CLEAVAGE OF **THE** C-20 ETHYLIDENE SIDECHAIN OF DEFORMYL- - Z AND **DEEORMYL-B-GEISSOSCHIZLNE** DERIVATIVES UTILIZING **THE** MODIFIED POLQNOVSKI REACTION

Mauri Lounasmaa*, Reija Jokela, Minna Halonen, and Jari Miettinen

Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, SF-02150 **Espoo,** Finland

Abstract - Cleavage of the C-20 ethylidene side-chain of deformyl-Zgeissoschizine (1) and **deformyl-E-geissoschizine (2),** and their &-Boc derivatives (11) and (12), utilizing the modified Polonovski reaction, is described. Mechanistic considerations are presented.

In a recent work we reported the transformation of deformyl-Z-geissoschizine (1) to deformyl-E-geissoschizine $(2)^{1}$ through oxidation of (1) to N_k-oxide (3), formation of deformyl-Z-geissoschizine $\Delta^{4(21)}$ -iminium ion (4) (by modified Polonovski reaction²⁴⁶), equilibration to deformyl-E-geissoschizine $\Delta^{4(21)}$ -iminium ion (5), and treatment with NaBH₄ (Scheme 1). The small amounts (-3%) of the corresponding desethylidene derivative (6) that were formed as well, indicated that an ethylidene side-chain cleavage had taken place.

The cleavage of the ethylidene side-chain is of particular interest because the reaction involved (modified Polonovski reaction) is considered to represent a biomimetic process.'

The formation of desethylidene derivative (6) might be mechanistically postulated in the following manner: Reaction of H_2O (present in small quantities in the reaction mixture) with the conjugated iminium ion (4) [and/or (5)] leads to hydroxyenamine (7). This is protonated to the corresponding iminium ion (8). Elimination of acetaldehyde from the iminium ion (8) affords enamine **(9),** which is protonated to a new iminium ion (10). Reduction of the iminium ion (10) with **NaBH,** yields the desethylidene derivative (6) (Scheme 2).

Scheme 2

To test the validity of this mechanism and to improve the yield of the desethylidene derivative **(6),** the reaction procedure (cf. ref. 1) was slightly modified. Once the iminium ion (4) [and/or (5)] was formed $(-2 h)$, the reaction mixture was condensed to dryness, redissolved in acidic MeOH **(4-5** drops of 30% HC1 in **MeOH),** and stirred for 2 h at room temperature and then 3 h under reflux. The reaction mixture was cooled to 0°C , NaBH, (6 equiv.) was added in small portions, and stirring was continued for 18 h at room temperature. After normal work-up and chromatographic fractionation the desethylidene derivative $(6)^{8}$ was obtained in 12% yield.

The considerable improvement (3% \rightarrow 12%) in the yield of the desethylidene derivative (6) under the modified conditions underlines the role of H₂O (present in 30% HCI) and supports the mechanism we propose (vide supra).

The cleavage reaction was further tested using N₃-Boc-deformyl-Z-geissoschizine $(11)^9$ and N₃-Boc-deformyl-Egeissoschizine (12)¹⁰. In both cases, the same desethylidene derivative (13)¹¹ was obtained in ~15% yield (Scheme 3).

Scheme 3

Finally, in order to get still more evidence in support on the presented mechanism N_a -Boc-deformyl- E geissoschizine (12) and **deformyl-E-geissoschizine** (2) were transformed, **yia** &-oxides (14)" and (15)" to the corresponding iminium ions (16) and (10) . This time the final NaBH₄ reduction of the iminium ions (vide

supra) was replaced by cyano-trapping.¹⁴⁻¹⁸ The formation of C-21 cyano derivatives $(17)^{19}$ and $(18)^{20}$, respectively, as the sole desethylidene cyano-derivatives²¹ is in perfect agreement with the proposed. mechanism (Scheme 4).

The ¹³C-nmr data for compounds **(6), (13), (15), (17), and (18)** are given in Figure 1. Comparison of the measured chemical shifts, taking into account the conformational considerations relevant for indolo[2,3 alquinolizidines in general ^{9,12,17,22} provides clear evidence for the stereostructures depicted in the formulae.

