SUMMARY OF KATRITZKY RESEARCH GROUP SCIENTIFIC RESULTS (1954-1993)

Alan R. Katritzky

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-2046, USA

- I. Overview of Research Areas, p. 2.
- II. Five and Six-Membered Heteroaromatics: A. Aromaticity, p.4; B. Tautomerism, p.6; C. Electrophilic Substitution, p.8; D. Cycloadditions, p.11; E. Metallation at Ring Carbon, p.13; F. Ring Opening/Ring Interconversion, Pyrylium to Pyridium, p.15; G. N-Oxides, p.17; H. N-Imides and N-N Linked Heterocycles, p.20; I. Substituents Attached to Nitrogen of Six-Membered Rings, p.22; J. N-Substituents at Azoles, p.24; K. Substituent Induced Rearrangements, p.25; L. Mechanisms of Ring Closures, p.26.
- III. Five and Six-Membered Non-Aromatic Heterocycles: A. Five-Membered: Non-Aromatic Azoles, p.27; B. Six-Membered: Conformational Analysis, p.27.
- IV. The Role of Heterocycles in Organic Synthesis: A. Pyrylium and Pyridinium Cations, p.31; B. Benzotriazoles, p.35; C. Protective Methods and Lithiation, p.40.
- V. The Role of Heterocycles in Attempts to Understand Mechanisms: A. Nucleophilic Substitution at sp³-Carbon, p.41; B. Stabilization of Free Radicals, p.43; C. Infrared Measures of Intramolecular Interaction, p.44; D. Applications of NMR, p.47; E. Acidity Functions, p.49; F. Quantitative Structure Activity Relationships, p.49.
- VI. Applications of Heterocycles in Society: A. Dyestuffs, p.50; B. Polymers, p.50; C. Surfactants and Coatings, p.51; D. Aquathermolysis, p.52.
- VII. Further Research Areas: A. New Preparative Methods, p.53; B. Novel Reagents, p.53; C. Vilsmeyer and Pyridinium 2-Betaine Chemistry, p.54; D. Other Preparative Chemistry, p.54; E. Other Physical Organic Investigations, p.55.
- VIII. Edited Works, Reviews, Monographs, Texts, etc: A. Edited Works, p.56; B. Reviews and Contributions to Encyclopaedias, p.57; C. Texts and Monographs, p.57; D. Miscellaneous, p.57.
- IX. Service: A. University of East Anglia, p.58; B. Interactions with Industry, p.58.

I. Overview of Research Areas

The five- and six-membered ring heteroaromatics are, I firmly believe, the core and heart of heterocyclic chemistry, and the comprehension of their aromaticity and tautomeric relationships is vital to their proper understanding. Accordingly, major efforts have been made to measure experimentally, and to rationalize theoretically, the aromaticity and tautomerism of heterocycles.

I have divided my treatment of heteroarmatic reactivity into two main classes: (i) reactions of the rings and the mode in which such reactions are influenced by substituents, and (ii) the ways in which the nature of the rings influence the reactivity of substitutents. Of all the ring reactions, electrophilic substitutions are the most important and preparative and quantitative aspects of this have been intensively studied. Another major area of research has been the cycloadditions of six-membered heteroaromatic compounds, particularly betaines. Lithiation at ring carbon atoms of heteroaromatic compounds and the way in which such metallation can be activated, and other sensitive parts of the molecule protected, have formed a further area of research. Finally, nucleophilic attack at ring carbon, which leads to ring opening and ring interconversion has been studied, particularly with respect to pyrylium to pyridinium transformations.

My work on the chemical behavior of substituents attached to heterocyclic rings has been especially concerned with substituents attached to ring nitrogen. As regards substituents attached to pyridine-like nitrogen atoms, we have made extensive studies of N-oxides, of N-imides, of N-N linked heterocycles and of carbon linked substituents, particuarly those attached to pyridinium rings. More recently, the behavior of substituents attached to the nitrogen atoms of azoles, and above all to benzotriazole, have received intensive study. As regards C-linked substituents, these have been considered particularly where they can induce a rearrangement at the heterocyclic ring, particularly a ring opening/ring closure rearrangement. The mechanisms of ring closures to form 5- and 6-membered heterocycles, including those involving both C-C and C-N bond forming reactions, have been studied.

