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- Cleavage of the C-20 ethylidene side-chain of deformyl-Z- 

geissoschizine (1) and deformyl-E-geissoschizine (2), and their &-Boc 

derivatives (11) and (12), utilizing the modifid Polonovski reaction, is 

described. Mechanistic considerations are presented. 

In a recent work we reported the transformation of deformyl-Z-geissosc~me (1) to deformyl-&geissoschizine 

(2)' through oxidation of (1) to &-oxide (3), formation of deformyl-Z-geissoschizine Awl)-idurn ion (4) 

(by modified Polonovski reaction?, equilibration to defomyl-E-geissoschizine A4.'R1)-iminium ion (S), and 

treatment with NaSH, (Scheme 1). The small amounts (-3%) of the corresponding desethylidene derivative 

(6) that were formed as well, indicated that an ethylidene side-chain cleavage had taken place. 

The cleavage of the ethylidene side-chain is of particular interest because the reaction involved (modified 

Polonovski reaction) is considered to represent a biomimetic process.' 
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Scheme I 

The formation of desethylidene derivative (6) might be mechanistically postulated in the following manner: 

Reaction of H20 @resent in small quantities in the reaction mixhlre) with the conjugated iminium ion (4) 

[andlor (S)] leads& hydroxyenamine (7). This is protonated to the corresponding iminium ion (8). Elimination 

of acetaldehyde from the iminium ion (8) affords enamine (9), which is protonated to a new iminium ion (10). 

Reduction of the iminium ion (10) with NaBH, yields the desethylidene derivative (6) (Scheme 2). 

Scheme 2 



To test the validity of this mechanism and to improve the yield of the desethylidene derivative (6), the reaction 

procedure (cf. ref. 1) was slightly modified. Once the iminium ion (4) [andlor (91 was formed (-2 h), the 

reaction mixture was condensed to dryness, redissolved in acidic MeOH (4-5 drops of 30% HC1 in MeOH), 

and stirred for 2 h at mom temperature and then 3 h under reflux. The reaction mixture was amled to PC, 

NaBH, (6 equiv.) was added in small portions, and stirring was continued for 18 h at room temperature. After 

normal work-up and chromatographic fractionation the desethylidene derivative (6)' was obtained in 12% yield. 

The considerable improvement (3% -r 12%) in the yield of the desethylidene derivative (6) under the modified 

conditions underlines the role of H,O (present in 30% HCI) and supports the mechanism we propose 

m. 

The cleavage reaction was further tested using &-L-Bocdeformyl-Z-geissoschizine (11)9 and &-Boc-deformyl-E- 

geissoschizine (12)1°. In both cases, the same desethylidene derivative (13)" was obtained in - 15% yield 

(Scheme 3). 

Scheme 3 

Finally, in order to get still more evidence in support on the presented mechanism &-Boc-deformyl-E- 

geissoschizine (12) and deformyl-E-geissoschizine (2) were transformed, yia &-oxides (14)" and (15)" to the 

corresponding iminium ions (16) and (10). This time the final NaBH, reduction of the iminium ions f&k 
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8g~@ was replaced by ~yan*trapping.'~~~ The formation of C-21 cyano derivatives (17)19 and 

respectively, as the sole desethylidene cyano-derivatives2' is in perfect agreement with the proposed 

mechanism (Scheme 4). 

Scheme 4 

The 13C-nmr data for compounds (6), (13), (IS), (IT,  and (18) are given in Figure 1. Comparison ( )f the 

measured chemical shifts, taking into account the conformational considerations relevant for indolo[2,3- 

~quinolizidiies in general ,9.'2.".z provides clear evidence for the stereostructures depicted in the formulae. 



.Figure 1. - nmr data of compounds (6), (13), (IS), (17), and (18). 

The sterwchemistry of compound (17) at C-21 (H-21 a or 8) was determined by NOE experiments. As 

compound (17) is an &-Boc derivative, the conformation b can be considered to be strongly favoured in the 

conformational equilibrium (cf. ref. 10). No NOE was observed at H-21 when H-3 was irradiated nor & 

versa. This suggested axial orientation for the cyano-group and, as a corollary, equatorial orientation for H-21 

(K218). The equatorial orientation of H-21 was further confirmed by its coupling constants: 5 Hz and 2.5 Hz. 

The orientation of the cyano-group in compound (18) was mainly determined by comparison of the 13C 

chemical shifts of C-20 in compounds (6) and (18) [S 32.0 and 35.9, respectively; both compounds existing 

predominantly in conformation a (cf. ref. lo)]. The fi effect found (+3.9 ppm) for the cyan0 group is 

compatible with the axial position,= and, as a consequence, H-21 is equatorial (H-218). The equatorial 

orientation was further confirmed by the 'H coupling constants: 5 Hz and 2.5 Hz. 



Although the cleavage has so far been applied only for defomyl-geissoschizine derivatives, it seems plausible 

to us that it represents a general method for cleavage of C-3 ethylidene (and analogous) side-chains of 

appropriate piperidme derivatives (19). 
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