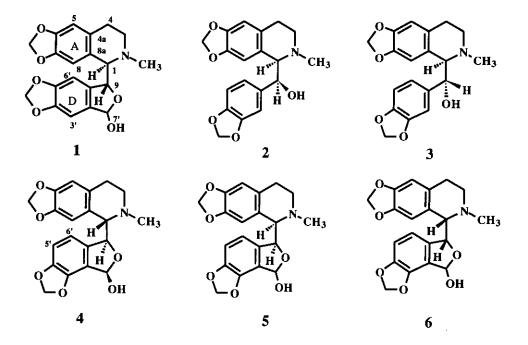
(-)-CORYDECUMBINE, A NOVEL PHTHALIDEISOQUINOLINE ALKALOID FROM CORYDALIS DECUMBENS

Purusotam Basnet, Shigetoshi Kadota,* Jian Xin Li, Chun Zhen Wu, and Tsuneo Namba


Research Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan.

Abstract ---- A novel alkaloid, (-)-corydecumbine (1) was isolated from the cultivated tuber of *Corydalis decumbens* (Thunb.) Pers. (Papaveraceae) and the structure was determined by the use of 2D NMR.

Quirion *et al.* reported two alkaloids; (+)-decumbensine and (+)-*epi*- α -decumbensine from *Corydalis* decumbens¹ and their structures were proposed as 2 and 3, respectively. In 1989, Rozwadoska *et al.* synthesized α -hydroxybenzyltetrahydroisoquinolines (2) and (3) but the spectral data of (+)-decumbensine and (+)-*epi*- α -decumbensine were found to be quite different² than those of 2 and 3, so they pointed out that (+)-decumbensine and (+)-*epi*- α -decumbensine were not the α -hydroxybenzyltetrahydroisoquinolines (2) and (3). In addition, they also suggested that (+)-*epi*- α -decumbensine was probably the (+)-corytensine (4)³ based on the ¹H-NMR data,⁴ in spite of different molecular formula. Also in 1990, Gawley *et al*. synthesized (-)-egenine (5) and (-)-corytensine^{5,6} while the (+)-egenine (6) was previously isolated from *Fumaria vailantii* ⁷ and the spectral data of egenine and (+)-decumbensine were found to be the same.⁸ Therefore it was concluded that (+)-decumbensine and (+)-egenine (6) were same compounds, so (+)-decumbensine was not a new alkaloid. Latter, Quirion *et al.* also realized that their proposed structures for (+)-decumbensine and (+)-*epi*- α -decumbensine were formation for (+)-decumbensine and (+)-*epi*- α -decumbensine were not correct.⁹ On this series of the alkaloids, Wu *et al.*³ also incorrectly suggested that (+)-corytensine is the C₇ epimer of (+)-egenine (6).¹⁰

As we were comparing the alkaloidal constituents of wild and cultivated *C. decumbens* tubers in order to evaluate the quality of the crude drugs by hplc method,¹¹ we came across one of the alkaloidal constituents showing a close similarity with compounds discussed above. We studied the structure of **1** by 2D nmr experiments such as ${}^{1}\text{H}{}^{-1}\text{H}$ COSY, ${}^{1}\text{H}{}^{-13}\text{C}$ COSY, ${}^{1}\text{H}{}^{-13}\text{C}$ long-range COSY in detail and other spectroscopic

methods, which revealed that compound (1) is a new and the first type in this series of alkaloids due to presence of methylenedioxy group at 4' and 5' positions instead of common positions at 3' and 4'. We wish to report the structure elucidation of 1 in the present communication.

