ₃ -H)
14v	73	Yellow needles (CH ₂ Cl ₂ -hexane)	135-136	C ₁₄ H ₁₅ NO ₄	64.36 (64.15	5.79 5.77	5.36 5.32)	261 (M+, 100) 246 (82) 233 (82) 217 (49) 205 (57)	1664 1630	1.41 (3H, t, $J = 7.3$, CH ₂ CH ₃), 2.08 (3H, s, C ₇ -CH ₃), 2.69 (3H, s, C ₄ -CH ₃), 4.08 (3H, s, OCH ₃), 4.57 (2H, q, $J = 7.3$, CH ₂ CH ₃), 6.75 (1H, s, C ₃ -H)
14w	84	Yellow prisms (CH ₂ Cl ₂ -hexane)	145-146	C ₁₇ H ₁₃ NO ₃	73.11 (73.14	4.69 4.51	5.02 5.02)	279 (M+, 100) 264 (42) 251 (63) 250 (94) 234 (43)	1676 1660	1.45 (3H, t, $J = 7.3$, CH_2CH_3), 4.64 (2H, q, $J = 7.3$, CH_2CH_3), 6.80 and 6.99 (each 1H, d, $J = 10.2$, C ₆ -H, C ₇ -H), 6.86 (1H, s, C ₃ -H), 7.2-7.5 (5H, m, C ₆ H ₅)
14x	65	Yellow needles (ether-hexane)	124-125	C ₁₉ H ₁₇ NO ₄	70.58 (70.50	5.30 5.36	4.33 4.29)	323 (M+, 100) 308 (50) 295 (48)	1658 1638	1.44 (3H, t, $J = 7.3$, CH_2CH_3), 2.09 (3H, s, C_7 -CH ₃), 3.98 (3H, s, OCH ₃), 4.63 (2H, q, $J = 7.3$, CH_2CH_3), 6.79 (1H, s, C_3 -H), 7.2-7.5 (5H, m, C_6H_3)
2-All	coxy-	5,6-quinolinedione	and 2-Alk	oxy-7,8-quinoli	nediones					
151	31	Yellow needles (CH ₂ Cl ₂ -ether)	ca. 250	C ₁₁ H9NO4	60.28 (60.08	4.14 4.17	6.39 6.36)	219 (M ⁺ , 13) 191 (M ⁺ -CO, 100) 190 (45) 162 (65)	1692 1648	4.04 and 4.11 (each 3H, s, 2OCH ₃), 6.05 (1H, s, C ₇ -H), 6.90 (1H, d, $J = 8.9$, C ₃ -H), 8.25 (1H, d, $J = 8.9$, C ₄ -H)
160	11	Red needles (CH ₂ Cl ₂ -hexane)	252-255	C ₁₂ H ₁₁ NO ₄	61.80 (61.60	4.75 4.77	6.01 5.93)	233 (M ⁺ , 4) 205 (M ⁺ -CO, 100) 204 (52) 175 (27)	1706 1640	2.61 (3H, s, C ₄ -CH ₃), 4.00 and 4.07 (each 3H, s, 2OCH ₃), 5.90 (1H, s, C ₆ -H), 6.81 (1H, s, C ₃ -H)
16s	16	Orange needles (CH ₂ Cl ₂ -hexane)	185-187	C ₁₇ H ₁₃ NO ₄	2 (2	95.0844	1 5)	295 (M+, 18) 294 (15) 267 (M+-CO, 100)	1708 1652 1640	3.47 (3H, s, C ₅ -OCH ₃), 4.13 (3H, s, C ₂ -OCH ₃), 5.81 (1H, s, C ₆ -H), 6.84 (1H, s, C ₃ -H), 7.1-7.5 (5H, m, C ₆ H ₅)

a) Yields from 5,8-diethoxy-2(1H)-quinolinones (7a', e', j') in blackets. b) High-resolution ms. c) Measured in CDCl₃-CF₃CO₂D (12a, b, 13b) and dimethyl sulfoxide-d₆ (12j).

.

1915

EXPERIMENTAL

All melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. ¹H-Nmr spectra were measured at 270 MHz in CDCl₃ (unless otherwise noted) with tetramethylsilane as an internal standard. All reactions were run with magnetic stirring. Anhydrous sodium sulfate was used for drying organic solvent extracts, and the solvent was removed with a rotary evaporator and finally under high vacuum. Column chromatography (flash chromatography)⁵ was performed with silica gel 60 (230-400 mesh).

1,2,4-Trimethoxy-3-methyl-5-nitrobenzene (3c) and 3-Ethyl-1,2,4-trimethoxy-5-nitrobenzene (3d) Concentrated HNO₃ (d 1.38, 20 ml) was added dropwise to a solution of 1,2,4-trimethoxy-3-methylbenzene⁶ (or 3-ethyl-1,2,4-trimethoxybenzene⁷) (50 mmol) in acetic acid (200 ml) for 5 min. The resulting solution was left for 1 h, poured into water (1000 ml), and extracted with CH₂Cl₂ (3 x 300 ml). The extract was washed with saturated aqueous NaHCO₃ solution and water, dried, and evaporated. The residue was chromatographed (eluting with CH₂Cl₂) to afford **3c** (or **3d**).

3c: Yield 96%. mp 47-48°C (hexane). Ms *m/z* (%): 227 (M⁺, 100). *Anal*. Calcd for C₁₀H₁₃NO₅: C, 52.86; H, 5.77; N, 6.16. Found: C, 52.80; H, 5.80; N, 6.10. ¹H-Nmr δ: 2.22 (3H, s, C₃-CH₃), 3.84 (3H, s, OCH₃), 3.89 (6H, s, 2OCH₃), 7.30 (1H, s, C₆-H).

3d: Yield 94%. oil. Ms m/z (%): 241 (M⁺, 100). High-resolution ms Calcd for C₁₁H₁₅NO₅: 241.0950. Found: 241.0962. ¹H-Nmr δ : 1.18 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.72 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.87, 3.89, 3.93 (each 3H, s, 3OCH₃), 7.37 (1H, s, C₆-H).

2,5-Diethoxy-1-methoxy-3-nitrobenzene (3a') A solution of 40% KOH (175 ml) was added dropwise to 2,5-dihydroxy-1-methoxy-3-nitrobenzene⁸ (25.15 g, 135 mmol) and diethyl sulfate (124 ml, 0.95 mol) in ethanol (300 ml) at 70°C. The resulting solution was heated at 70°C for 30 min, then cooled, diluted with water (800 ml), and extracted with with CH_2Cl_2 (3 x 800 ml). The extract was washed with 5% NaOH solution (2 x 500 ml) and water, dried, and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane 2:8) to afford **3a'** (27.67 g, 84%). mp 58-59°C (ethyl acetate). Ms m/z (%): 241 (M⁺, 82), 213 (100), 185 (73). *Anal*. Calcd for $C_{11}H_{15}NO_5$: C, 54.77; H, 6.27; N, 5.81. Found: C, 54.68; H, 6.17; N, 5.75. ¹H-Nmr δ : 1.38, 1.42 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 3.87 (3H, s, OCH₃), 4.02, 4.12 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.66 (1H, d, J = 3.0 Hz, C₆-H), 6.79 (1H, d, J = 3.0 Hz, C₄-H).