As regards 5- and 6-membered non-aromatic heterocycles, two major areas have received attention: the non-aromatic azoles and their relationship to their more familiar aromatic counterparts on the one hand, and on the other, 6-membered non-aromatic heterocycles, particularly as regards their conformational analysis.

The application of heterocycles in organic synthesis has been a major leit-motif. The chemistry of primary amines has been extended by many novel transformations available by the application of pyrylium and pyridinium cation chemistry. More recently, the chemistry of N-substituted benzotriazoles has uncovered a vast new armory of synthetic methods. Several novel protection methods have been developed.

Parallel to the discovery and documentation of facts, and to the development of methods, my work has been driven by the desire to understand and rationalize. Frequently work initiated in heterocyclic chemistry has enabled the better understanding of general problems of organic and physical organic chemistry. Thus, the concept of nucleophilic substitution at saturated carbon atoms has been illuminated by intensive investigations both in solution and in the gas phase. Similarly, understanding has been gained as to the factors underlying the stability of free radicals. Extensive work with infrared spectroscopy, and particularly infrared intensities, has shed light on the nature of intramolecular interactions in aliphatic and benzenoid as well as heterocyclic compounds. NMR methods have been fully utilized in a variety of applications. Work in strongly acid solutions required more detailed knowledge of acidity functions and particularly their variations with temperature than was previously available. Finally, the experience of statistical methods in considerations of heteroaromaticity encouraged further development, particularly into quantitative structure property relationships.

Finally, assistance has been provided in applications of heterocycles to society. Significant amounts of work have been conducted in the fields of dyestuffs, polymers and surfactants. A completely new field of "aquathermolysis" was entered in the investigation of the behavior of organic molecules in general and heterocycles in particular under the influence of water at temperatures ranging upwards from 250°.

Each of these areas is now considered in more detail, but before doing so I must acknowledge that none of this work could have been accomplished without the devoted and skilful work of a large number of research students, visiting students and postdoctoral associates whose names are mentioned in the reference list. Much work has been in collaboration with other groups, only some of the most important of these are specifically mentioned, but due acknowledgement is again made in the reference list. I would like to acknowledge here long and happy collaborations at East Anglia particularly with Drs A. John Boulton, Mike Cook, C. David Johnson and Richard A. Y. Jones.

II. Five- and Six-Membered Heteroaromatics

A. Heteroaromaticity

The classical methods of combustion or hydrogenation are notoriously difficult to apply to the accurate determination of the aromatic stabilization energies of many heterocycles.⁴²⁷ Although nmr coupling constants can give valuable indications,²⁸⁷ it is difficult to relate the results to the energy scale. In this situation several new methods capable of providing quantitative data were developed.^{394,400} Thus the basicity method depends on the measurement of the pKa values of an aromatic compound in which the aromaticity is lost on protonation and comparison with the basicity of suitable models which on protonation do not lose aromaticity: the method is illustrated for pyrrole in Scheme 1. The method has also been applied to various benzopyrroles, and to furan.⁵⁵⁵

Another method is to determine the heat of dehydration of a compound which when dehydrated gives an aromatic ring and to compare this heat of dehydration with that for a suitable model in which no aromaticity is obtained. This is illustrated for isoxazole in Scheme 2. In this method the heats of solution of the starting materials and products have to be measured and the heats of vaporization are estimated. The method has also been applied to pyrazole.⁶⁰⁹

Scheme 2. Resona	ance Energ	gy of isox	azole from Heat of	Scheme 3. Aromaticity and Pseudo-base Equilibria
Ph	H ₂ SO ₄		to H ₂ SO ₄	
₹ ^N	-22.7	4.0	-26.7	
H ₂ O	-	-	-8.2	
HO-CO-N	-15.5	-0.9	-14.6	Me PK _a =10.75 HO H

For the aromatic stabilization energy of a six-membered ring, psuedo base equilibria can be applied as shown for isoquinoline in Scheme 3. Again, the comparison is with a non-aromatic model. The method has also been applied to thiazole.⁵⁵⁶