(-)-Corydecumbine (1) was a creamy white crystalline solid, mp 214 °C, found to be optically active $[\alpha]_D$ - 142.3° (c = 0.62, CHCl₃). The positive ion fast atomic bombardment mass spectrum (FAB-ms) exhibited the quasi-molecular ion peak at m/z 370 (M+H)⁺ and its molecular formula was determined to be {(C₂₀H₁₉NO₆+H)⁺; Found, 370.1274; Calcd for C₂₀H₂₀NO₆, 370.1319} by high-resolution FAB-ms, which is also supported by ¹³C-nmr spectrum. The uv and ir absorptions were found to be the similar pattern to that of the (+)-corytensine (4), (+)- and (-)-egenine (5 and 6).⁷ The chemical shifts of the ¹H- and ¹³C-nmr were very similar to that of (+)-corytensine (4) and egenine¹² but the characteristic differences were observed due to the ¹H-nmr signals. There was a singlet signal of two protons at δ 6.84 for 1 in our experiment but it had been reported that two doublet signals at δ 6.85 and 6.83 (each 1H, J = 8.0 Hz) were assigned for C₅-H and C₆-H, in 4, 5 and 6^{3,5,6} respectively. This differences clearly suggests that there was no *ortho*-coupling protons in 1 as they were found in 4, 5 and 6. There is no possible structure having two aromatic protons in the *ortho*-position on the ring D, so the structure for corydecumbine was suggested to be as 1 and to assign all the ¹H-and ¹³C-signals, 2D nmr experiments were performed (Tables I and II).

Proton	(-)-Corydecumbine (1)	(+)-Corytensine (4)	epi- α -Decumbensine	
1	3.68, br s	3.68, s	3.66, s	
3-ax	2.54, ddd (13, 10, 2.5)	2.54, ddd (13, 10.5, 3.0)	2.99, ddd (12.4, 3.8, 2)	
3-eq	3.00, dt (10, 3.5)	3.00, dt (10.5, 3)	3.18, ddd (15.3, 12.4, 3.1)	
4-eq	2.46, dt (15, 2.5)	2.47, dt (15.5, 3)	2.45, ddd (15.3, 3.1, 2)	
4-ax	3.20, ddd (15, 13, 3.5)	3.20, ddd (15.5, 13, 3)	2.53, dt (15.3, 3.8)	
5	6.61, br s	6.60, s	6.59, s	
8	6.72, br s	6.71, s	6.07, s	
9 9	5.29, br s	5.29, s	5.27, s	
2'			6.23, s	
2' 3'	6.84, s			
4'				
4' 5'		6.85, d (8)	6.82, s	
6'	6.84, s	6.83, d (8)	6.82, s	
7'	6.25, s	6.25, s		
NCH ₃	1.95, s	1.96, s	1.95, s	
OCH ₂ O	5.90, d (1.5)	5.90, d (1.7)	5.91, m	
(ring A)	5.94, d (1.5)	5.94, d (1.7)		
OCH ₂ O	6.04, d (1.5)	6.04, d (1.5)	6.04, m	
(ring D)	6.08, d (1.5)	6.08, d (1.5)	·	

Table I. ¹H-Nmr (400 MHz) Data for (-)-Corydecumbine (1), Corytensine (4) and $epi-\alpha$ -Decumbensine in CDCl₃

Chemical shift is expressed in δ - ppm taking TMS as an internal standard and the coupling constant (J) is expressed in Hz in parenthesis.

Table II	13C Nmr	(100 MHz)	Data for	(-)-Corv	decumbine	(1) in	
i adie II.		(100 MHZ)	Data for	(-)-Cory	aecumome	(I) III '	CDCI3

Carbon	. <u>.</u>	Carbon	·	Carbon	
1	68.59 (s)	8	106.90 (d)	5'	141.66 (s)
3	53.87 (t)	8a	130.55 (s)	6'	108.94 (d)
4	29.28 (t)	9	89.81 (d)	7'	97.73 (d)
4a	128.64 (s)	1'	135.23 (s)	NCH3	46.73 (q)
5	108.18 (d)	2'	124.12 (s)	OCH ₂ O (rii	ng A) 100.92 (t)
6	146.40 (s)	3'	113.83 (d)		ng D) 101.89 (t)
7	146.16 (s)	4'	148.22 (s)		•

Chemical shift is expressed in δ -ppm. All the ¹H- and ¹³C- signls assignment were due to the results of the DEPT, ¹H-¹H COSY, ¹H-¹³C COSY, ¹H-¹³C long-range COSY experiments and the multiplicity of carbon signals were determined by means of DEPT method indidated as s, d, t, and q.