Figure 1. ^{13}C - nmr data of compounds **(6), (13), (15), (17), and (18).**

The stereochemistry of compound (17) at C-21 (H-21 α or β) was determined by NOE experiments. As compound (17) is an **&-Boc** derivative, the conformation **b** can be considered to be strongly favoured in the conformational equilibrium (cf. ref. 10). No NOE was observed at H-21 when H-3 was irradiated nor vice versa. This suggested axial orientation for the cyano-group and, as a corollary, equatorial orientation for H-21 $(H-21\beta)$. The equatorial orientation of H-21 was further confirmed by its coupling constants: 5 Hz and 2.5 Hz.

The orientation of the cyano-group in compound (18) was mainly determined by comparison of the **13C** chemical shifts of C-20 in compounds (6) and (18) **[S** 32.0 and 35.9, respectively; both compounds existing predominantly in conformation **a** (cf. ref. 10)]. The β effect found (+3.9 ppm) for the cyano group is compatible with the axial position, 23 and, as a consequence, H-21 is equatorial (H-21 β). The equatorial orientation was further confirmed by the 'H coupling constants: 5 Hz and 2.5 Hz.

Although the cleavage has so far been applied only for defomyl-geissoschizine derivatives, it seems plausible to us that it represents a general method for cleavage of C-3 ethylidene (and analogous) side-chains of appropriate piperidme derivatives (19).