2,4,5-Trimethoxy-3-methylaniline (4c), 3-Ethyl-2,4,5-trimethoxyaniline (4d), and 2,5-Diethoxy-3methoxyaniline (4a') A mixture of 3c (or 3d, 3a') (25 mmol), Sn (23.7 g, 0.2 mol) and concentrated HCl (60 ml) was heated at 60-70°C for 1 h. The reaction mixture was cooled, adjusted to pH 9–10 with 10% NaOH solution, and extracted with CH_2Cl_2 (3 x 100 ml). The extract was washed with water, dried, and evaporated to afford 4c (or 4d, a').

4c: Yield 77%. mp 55-56°C (hexane). Ms m/z (%): 197 (M⁺, 58), 182 (100). Anal. Calcd for C₁₀H₁₅NO₃: C, 60.90; H, 7.67; N, 7.10. Found: C, 60.64; H, 7.81; N, 7.04. ¹H-Nmr δ : 2.20 (3H, s, C₃-CH₃), 2.7-3.7 (2H, br, NH₂), 3.71, 3.73, 3.79 (each 3H, s, 30CH₃), 6.30 (1H, s, C₆-H).

4d: Yield 94%. oil. Ms m/z (%): 211 (M⁺, 54), 196 (100). High-resolution ms Calcd for C₁₁H₁₇NO₃: 211.1208. Found: 211.1169. ¹H-Nmr δ : 1.19 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.5–3.5 (2H, br, NH₂), 2.64 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.73, 3.76, 3.79 (each 3H, s, 30CH₃), 6.24 (1H, s, C₆-H).

4a': Yield 70%. mp 49.5-51.5°C (ether-hexane). Ms m/z (%): 211 (M⁺, 51), 182 (100), 154 (72). High-resolution ms Calcd for C₁₁H₁₇NO₃: 211.1208. Found: 211.1207. ¹H-Nmr δ: 1.35, 1.38 (each 3H, t, J = 6.9

Hz, $2CH_2CH_3$), 3.79 (3H, s, OCH₃), 3.82 (2H, br, NH₂), 3.94, 3.97 (each 2H, q, J = 6.9 Hz, $2CH_2CH_3$), 5.93, 5.94 (each 1H, d, J = 2.6 Hz, C₄-H, C₆-H).

5,7,8-Trimethoxyquinoline (5a), 7-Ethyl-5,6,8-trimethoxyquinoline (5d), and 5,8-Diethoxy-7-methoxyquinoline (5a') Acrolein (1.74 g, 30 mmol) was added dropwise to a refluxing solution of 2,3,5trimethoxyaniline⁸ (4a) (or 3-ethyl-2,4,5-trimethoxyaniline (4d), 2,5-diethoxy-3-methoxyaniline (4a')) (5 mmol) in 6 N HCl (50 ml), and the resulting solution was refluxed for an additional 30 min. The reaction mixture was cooled, diluted with water (100 ml), basified with 10% NaOH solution, and extracted with CH_2Cl_2 (3 x 100 ml). The extract was washed with water, dried, and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane 2:8-3:7) to afford the quinoline (5a, d, a').

5a: Yield 55%. mp 88-90°C (ethyl acetate). Ms m/z (%): 219 (M⁺, 47), 204 (100). Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.47; H, 5.99; N, 6.27. ¹H-Nmr δ : 4.00, 4.04, 4.05 (each 3H, s, 3OCH₃), 6.69 (1H, s, C₆-H), 7.26 (1H, dd, J = 8.5, 4.3 Hz, C₃-H), 8.47 (1H, dd, J = 8.5, 1.7 Hz, C₄-H), 8.92 (1H, dd, J = 4.3, 1.7 Hz, C₂-H).

5d: Yield 43%. oil. Ms m/z (%): 247 (M⁺, 38), 232 (100). High-resolution ms Calcd for C₁₄H₁₇NO₃: 247.1208. Found: 247.1195. ¹H-Nmr δ : 1.26 (3H, t, J = 7.3 Hz, CH₂CH₃), 2.90 (2H, q, J = 7.3 Hz, CH₂CH₃), 3.97, 4.01, 4.11 (each 3H, s, 30CH₃), 7.36 (1H, dd, J = 8.5, 4.3 Hz, C₃-H), 8.42 (1H, dd, J = 8.5, 1.7 Hz, C₄-H), 8.85 (1H, dd, J = 4.3, 1.7 Hz, C₂-H).

5a': Yield 48%. mp 78-79°C (ethyl acetate). Ms m/z (%): 247 (M⁺, 33), 232 (100), 218 (31), 190 (83). Highresolution ms Calcd for C₁₄H₁₇NO₃: 247.1208. Found: 247.1208. ¹H-Nmr δ : 1.47, 1.55 (each 3H, t, J = 6.9Hz, 2CH₂CH₃), 4.03 (3H, s, OCH₃), 4.20, 4.29 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.69 (1H, s, C₆-H), 7.27 (1H, dd, J = 8.3, 4.3 Hz, C₃-H), 8.55 (1H, dd, J = 8.3, 1.7 Hz, C₄-H), 8.94 (1H, dd, J = 4.3, 1.7 Hz, C₂-H).

5,6,8-Trimethoxy(-7-methyl)quinoline (5b, c) Concentrated H_2SO_4 (3 ml) was added to a mixture of 2,4,5-trimethoxy(-3-methyl)aniline (**4b**,⁹ **c**) (5 mmol), glycerin (20 ml), *m*-nitrobenzenesulfonic acid (1.52 g, 7.5 mmol), H_3BO_3 (0.5 g), and FeSO₄·7H₂O (0.3 g). The whole was heated at 140-150°C for 15 min. The reaction mixture was cooled, diluted with ice-water (75 ml), basified with 10% NaOH solution, and extracted with CH₂Cl₂ (3 x 50 ml). The extract was washed with water, dried, and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane 3:7-7:3) to afford the quinoline (**5b**, **c**).

5b: Yield 70%. mp 84-85°C (ether). Ms m/z (%): 219 (M⁺, 52), 204 (100). Anal. Calcd for C₁₂H₁₃NO₃: C, 65.74; H, 5.98; N, 6.39. Found: C, 65.50; H, 5.98; N, 6.29. ¹H-Nmr & 3.94, 4.04, 4.10 (each 3H, s, 30CH₃), 6.88 (1H, s, C₇-H), 7.43 (1H, dd, J = 8.6, 4.3 Hz, C₃-H), 8.42 (1H, dd, J = 8.6, 1.7 Hz, C₄-H), 8.82 (1H, dd, J = 4.3, 1.7 Hz, C₂-H).