As it had been observed that the phthalideisoquinoline alkaloids with S- and R-configurations at C₁ are dextroand levorotatory, respectively.¹³ The corydecumbine (1) was found to be the levorotatory, $[\alpha]_D$ -142.3°, so that the configuration at C₁ was suggested as **R**. Both of the ¹H-nmr signals at δ 3.68 and 5.29 assigned for C₁-H and C₉-H were broad singlet suggesting the *threo*- configuration at C₁ and C₉,^{3,10} hence the configuration at C₉ is suggested as **R**. From the foregoing evidences, the structure of (-)-corydecumbine was established to be 1 except for the stereochemistry at the C_7 position. Our present result provided the first example of a phthalideisoquinoline alkaloid having substitution groups at C_6 and C_7 positions of the ring A and C_4 and C_5 positions of the ring D and is interesting from the biogenetic point of view. The distribution of this type of phthalideisoquinoline in other plants of Papaveraceae and their biological activities would be worthy of investigation.¹⁴

ACKNOWLEDGEMENT

We thank Dr. Katsuhide Matoba and Mr. Masakazu Nagasawa, Research Institute Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan for high resolution mass spectroscopy.

REFERENCES AND NOTES

- 1. J. S. Zhang, R. S. Xu, and J. C. Quirion, J. Nat. Prod., 1988, 51. 1241 .
- 2. M. D. Rozwadoska, D. Matecka, and D. Brózda, Tetrahedron Lett., 1989, 30, 6215 .
- T. S. Wu, S. C. Huang, S. T. Lu, Y. C. Wu, D. R. McPhail, A. T. McPhail, and K. H. Lee, *Heterocycles*, 1988, 27, 1565. The X-ray picture to the line drawing was incorrectly transcribed at C₇⁻ position.
- 4. The authors (ref. 2) compared (+)-corytensine (ref. 3) with epi-α-decumbensine (ref. 1) to show the proposed structure for epi-α-decumbensine was not correct but the structure drawing of (+)-corytensine (ref. 2) was also not correct.
- 5. K. S. Rein and R. E. Gawley, J. Org. Chem., 1991, 56, 1564.
- 6. K. S. Rein and R. E. Gawley, Tetrahedron Lett., 1990, 31, 3711.
- 7. B. Gözler, T. Gözler, and M. Shamma, Tetrahedron, 1983, 39, 577.
- 8. Decumbensine is a dextrorotatory $[\alpha]_D + 129^\circ$ (ref. 1), in spite of opposite optical rotation, R.E. Gawley *et al.* (ref. 6), have reported that decumbensine and (-)-egenine { $[\alpha]_D 214^\circ$ (CHCl₃)} are same compound.
- 9. The notes of the ref. 6.
- 10. S. V. Kessar, R. Vohra, and N. P. Kaur, Tetrahedron Lett., 1991, 32, 3221 .
- 11. C. Z. Wu, S. Kadota, J. X. Li, P. Basnet, and T. Namba, Shoyakugaku Zasshi (submitted).
- 12. ¹³C-NMR signal for quaternary carbon of these compounds (refs.3, 5, 6) has not been assigned up to now.
- 13. G. Blaskó, D. J. Gula, and M. Shamma, J. Nat. Prod., 1982, 45, 105.
- 14. It is not sure that both the cultivated and wild *Corydalis* species contains this type of constituent or not, because of the unavailability of enough amount of wild *Corydalis* tubers, we could not isolate the minor constituents.

Received, 26th April, 1993