REFERENCES AND NOTES

- 1. M. Lounasmaa, R. Jokela, J. Miettinen, and M. Halonen, Hetemcvcles ,1992, 34, 1497.
- 2. P. Potier, Rev. Latinoamer. Ouim., 1978, 9, 47.
- 3. P. Potier, "Stereoselective Svnthesis of Natural Products", eds. W. Bartmann and E. Winterfeldt, Excerpta Medica, Amsterdam - Oxford, 1979, pp. 19-27.
- 4. M. Lounasmaa and A. Koskinen, Heterocycles, 1984, 22, 1591.
- 5. D. Grierson, "Oreanic Reactions", ed. L.A. Paquette, Vol. 39, John Wiley, New York, 1990, **pp.** 85-295.
- 6. DS. Grierson and H.-P. Husson, "Comorehensive Oreanic Svnthesis", eds. **B.M.** Trost and I. Fleming, Vol. 6, Pergamon Press, Oxford, 1991, pp. 909-924.
- 7. P. Potier, in "Indole and Biogenetically Related Alhaloids", eds. J.D. Phillipson and M.H. **Zenk,** Academic Press, London, 1980, pp. 157-169.
- 8. Compound (6). Y. 12%. Amorphous material. Ir: 3200 w **(NH),** 1730 br (C=O), 2740, 2830 w (Bohlmann bands). ¹H-Nmr (CDCl₃): 3.29 (1H, br d, J=11 Hz, H-3), 3.72 (3H, s, -OCH₃), 7.08-7.15 (ZH, m, H-10, H-ll), 7.30 (lH, d, J=8 Hz, H-9), 7.48 (IH, d, J=8 Hz, H-12), 7.77 (IH, br s, **NH).** 13 C-Nmr: See Figure 1. Ms: 298 (M⁺), 297 (100%), 283, 267, 225, 197, 170, 169, 156. HRms: Found: 298.1678. Calcd for $C_{18}H_{22}N_2O_2$: 298.1679.
- 9. R. Jokela, M. Halonen, and M. Lounasmaa, Heterocycles, 1993, 36, 1115.
- 10. R. Jokela, M. Halonen, and M. Lounasmaa, Tetrahedron, 1993, 49, 2567.
- 11. Compound (13). Y. 15%. Amorphous material. **11:** 1730 br (2 **x** C=O). 'H-Nmr (CDCl>): 1.68 [9H, s, $-C(CH_4)$, 3.68 (3H, s, $-OCH_3$), 4.19 (1H, br d, J=10 Hz, H-3), 7.22-7.28 (2H, m, H-10, H-11), 7.40 $(1H, d, J=8 Hz, H-9)$, 8.10 (1H, d, J = 8 Hz, H-12). ¹³C-Nmr: See Figure 1. Ms: 398 (M⁺), 367, 341 (100%) , 297, 269, 170, 169, 156. HRms: Found: 398.2220. Calcd for $C_{22}H_{30}N_2O_4$: 398.2206.
- 12. R. Jokela, M. Halonen, and M. Lounasmaa, unpublished results.
- 13. Compound (15). Y. 65%. Amorphous material. **11:** 3300 w (NH), 1735 s (C=O). 'H-Nmr (CDCl, + 15 drops CD₃OD): 1.69 (3H, d, J=7 Hz, =CHCH₃), 3.35 (1H, d, J=13 Hz, H-21 α), 3.62 (3H, s, -OCH₃), 4.31 (1H, d, J=13 Hz, H-21 β), 4.58 (1H, br, H-3), 5.66 (1H, q, J=7 Hz, =CHCH₁), 7.09-7.24 (2H, m, H-10, H-11), 7.38 (lH, d, J=8 Hz, H-9), 7.47 (lH, d, J=8 Hz, H-12), 10.22 (lH, br s, **NH).** 13C-Nmr: See Figure 1. Ms: 340 **(Mt),** 324, 323, 295, 267, 251, 170, 169, 156 (100%). HRms: Found: 340.1814. Calcd for C₂₀H₂₄N₂O₃: 340.1787.
- 14. E. M. Fry, J. Ore. Chem., 1964,29, 1647.
- 15. E. M. Fry and J. A. Beisler, **J.** Ore. Chem., 1970, 35, 2809.
- 16. M. Lounasmaa and R. Jokela, Tetrahedron, 1989, 45, 7449.
- 17. M. Lounasmaa, R. Jokela, B. Tirkkonen, and T. Tamminen, Tetrahedron, 1989, 45, 7615.
- 18. M. Lounasmaa and R. Jokela, Tetrahedron, 1990, 46, 615.
- 19. Compound (17). Y. 12%. Amorphous material. Ir: 2370 m (CN), 1730 br (2 **x** C=O). 'H-Nmr (CDCI,): 1.68 [9H, s, -C(CH₃)₃], 3.69 (3H, s, -OCH₃), 4.12 (1H, dd, J₁=5 Hz, J₂=2.5 Hz, H-21 β), 4.26 (1H, br d, J=ll Hz, H-3), 7.20-7.30 (2H, m, H-10, H-11), 7.40 (lH, d, J=8 Hz, H-9), 8.11 (lH, d, J=8 Hz, H-12). ¹³C-Nmr: See Figure 1. Ms: 423 (M⁺), 396, 366 (100%), 340, 323, 296, 241, 223, 221, 197, 169, 168, 156. HRms: Found: 423.2162. Calcd for $C_{24}H_{29}N_3O_4$: 423.2158.
- 20. Compound (18). Y. 15%. Amorphous material. Ir: 3280 w (NH), 2350 m (CN), 1720 s (C=O). 'H-Nmr $(CDCI₃)$: 3.73 (3H, s, -OCH₃), 4.10 (1H, dd, J₁=5 Hz, J₂=2.5 Hz H-21 β), 7.09-7.16 (2H, m, H-10, H-1 I), 7.32 (lH, d, J=8 Hz, H-9), 7.48 (lH, d, J=8 Hz, H-12), 7.83 (lH, br s, **NH).** 13C-Nmr: See Figure

1. Ms: 323 (M+), **296, 223 (100%), 221, 197, 170, 169, 156. HRms: Found: 323.1624. Calcd for** C₁₉H₂₁N₃O₂: 323.1634.

21. For the other cyano derivatives formed, where the ethylidene side-chain cleavage had not taken place, see refs. 9 and 12.

ż.

- **22. M. Lounasmaa and R. Jokla, Tetrahedron, 1989,45, 3975.**
- 23. R. Jokela, T. Tamminen, and M. Lounasmaa, **Heterocycles**, 1985, 23, 1707.

Received, 7th **June, 1993**