5c: Yield 57%. oil. Ms m/z (%): 233 (M⁺, 48), 218 (100). High-resolution ms Calcd for $C_{13}H_{15}NO_3$: 233.1052. Found: 233.1045. ¹H-Nmr δ : 2.43 (3H, s, C₇-CH₃), 3.97, 3.98. 4.06 (each 3H, s, 3OCH₃), 7.37 (1H, dd, J = 8.6, 4.3 Hz, C₃-H), 8.43 (1H, dd, J = 8.6, 1.7 Hz, C₄-H), 8.87 (1H, dd, J = 4.3, 1.7 Hz, C₂-H). **5,7,8-Trimethoxyquinoline** *N*-Oxide (6a), (7-Alkyl-)5,6,8-trimethoxyquinoline *N*-Oxide (6b-d), and 5,8-Diethoxy-7-methoxyquinoline *N*-Oxide (6a') *m*-Chloroperoxybenzoic acid (80% purity, 270 mg, 1.25 mmol) was added to a solution of quinoline (5a-d, a') (1 mmol) in CH₂Cl₂ (5 ml). The resulting mixture was left for 16 h, and the precipitated crystals were filtered off. The filtrate was washed with saturated aqueous NaHCO₃ solution (3 x 10 ml) and water, dried, concentrated, and chromatographed. Elution with ethyl acetate

was discarded, and further elution with ethyl acetate-CH₃OH (100:1-7:3) afforded N-oxide (6a-d, a') as a solid, which was used without further purification.

6a: Yield 39%. ¹H-Nmr δ : 3.99, 4.00, 4.03 (each 3H, s, 3OCH₃), 6.74 (1H, s, C₆-H), 7.09 (1H, dd, J = 8.6, 5.9 Hz, C₃-H), 8.09 (1H, dd, J = 8.6, 1.0 Hz, C₄-H), 8.55 (1H, dd, J = 5.9, 1.0 Hz, C₂-H).

6b: Yield 40%. ¹H-Nmr δ : 3.92, 4.02, 4.04 (each 3H, s, 3OCH₃), 6.92 (1H, s, C₇-H), 7.24 (1H, dd, J = 8.9, 5.9 Hz, C₃-H), 8.04 (1H, dd, J = 8.9, 1.3 Hz, C₄-H), 8.32 (1H, dd, J = 5.9, 1.3 Hz, C₂-H).

6c: Yield 72%. ¹H-Nmr δ : 2.40 (3H, s, C₇-CH₃), 3.95, 3.96, 3.97 (each 3H, s, 3OCH₃), 7.17 (1H, dd, J = 8.6, 5.9 Hz, C₃-H), 7.96 (1H, dd, J = 8.6, 1.3 Hz, C₄-H), 8.40 (1H, dd, J = 5.9, 1.3 Hz, C₂-H).

6d: Yield 73%. ¹H-Nmr δ : 1.23 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.87 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.95, 3.97, 4.01 (each 3H, s, 3OCH₃), 7.15 (1H, dd, J = 8.6, 5.9 Hz, C₃-H), 7.91 (1H, dd, J = 8.6, 1.0 Hz, C₄-H), 8.36 (1H, dd, J = 5.9, 1.0 Hz, C₂-H).

6a': Yield 23%. ¹H-Nmr δ : 1.48, 1.55 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 4.01 (3H, s, OCH₃), 4.16, 4.20 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.73 (1H, s, C₆-H), 7.05 (1H, dd, J = 8.6, 5.9 Hz, C₃-H), 8.08 (1H, dd, J = 8.6, 1.0 Hz, C₄-H), 8.43 (1H, dd, J = 5.9, 1.0 Hz, C₂-H).

5,7,8-Trimethoxy-2(1*H*)-quinolinone (7a), (7-Alkyl-)5,6,8-trimethoxy-2(1*H*)-quinolinone (7b-d), and 5,8-Diethoxy-7-methoxy-2(1*H*)-quinolinone (7a') A solution of *N*-oxide (6a-d, a') (5 mmol) in acetic anhydride (7 ml) was left for 30 min. The reaction mixture was added dropwise to ice-water (100 ml), and extracted with CHCl₃ (3 x 30 ml). The extract was successively washed with water (3 x 60 ml), saturated aqueous NaHCO₃ solution (60 ml) and brine, dried, and evaporated. The residue was dissolved in CH₃OH (8 ml), and water (2 ml) and 10% KOH in CH₃OH (10 ml) were added. The whole was left for 15 min, diluted with water (60 ml), and extracted with ethyl acetate (or CH₂Cl₂) (3 x 30 ml). The extract was washed with water (60 ml) and brine, dried, and evaporated. The residue was chromatographed (eluting with CH₂Cl₂-ethyl acetate) to give 2(1*H*)quinolinone (7a-d, a').

7a: Yield 42%. mp 190-194°C (CH₂Cl₂). Ms m/z (%): 235 (M⁺, 77), 220 (100), 192 (48). Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.95. Found: C, 61.28; H, 5.67; N, 5.74. Ir (KBr): 1646 cm⁻¹ (C=O). ¹H-Nmr δ : 3.87, 3.92, 3.97 (each 3H, s, 3OCH₃), 6.28 (1H, s, C₆-H), 6.42 (1H, d, J = 9.6 Hz, C₃-H), 8.02 (1H, d, J = 9.6 Hz, C₄-H), 9.09 (1H, br, NH).

7b: Yield 62%. mp 172-173°C (CH₂Cl₂-ether). Ms m/z (%): 235 (M⁺, 86), 220 (100). Anal. Calcd for C₁₂H₁₃NO₄: C, 61.27; H, 5.57; N, 5.95. Found: C, 61.11; H, 5.54; N, 5.91. Ir (KBr): 1646 cm⁻¹ (C=O). ¹H-Nmr δ : 3.91, 3.93, 3.97 (each 3H, s, 3OCH₃), 6.71 (1H, d, J = 9.6 Hz, C₃-H), 6.76 (1H, s, C₇-H), 8.09 (1H, d, J = 9.6 Hz, C₄-H), 9.44 (1H, br, NH).

7c: Yield 61%. mp 156-157°C (CHCl₃-hexane). Ms m/z (%): 249 (M⁺, 94), 234 (100), 206 (23), 191 (20). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.56; H, 6.04; N, 5.57. Ir (KBr): 1656 cm⁻¹ (C=O). ¹H-Nmr δ : 2.33 (3H, s, C₇-CH₃), 3.82, 3.85, 3.95 (each 3H, s, 30CH₃), 6.61 (1H, d, J = 9.6 Hz, C₃-H), 8.01 (1H, d, J = 9.6 Hz, C₄-H), 9.34 (1H, br, NH).

7d: Yield 52%. mp 164-165°C (ethyl acetate). Ms m/z (%): 263 (M⁺, 73), 248 (100). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.63; H, 6.46; N, 5.26. Ir (KBr): 1666 cm⁻¹ (C=O). ¹H-Nmr δ : 1.25 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.78 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.87, 3.90, 3.95 (each 3H, s, 3OCH₃), 6.66 (1H, d, J = 9.6 Hz, C₃-H), 8.10 (1H, d, J = 9.6 Hz, C₄-H), 9.65 (1H, br, NH).

7a': Yield 48%. mp 179-181°C (ethyl acetate). Ms *m/z* (%): 263 (M⁺, 75), 234 (99), 206 (100). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.75; H, 6.46; N, 5.28. Ir (KBr): 1696 cm⁻¹ (C=O).

¹H-Nmr δ : 1.39, 1.49 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 3.93 (3H, s, OCH₃), 4.09, 4.12 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.27 (1H, s, C₆-H), 6.41 (1H, dd, J = 9.6, 2.0 Hz, C₃-H), 8.05 (1H, d, J = 9.6 Hz, C₄-H), 8.92 (1H, br, NH).

N-(2,3,5-Trimethoxyphenyl)-3-oxobutyramide (10e), N-(2,4,5-Trimethoxyphenyl)-3-oxobutyramide (10f-h), and N-(2,5-Diethoxy-3-methoxyphenyl)-3-oxobutyramide (10e') A solution of aniline (4a-d, a') (10 mmol), ethyl acetoacetate (2.60 g, 20 mmol) and pyridine (0.2 ml) in toluene (20 ml) was refluxed for 3 h. The reaction mixture was evaporated and the residue was chromatographed (eluting with ethyl acetate-hexane 3:7-7:3) to afford anilide (10e-h, e').

10e: Yield 64% (from **4a**). mp 56-57°C (ether-hexane). Ms m/z (%): 267 (M⁺, 81), 168 (100). Anal. Calcd for C₁₃H₁₇NO₅: C, 58.42; H, 6.41; N, 5.24. Found: C, 58.32; H, 6.40; N, 5.15. Ir (KBr): 3280 cm⁻¹ (NH); 1708, 1654 cm⁻¹ (C=O). ¹H-Nmr δ : 2.34 (3H, s, CH₃CO), 3.61 (2H, s, CH₂), 3.79, 3.84, 3.86 (each 3H, s, 30CH₃), 6.27 (1H, d, J = 3.0 Hz, C₄-H), 7.63 (1H, d, J = 3.0 Hz, C₆-H), 9.45 (1H, br, NH).

10f: Yield 86% (from 4b). mp 92-93°C (ether-hexane). Ms m/z (%): 267 (M⁺, 100), 209 (39), 168 (73). Anal. Calcd for C₁₃H₁₇NO₅: C, 58.42; H, 6.41; N, 5.24. Found: C, 58.39; H, 6.38; N, 5.15. Ir (KBr): 3284 cm⁻¹ (NH); 1720, 1648 cm⁻¹ (C=O). ¹H-Nmr δ : 2.33 (3H, s, CH₃CO), 3.58 (2H, s, CH₂), 3.86, 3.87, 3.89 (each 3H, s, 30CH₃), 6.56 (1H, s, C₃-H), 8.06 (1H, s, C₆-H), 9.08 (1H, br, NH).

10g: Yield 85% (from 4c). mp 98-99°C (ether-hexane). Ms m/z (%): 281 (M⁺, 89), 266 (11), 182 (100). Anal. Calcd for C₁₄H₁₉NO₅: C, 59.78; H, 6.81; N, 4.98. Found: C, 59.60; H, 6.75; N, 4.88. Ir (KBr): 3240 cm⁻¹ (NH); 1706, 1656 cm⁻¹ (C=O). ¹H-Nmr δ : 2.23 (3H, s, C₃-CH₃), 2.34 (3H, s, CH₃CO), 3.61 (2H, s, CH₂), 3.76, 3.77, 3.85 (each 3H, s, 30CH₃), 7.90 (1H, s, C₆-H), 9.43 (1H, br, NH).

10h: Yield 91% (from **4d**). mp 85-86°C (ether-hexane). *Ms m/z* (%): 295 (M⁺, 99), 280 (14), 196 (100). *Anal.* Calcd for $C_{15}H_{21}NO_5$: C, 61.00; H, 7.17; N, 4.74. Found: C, 60.93; H, 7.12; N, 4.65. Ir (KBr): 3272 cm⁻¹ (NH); 1708, 1670 cm⁻¹ (C=O). ¹H-Nmr δ : 1.20 (3H, t, J = 7.6 Hz, CH_2CH_3), 2.34 (3H, s, CH_3CO), 2.68 (2H, q, J = 7.6 Hz, CH_2CH_3), 3.62 (2H, s, COCH₂), 3.79, 3.81, 3.85 (each 3H, s, 3OCH₃), 7.89 (1H, s, C₆-H), 9.43 (1H, br, NH).

10e': Yield 93% (from **4a**'). mp 70-72°C (ethyl acetate). Ms m/z (%): 295 (M⁺, 75), 266 (79), 182 (100), 154 (53). Anal. Calcd for C₁₅H₂₁NO₅: C, 61.00; H, 7.17; N, 4.74. Found: C, 60.79; H, 7.08; N, 4.66. Ir (KBr): 3228 cm⁻¹ (NH); 1710, 1682 cm⁻¹ (C=O). ¹H-Nmr δ : 1.39, 1.45 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 2.33 (3H, s, CH₃CO), 3.60 (2H, s, COCH₂), 3.82 (3H, s, OCH₃), 4.02, 4.05 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.27 (1H, d, J = 3.0 Hz, C₄-H), 7.63 (1H, d, J = 3.0 Hz, C₆-H), 9.52 (1H, br, NH).

N-(2,5-Dimethoxyphenyl)-3-phenyl-3-oxopropionamide (10i), *N*-(2,3,5-Trimethoxyphenyl)-3-phenyl-3oxopropionamide (10j), *N*-(2,4,5-Trimethoxy-3-methylphenyl)-3-phenyl-3-oxopropionamide (10k), and *N*-(2,5-Diethoxy-3-methoxyphenyl)-3-phenyl-3-oxopropionamide (10j') A solution of aniline (4e, a, c, a') (10 mmol), ethyl benzoylacetate (2.31 g, 12 mmol) and pyridine (0.2 ml) in toluene (20 ml) was refluxed for 5 h. The reaction mixture was evaporated, and the residue was chromatographed (eluting with ethyl acetate-hexane 1:4-3:7) to afford anilide (10i-k, j').

10i: Yield 97% (from 4e). mp 49-51°C (CH₂Cl₂-hexane). Ms m/z (%): 299 (M⁺, 100), 179 (66), 153 (46), 138 (57), 105 (29). Anal. Calcd for C₁₇H₁₇NO₄: C, 68.22; H, 5.72; N, 4.68. Found: C, 68.06; H, 5.82; N, 4.57. Ir (KBr): 3268 cm⁻¹ (NH); 1672 cm⁻¹ (C=O). ¹H-Nmr δ : 3.78, 3.90 (each 3H, s, 2OCH₃), 4.13 (2H, s, CH₂), 6.59 (1H, dd, J = 8.9, 2.9 Hz, C₄-H), 6.81 (1H, d, J = 8.9 Hz, C₃-H), 7.4-8.1 (5H, m, C₆H₅), 8.09 (1H, d, J = 2.9 Hz, C₆-H), 9.42 (1H, br, NH).

HETEROCYCLES, Vol. 36, No. 8, 1993

10j: Yield 76% (from **4a**). mp 102-105°C (CH₂Cl₂). Ms m/z (%): 329 (M⁺, 86), 314 (23), 209 (24), 194 (31), 183 (24), 168 (100), 105 (31). *Anal*. Calcd for C₁₈H₁₉NO₅: C, 65.64; H, 5.82; N, 4.25. Found: C, 65.62; H, 5.80; N, 4.19. Ir (KBr): 3268 cm⁻¹ (NH); 1680, 1660 cm⁻¹ (C=O). ¹H-Nmr δ : 3.79, 3.84, 3.87 (each 3H, s, 30CH₃), 4.14 (2H, s, CH₂), 6.28 (1H, d, J = 2.6 Hz, C₄-H), 7.4-8.1 (5H, m, C₆H₅), 7.65 (1H, d, J = 2.6 Hz, C₆-H), 9.58 (1H, br, NH).

10k: Yield 59% (from **4c**). mp 89-90°C (CH₂Cl₂-hexane). Ms m/z (%): 343 (M⁺, 95), 223 (44), 182 (100), 105 (33). Anal. Calcd for C₁₉H₂₁NO₅: C, 66.46; H, 6.16; N, 4.08. Found: C, 66.30; H, 6.18; N, 3.99. Ir (KBr): 3336 cm⁻¹ (NH); 1694, 1672 cm⁻¹ (C=O). ¹H-Nmr δ : 2.24 (3H, s, C₃-CH₃), 3.77, 3.78, 3.85 (each 3H, s, 3OCH₃), 4.14 (2H, s, CH₂), 7.4-8.1 (5H, m, C₆H₅), 7.92 (1H, s, C₆-H), 9.57 (1H, br, NH).

10j': Yield 83% (from **4a**'). mp 145-146°C (CH₂Cl₂). Ms m/z (%): 357 (M⁺, 94), 328 (69), 208 (23), 182 (100), 154 (34), 105 (44). Anal. Calcd for C₂₀H₂₃NO₅: C, 67.21; H, 6.49; N, 3.92. Found: C, 67.09; H, 6.47; N, 3.88. Ir (KBr): 3288 cm⁻¹ (NH); 1686, 1664 cm⁻¹ (C=O). ¹H-Nmr δ : 1.39, 1.47 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 3.82 (3H, s, OCH₃), 4.02, 4.06 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 4.12 (2H, s, CH₂), 6.27 (1H, d, J = 2.6 Hz, C₄-H), 7.4-8.1 (5H, m, C₆H₅), 7.65 (1H, d, J = 2.6 Hz, C₆-H), 9.61 (1H, br, NH).

5,7,8-Trimethoxy-4-methyl-2(1*H*)-quinolinone (7e), 5,7,8-Trimethoxy-4-phenyl-2(1*H*)-quinolinone (7j), 5,8-Diethoxy-7-methoxy-4-methyl-2(1*H*)-quinolinone (7e'), and 5,8-Diethoxy-7-methoxy-4-phenyl-2(1*H*)-quinolinone (7j') A solution of anilide (10e, j, e', j') (5 mmol) in concentrated HCl-dioxane (1:5, 30 ml) was heated at 90°C for 60 min. The reaction mixture was cooled, poured into ice-water (100 ml) and extracted with CH_2Cl_2 (3 x 50 ml). The extract was washed with water, dried and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane 1:9-3:7) to afford 2(1*H*)-quinolinone (7e, j, e', j').

7e: Yield 84%. mp 189-192°C (CH₂Cl₂-hexane). Ms m/z (%): 249 (M⁺, 76), 234 (100), 206 (33). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.34; H, 6.03; N, 5.60. Ir (KBr): 1636 cm⁻¹ (C=O). ¹H-Nmr δ : 2.60 (3H, d, J = 1.0 Hz, , C₄-CH₃), 3.87, 3.89, 3.97 (each 3H, s, 3OCH₃), 6.23 (1H, br s, C₃-H), 6.28 (1H, s, C₆-H), 9.31 (1H, br, NH).

7j: Yield 92%. mp 196-198°C (CH₂Cl₂-hexane). Ms m/z (%): 311 (M⁺, 83), 296 (100), 268 (31). Anal. Calcd for C₁₈H₁₇NO₄: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.31; H, 5.55; N, 4.49. Ir (KBr): 1640 cm⁻¹ (C=O). ¹H-Nmr δ : 3.41 (3H, s, C₅-OCH₃), 3.92, 3.96 (each 3H, s, C₇-OCH₃, C₈-OCH₃), 6.23 (1H, s, C₆-H), 6.27 (1H, d, J = 2.0 Hz, C₃-H), 7.2-7.4 (5H, m, C₆H₅), 9.23 (1H, br, NH).

7e': Yield 71%. mp 190-192°C (CH₂Cl₂-hexane). Ms m/z (%): 277 (M⁺, 73), 248 (100), 220 (97), 192 (30). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.81; H, 6.85; N, 5.01. Ir (KBr): 1640 cm⁻¹ (C=O). ¹H-Nmr δ : 1.40, 1.50 (each 3H, t, J = 6.9 Hz, 2CH₂CH₃), 2.63 (3H, s, C₄-CH₃), 3.93 (3H, s, OCH₃), 4.08, 4.09 (each 2H, q, J = 6.9 Hz, 2CH₂CH₃), 6.23 (1H, s, C₃-H), 6.27 (1H, s, C₆-H), 9.14 (1H, br, NH).

7j': Yield 68%. mp 227-229°C (CH₂Cl₂). Ms m/z (%): 339 (M⁺, 77), 310 (90), 282 (100), 254 (24). Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.51; H, 6.23; N, 4.14. Ir (KBr): 1646 cm⁻¹ (C=O). ¹H-Nmr δ : 0.69 (3H, t, J = 6.9 Hz, C₅-CH₂CH₃), 1.44 (3H, t, J = 6.9 Hz, C₈-CH₂CH₃), 3.67 (2H, q, J = 6.9 Hz, C₅-CH₂CH₃), 3.92 (3H, s, OCH₃), 4.14 (2H, q, J = 6.9 Hz, C₈-CH₂CH₃), 6.20 (1H, s, C₆-H), 6.26 (1H, d, J = 2.3 Hz, C₃-H), 7.2-7.4 (5H, m, C₆H₅), 9.31 (1H, br, NH).

(7-Alkyl-)5,6,8-trimethoxy-4-methyl-2(1*H*)-quinolinone (7f-h) A mixture of anilide (10f-h) (5 mmol) and polyphosphoric acid (25 ml) was heated at 150°C for 10 min. The reaction mixture was cooled, poured into ice-water (50 ml), neutralized with 28% ammonia solution, and extracted with CH_2Cl_2 (4 x 50 ml). The extract was

washed with water, dried and evaporated. The residue was chromatographed (eluting with ethyl acetate) to afford 7f-h.

7f: Yield 43%. mp 150-152°C (ethyl acetate-hexane). Ms m/z (%): 249 (M⁺, 96), 234 (100), 206 (30). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.37; H, 6.06; N, 5.60. Ir (KBr): 1644 cm⁻¹ (C=O). ¹H-Nmr δ : 2.68 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.84, 3.93, 3.96 (each 3H, s, 3OCH₃), 6.49 (1H, br s, C₃-H), 6.78 (1H, s, C₇-H), 9.39 (1H, br, NH).

7g: Yield 63%. mp 169-170°C (CH₂Cl₂-hexane). Ms m/z (%): 263 (M⁺, 100), 248 (98), 220 (28). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.87; H, 6.62; N, 5.29. Ir (KBr): 1646 cm⁻¹ (C≈O). ¹H-Nmr δ : 2.32 (3H, s, C₇-CH₃), 2.65 (3H, s, C₄-CH₃), 3.80, 3.83, 3.89 (each 3H, s, 3OCH₃), 6.40 (1H, s, C₃-H), 9.09 (1H, br, NH).

7h: Yield 42%. mp 185-187°C (CH₂Cl₂-hexane). Ms m/z (%): 277 (M⁺, 90), 262 (100), 234 (25). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.98; H, 7.03; N, 5.04. Ir (KBr): 1656 cm⁻¹ (C=O). ¹H-Nmr δ : 1.25 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.65 (3H, s, C₄-CH₃), 2.76 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.83, 3.87, 3.88 (each 3H, s, 30CH₃), 6.40 (1H, s, C₃-H), 9.08 (1H, br, NH).

5,8-Dimethoxy-4-phenyl-2(1*H*)-quinolinone (7i) and 5,6,8-Trimethoxy-7-methyl-4-phenyl-2(1*H*)quinolinone (7k) A mixture of anilide (10i, k) (5 mmol) and 80% sulfuric acid (20 ml) was heated at 75°C for 30 min. The reaction mixture was cooled, poured into ice-water (100 ml), and extracted with CH_2Cl_2 (3 x 50 ml). The extract was washed with water, dried and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane 3:7-1:1) to afford 2(1*H*)-quinolinone (7i, k).

7i: Yield 89%. mp 184-186°C (CH₂Cl₂-hexane). Ms m/z (%): 281 (M⁺, 100), 266 (99). Anal. Calcd for C₁₇H₁₅NO₃: C, 72.58; H, 5.37; N, 4.98. Found: C, 72.43; H, 5.28; N, 5.21. Ir (KBr): 1642 cm⁻¹ (C=O). ¹H-Nmr δ : 3.38 (3H, s, C₅-OCH₃), 3.96 (3H, s, C₈-OCH₃), 6.48 (1H, s, C₃-H), 6.50, 6.94 (each 1H, d, J = 8.9 Hz, C₆-H, C₇-H), 7.2-7.4 (5H, m, C₆H₅), 9.49 (1H, br, NH).

7k: Yield 68%. mp 227-229°C (CH₂Cl₂-hexane). Ms m/z (%): 325 (M⁺, 100), 310 (75), 282 (38). Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.01; H, 5.82; N, 4.27. Ir (KBr): 1644 cm⁻¹ (C \approx O). ¹H-Nmr δ : 2.34 (3H, s, C₇-CH₃), 3.17 (3H, s, C₅-OCH₃), 3.76, 3.86 (each 3H, s, C₆-OCH₃, C₈-OCH₃), 6.43 (1H, s, C₃-H), 7.3-7.5 (5H, m, C₆H₅), 9.29 (1H, br, NH).

Alkylation of 2(1H)-Quinolinones (7b-g, i-k) Sodium hydride (180 mg, 7.5 mmol) was added to a solution of 7b-g, i-k (5 mmol) in *N*,*N*-dimethylformamide (60 ml) with stirring. The whole was left for 30 min, and methyl iodide (or ethyl iodide) (15 mmol) was added dropwise. The mixture was left for 30 min, quenched with water (300 ml), and extracted with CH₂Cl₂ (3 x 100 ml). The extract was washed with water, dried, and evaporated. The residue was chromatographed. Elution with ethyl acetate-hexane (1:9-3:7) afforded the less polar 2-alkoxyquinoline (111-x), and further elution with ethyl acetate-hexane (1:1-7:3) afforded the more polar *N*-alkylquinolinone (71-x).

71: Yield 84% (from **7b**). mp 83-84°C (ether). Ms m/z (%): 249 (M⁺, 100), 234 (74). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.48; H, 6.07; N, 5.55. Ir (KBr): 1652 cm⁻¹ (C=O). ¹H-Nmr & 3.88, 3.89, 3.92, 3.93 (each 3H, s, NCH₃, 3OCH₃), 6.74 (1H, d, J = 9.6 Hz, C₃-H), 6.80 (1H, s, C₇-H), 8.00 (1H, d, J = 9.6 Hz, C₄-H).

7m: Yield 53% (from **7c**). mp 69-70°C (CHCl₃-hexane). Ms m/z (%): 263 (M⁺, 100), 248 (88), 218 (22), 205 (23). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.86; H, 6.51; N, 5.32. Found: C, 63.63; H, 6.46; N, 5.21. Ir (KBr):

1662 cm⁻¹ (C=O). ¹H-Nmr δ : 2.34 (3H, s, C₇-CH₃), 3.63, 3.86, 3.92, 3.93 (each 3H, s, NCH₃, 3OCH₃), 6.65 (1H, d, J = 9.6 Hz, C₃-H), 7.98 (1H, d, J = 9.6 Hz, C₄-H).

7n: Yield 49% (from **7d**). oil. Ms m/z (%): 277 (M⁺, 97), 262 (100). High-resolution ms Calcd for C₁₅H₁₉NO₄: C, 277.1314. Found: 277.1316. Ir (KBr): 1660 cm⁻¹ (C=O). ¹H-Nmr δ : 1.25 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.78 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.64 (3H, s, NCH₃), 3.90 (6H, s, 20CH₃), 3.93 (3H, s, OCH₃), 6.65 (1H, d, J = 9.6 Hz, C₃-H), 7.98 (1H, d, J = 9.6 Hz, C₄-H).

70: Yield 77% (from **7e**). mp 175-176°C (CH₂Cl₂-hexane). Ms m/z (%): 263 (M⁺, 86), 248 (100), 233 (28). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.70; H, 6.48; N, 5.23. Ir (KBr): 1644 cm⁻¹ (C=O). ¹H-Nmr δ : 2.58 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.68, 3.87, 3.89, 3.98 (each 3H, s, NCH₃, 3OCH₃), 6.42 (1H, br s, C₃-H), 6.41 (1H, s, C₆-H).

7p: Yield 56% (from **7f**). mp 130-131°C (CH₂Cl₂-hexane). Ms m/z (%): 263 (M⁺, 100), 248 (45), 233 (18), 220 (30). *Anal*. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.71; H, 6.58; N, 5.25. Ir (KBr): 1658 cm⁻¹ (C=O). ¹H-Nmr δ : 2.63 (3H, s, C₄-CH₃), 3.81, 3.82, 3.86, 3.92 (each 3H, s, NCH₃, 3OCH₃), 6.51 (1H, s, C₃-H), 6.83 (1H, s, C₇-H).

7q: Yield 65% (from **7g**). mp 81-82°C (hexane). Ms m/z (%): 277 (M⁺, 100), 262 (67), 247 (15), 234 (22). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.84; H, 7.12; N, 5.00. Ir (KBr): 1656 cm⁻¹ (C=O). ¹H-Nmr δ : 2.32 (3H, s, C₇-CH₃), 2.61 (3H, s, C₄-CH₃), 3.56, 3.81, 3.83, 3.87 (each 3H, s, NCH₃, 3OCH₃), 6.46 (1H, s, C₃-H).

7r: Yield 82% (from **7i**). mp 119-120°C (CH₂Cl₂-hexane). Ms m/z (%): 295 (M⁺, 100), 280 (76). Anal: Calcd for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.17; H, 5.74; N, 4.99. Ir (KBr): 1648 cm⁻¹ (C=O). ¹H-Nmr δ : 3.32 (3H, s, C₅-OCH₃), 3.87, 3.94 (each 3H, s, NCH₃, C₈-OCH₃), 6.50 (1H, s, C₃-H), 6.57, 7.07 (each 1H, d, J = 8.9 Hz, C₆-H, C₇-H), 7.2-7.5 (5H, m, C₆H₅).

7s: Yield 76% (from **7j**). mp 143-144°C (hexane). Ms m/z (%): 325 (M⁺, 83), 310 (100). Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.10; H, 5.92; N, 4.26. Ir (KBr): 1638 cm⁻¹ (C=O). ¹H-Nmr δ : 3.37 (3H, s, C₅-OCH₃), 3.75, 3.96, 3.97 (each 3H, s, NCH₃, C₇-OCH₃, C₈-OCH₃), 6.34 (1H, s, C₆-H), 6.43 (1H, s, C₃-H), 7.1-7.4 (5H, m, C₆H₅).

7t: Yield 62% (from 7k). oil. Ms m/z (%): 339 (M⁺, 100), 324 (67). High-resolution ms Calcd for C₂₀H₂₁NO₄: 339.1470. Found: 339.1483. Ir (KBr): 1658 cm⁻¹ (C=O). ¹H-Nmr δ : 2.34 (3H, s, C₇-CH₃), 3.14 (3H, s, C₅-OCH₃), 3.63, 3.75, 3.91 (each 3H, s, NCH₃, C₆-OCH₃, C₈-OCH₃), 6.48 (1H, s, C₃-H), 7.2-7.5 (5H, m, C₆H₅).

7u: Yield 36% (from **7f**). mp 84-85°C (CH₂Cl₂-hexane). Ms m/z (%): 277 (M⁺, 100), 262 (37), 234 (45). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.78; H, 7.03; N, 4.87. Ir (KBr): 1644 cm⁻¹ (C=O). ¹H-Nmr δ : 1.37 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.61 (3H, s, C₄-CH₃), 3.81, 3.91, 3.93 (each 3H, s, 30CH₃), 4.45 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.51 (1H, s, C₃-H), 6.82 (1H, s, C₇-H).

7v: Yield 16% (from **7g**). oil. Ms m/z (%): 291 (M⁺, 100), 276 (62), 262 (30), 248 (37). High-resolution ms Calcd for C₁₆H₂₁NO₄: 291.1470. Found: 291.1499. Ir (KBr): 1646 cm⁻¹ (C=O). ¹H-Nmr δ : 1.19 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.33 (3H, s, C₇-CH₃), 2.60 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.59, 3.84, 3.87 (each 3H, s, 30CH₃), 4.59 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.45 (1H, q, J = 1.0 Hz, C₃-H).

7w: Yield 41% (from **7i**). mp 117-118°C (CH₂Cl₂-hexane). Ms m/z (%): 309 (M⁺, 100), 280 (53), 266 (49). Anal. Calcd for C₁₉H₁₉NO₃: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.57; H, 6.19; N, 4.53. Ir (KBr): 1642 cm⁻¹ (C=O). ¹H-Nmr δ : 1.44 (3H, t, J = 6.9 Hz, CH₂CH₃), 3.31 (3H, s, C₅-OCH₃), 3.91 (3H, s, C₈-OCH₃), 4.59 (2H, q, J = 6.9 Hz, CH_2CH_3), 6.49 (1H, s, C₃-H), 6.56, 7.06 (each 1H, d, J = 8.9 Hz, C₆-H, C₇-H), 7.2-7.4 (5H, m, C₆H₅).

7x: Yield 16% (from **7k**). mp 187-188°C (ether-hexane). Ms m/z (%): 353 (M⁺, 100), 338 (61). Anal. Calcd for C₂₁H₂₃NO₄: C, 71.37; H, 6.56; N, 3.96. Found: C, 71.29; H, 6.55; N, 3.92. Ir (KBr): 1648 cm⁻¹ (C=O). ¹H-Nmr δ : 1.28 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.35 (3H, s, C₇-CH₃), 3.14 (3H, s, C₅-OCH₃), 3.66, 3.75 (each 3H, s, C₆-OCH₃, C₈-OCH₃), 4.65 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.44 (1H, s, C₃-H), 7.2-7.5 (5H, m, C₆H₅).

111: Yield 14% (from 7b). mp 101-102.5°C (ether-hexane). Ms m/z (%): 249 (M⁺, 76), 234 (100). Anal. Calcd for C₁₃H₁₅NO₄: C, 62.64; H, 6.07; N, 5.62. Found: C, 62.65; H, 6.12; N, 5.58. ¹H-Nmr δ : 3.92, 3.99, 4.06, 4.10 (each 3H, s, 40CH₃), 6.85 (1H, s, C₇-H), 6.93 (1H, d, J = 8.9 Hz, C₃-H), 8.27 (1H, d, J = 8.9 Hz, C₄-H).

11m: Yield 27% (from 7c). oil. Ms m/z (%): 263 (M⁺, 64), 248 (100). High-resolution ms Calcd for C₁₄H₁₇NO₄: 263.1158. Found: 263.1158. ¹H-Nmr δ : 2.37 (3H, s, C₇-CH₃), 3.91, 3.96, 4.08, 4.09 (each 3H, s, 40CH₃), 6.85 (1H, d, J = 9.2 Hz, C₃-H), 8.24 (1H, d, J = 9.2 Hz, C₄-H).

11n: Yield 29% (from 7d). oil. Ms m/z (%): 277 (M⁺, 60), 262 (100). High-resolution ms Calcd for C₁₅H₁₉NO₄: C, 277.1314. Found: 277.1309. ¹H-Nmr δ : 1.24 (3H, t, J = 7.6 Hz, CH₂CH₃), 2.85 (2H, q, J = 7.6 Hz, CH₂CH₃), 3.94, 3.95, 4.08, 4.15 (each 3H, s, 4OCH₃), 6.85 (1H, d, J = 8.9 Hz, C₃-H), 8.24 (1H, d, J = 8.9 Hz, C₄-H).

110: Yield 22% (from 7e). mp 74-75°C (hexane). Ms m/z (%): 263 (M⁺, 57), 248 (100). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.80; H, 6.50; N, 5.27. ¹H-Nmr δ : 2.74 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.90, 4.01, 4.03, 4.07 (each 3H, s, 4OCH₃), 6.49 (2H, br s, C₃-H, C₆-H).

11p: Yield 26% (from **7f**). mp 116-117°C (CH₂Cl₂-hexane). Ms m/z (%): 263 (M⁺, 80), 248 (100). Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.76; H, 6.57; N, 5.24. ¹H-Nmr δ : 2.80 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.84, 3.97, 4.04, 4.07 (each 3H, s, 4OCH₃), 6.69 (1H, q, J = 1.0 Hz, C₃-H), 6.87 (1H, s, C₇-H).

11q: Yield 34% (from **7g**). oil. Ms m/z (%): 277 (M⁺, 64), 262 (100). High-resolution ms Calcd for C₁₅H₁₉NO₄: 277.1314. Found: 277.1310. ¹H-Nmr δ : 2.36 (3H, s, C₇-CH₃), 2.78 (3H, d, J = 0.9 Hz, C₄-CH₃), 3.88, 3.89, 4.04, 4.05 (each 3H, s, 4OCH₃), 6.61 (1H, br s, C₃-H).

11r: Yield 14% (from 7i). mp 142-143°C (CH₂Cl₂-hexane). Ms m/z (%): 295 (M⁺, 76), 280 (100). Anal. Calcd for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.23; H, 5.72; N, 5.00. ¹H-Nmr δ : 3.41 (3H, s, C₅-OCH₃), 4.05, 4.15 (each 3H, s, C₂-OCH₃, C₈-OCH₃), 6.74 (1H, s, C₃-H), 6.62, 7.00 (each 1H, d, J = 8.2 Hz, C₆-H, C₇-H), 7.2-7.5 (5H, m, C₆H₅).

11s: Yield 23% (from 7j). mp 142-143°C (ether-hexane). Ms m/z (%): 325 (M⁺, 78), 310 (100). Anal. Calcd for C₁₉H₁₉NO₄: C, 70.14; H, 5.89; N, 4.31. Found: C, 69.97; H, 5.92; N, 4.30. ¹H-Nmr δ : 3.44 (3H, s, C₅-OCH₃), 4.01, 4.09, 4.13 (each 3H, s, C₂-OCH₃, C₇-OCH₃, C₈-OCH₃), 6.47, 6.56 (each 1H, s, C₃-H, C₆-H), 7.2-7.4 (5H, m, C₆H₅).

11t: Yield 33% (from 7k). mp 122-124°C (CH₂Cl₂-hexane). Ms m/z (%): 339 (M⁺, 82), 324 (100). Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.83; H, 6.27; N, 4.08. ¹H-Nmr & 2.38 (3H, s, C₇-CH₃), 3.17 (3H, s, C₅-OCH₃), 3.81 (3H, s, OCH₃), 4.11 (6H, s, 2OCH₃), 6.66 (1H, s, C₃-H), 7.3-7.5 (5H, m, C₆H₅).

11u: Yield 45% (from **7f**). mp 66-67°C (hexane). Ms m/z (%): 277 (M⁺, 100), 262 (84), 234 (48). Anal. Calcd for C₁₅H₁₉NO₄: C, 64.97; H, 6.91; N, 5.05. Found: C, 64.92; H, 6.89; N, 4.98. ¹H-Nmr δ : 1.44 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.81 (3H, d, J = 0.7 Hz, C₄-CH₃), 3.84, 3.97, 4.04 (each 3H, s, 3OCH₃), 4.55 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.71 (1H, br s, C₃-H), 6.88 (1H, s, C₇-H).

11v: Yield 78% (from 7g). oil. Ms m/z (%): 291 (M⁺, 82), 276 (100), 262 (16), 248 (45). High-resolution ms Calcd for C₁₆H₂₁NO₄: 291.1470. Found: 291.1469. ¹H-Nmr δ : 1.44 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.36 (3H, s, C₇-CH₃), 2.78 (3H, d, J = 1.0 Hz, C₄-CH₃), 3.88, 3.89, 4.03 (each 3H, s, 3OCH₃), 4.53 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.61 (1H, q, J = 1.0 Hz, C₃-H).

11w: Yield 49% (from **7i**). mp 96-97°C (CH₂Cl₂-hexane). Ms m/z (%): 309 (M⁺, 100), 294 (59), 280 (85), 266 (35). *Anal*. Calcd for C₁₉H₁₉NO₃: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.63; H, 6.14; N, 4.48. ¹H-Nmr δ : 1.45 (3H, t, J = 6.9 Hz, CH₂CH₃), 3.40 (3H, s, C₅-OCH₃), 4.04 (3H, s, C₈-OCH₃), 4.61 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.73 (1H, s, C₃-H), 6.61, 6.99 (each 1H, d, J = 8.6 Hz, C₆-H, C₇-H), 7.2-7.4 (5H, m, C₆H₅).

11x: Yield 80% (from 7k). mp 79-80°C (hexane). Ms m/z (%): 353 (M⁺, 100), 338 (97), 324 (24), 310 (39). Anal. Calcd for C₂₁H₂₃NO₄: C, 71.37; H, 6.56; N, 3.96. Found: C, 71.28; H, 6.60; N, 3.91. ¹H-Nmr δ : 1.46 (3H, t, J = 6.9 Hz, CH₂CH₃), 2.38 (3H, s, C₇-CH₃), 3.17 (3H, s, C₅-OCH₃), 3.81, 4.09 (each 3H, s, C₆-OCH₃, C₈-OCH₃), 4.58 (2H, q, J = 6.9 Hz, CH₂CH₃), 6.65 (1H, s, C₃-H), 7.3-7.5 (5H, m, C₆H₅).

Oxidative Demethylation of 2(1*H*)-Quinolinones (7a-x, a', e', j') and 2-Alkoxyquinolines (111-x) A solution of CAN (1370 mg, 2.5 mmol) in acetonitrile-water (1:1, 7.5 ml) was added dropwise to 7a-x, a', e', j' or 111-x (0.5 mmol) dissolved in acetonitrile-water (4:1, 25 ml) containing pyridine-2,6-dicarboxylic acid *N*-oxide (458 mg, 2.5 mmol) at 0-5°C. The mixture was kept at 0-5°C for 30 min, diluted with water (65 ml), and extracted with CH_2Cl_2 (3 x 25 ml). The extract was washed with brine, dried and evaporated. The residue was chromatographed (eluting with ethyl acetate-hexane, ethyl acetate-methanol, or ethyl acetate- CH_2Cl_2) to afford the corresponding *p*-quinones (12 or 14) and/or *o*-quinones (13, 15 or 16).

REFERENCES

- K. V. Rao and W. P. Cullen, "Antibiotics Annual, 1959-1960," ed. by H. Welch and F. Marti-Ibañez, Medical Encyclopedia Inc., New York, 1960, pp. 950-953.
- a) M. A. Chirigos, J. W. Pearson, T. S. Papas, W. A. Woods, H. B. Wood, Jr., and G. Spahn, *Cancer Chemother. Rep.*, **1973**, 57, 305; b) Y. Inouye, Y. Take, K. Oogose, A. Kubo, and S. Nakamura, J. Antibiot., **1987**, 40, 105.
- a) Y. Take, K. Oogose, T. Kubo, Y. Inouye, S. Nakamura, Y. Kitahara, and A. Kubo, J. Antibiot., 1987, 40, 679; b) Y. Inouye, H. Matsumoto, R. Morishige, Y. Kitahara, A. Kubo, and S. Nakamura, Chem. Pharm. Bull., 1991, 39, 994.
- 4. L. Syper, K. Kloc, J. Mlochowski, and Z. Szulc, Synthesis, 1979, 521.
- 5. W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.
- 6. H. D. Locksley and I. G. Murray, J. Chem. Soc. (C), 1970, 392.
- Y. Kitahara, T. Nakai, S. Nakahara, M. Akazawa, M. Shimizu, and A. Kubo, Chem. Pharm. Bull., 1991, 39, 2256.
- 8. H. Richtzenhain and P. Nippus, Ber., 1949, 82, 408.
- 9. R. Fabinyi and T. Széki, Ber., 1906, 39, 3679.

Received, 8th March, 1993