Tautomeric equilibria can be used to relate the aromaticities of compounds like pyridones to the parent heterocycles,^{356,386} in this case pyridine, by the use of a thermodynamic cycle as shown in Scheme 4. This method has been applied to pyridones and to sulphur, nitrogen, and carbon analogues and to the corresponding bicyclic compounds.⁴¹⁶

Although this work related well to the overall picture of thermodynamic stability and led to significant extension of the conclusions from combustion analysis, the overall picture in the mid-80's was, nonetheless, one of confusion and complication. In particular, many other measures of aromaticity were incompatible with each other. In this situation a statistical approach was applied in which (initially for a set of sixteen familiar monocyclic aromatic nuclei) twelve different variables were collected from the literature and examined by principal component analysis. The results indicated¹⁰⁴¹ that at least two types of aromaticity were to be distinguished, of which we called one "classical aromaticity" and the other "magnetic aromaticity". Using these two measures, three quarters of the varience could be explained¹¹⁵¹ and the approach was successfully extended to bicyclics¹¹⁵² and to a much larger set of monoheterocyclic nuclei.¹¹⁵³ Semi-empirical methods have been compared for the calculation of molecular geometries and aromaticity indices.¹¹⁷⁷ As has been recently reviewed,¹¹⁹² the field of heterocyclic aromaticity can now be considered to be at least much better understood.

B. Heteroaromatic Tautomerism

The importance of heteroaromatic tautomerism can hardly be overestimated. It is vital to a proper understanding of the chemical and physical behavior of a large proportion of heterocycles. It lies at the heart of the genetic code and the understanding of spontaneous mutation which is responsible for evolution. Thirty years ago this importance was not at all realized; tautomeric structures were written haphazardly and there was little understanding or rationalization. Thus, the discovery of the genetic code was held up significantly because of the way in which uracil was generally depicted. The situation was considerably improved by our early reviews^{103-106,154,268,300} and then by our comprehensive monograph of the subject:⁵¹⁴ the importance of the basicity method to obtain quantitative estimates of tautomerism constants (Scheme 6) was emphasized. We have recently reviewed later developments.¹¹⁹³ Dangers in the misapplication of nmr to problems of tautomerism were indicated.^{84,268,401}

Tautomeric equilibria in pyridines have been extensively investigated and rationalized in terms of dependence on bond energies and aromaticities. We have investigated pyridones,⁴⁷ pyridinethiones,²⁶ acylamino-,³¹ sulfonamido-,⁷² benzyl-,⁴²⁰ phosphorylmethyl-,¹⁸⁶ ethoxycarbonylmethyl-,¹²⁸ sulfonylmethyl-,¹⁶⁰ and phenacyl-pyridines.¹⁶¹ Pyridones were shown to undergo O-protonation^{62,113} and the cation structures of thiopyridones and acylaminopyridines were confirmed.^{162,586} The effect of substituents on the pyridine tautomeric equilibria has been considered^{184,216} and rationalized in terms of the differential effects on the acidity of the two alternative protons that can be lost from the common cation.²⁵¹ The effect of intramolecular hydrogen bonding has been shown to be of considerable importance^{346,603}. Changes of state can have a drastic effect on the tautomeric equilibrium of a pyridine as we have shown by studying the change of solvents on UV spectra in solution^{271,548} and by studies of heats of solution.⁵⁵⁸ In the gas phase, mass spectra of mercapto-⁴⁸² and hydroxy-pyridine^{483,615,627} ion-cyclotron resonance^{529,586} and photoelectron spectra⁵⁸³ have elucidated these equilibria. We have applied AM1 to successfully correlate the tautomerism of pyridones and thiones¹⁰⁵⁷ and, in combination with reaction field theory, to rationalize solution equilibria.^{1061,1334}

8

Prototrophic tautomerism has been investigated for amino and hydroxy,¹³ and for mercapto- and aminoacyl-pyridine 1-oxides,⁵⁴ for 3-ethoxycarbonylquinolones,^{726,729} for bridged aza[10]annulenes,¹³³⁹ for acridine N-oxides,²⁰⁰ for hydroxy N-nitroimides,⁴²⁸ and for pyridine 1-benzimide cations.⁹²⁶ Among diazines we have elucidated the tautomeric structures of maleic hydrazide,¹³⁵ "malonyl- α -aminopyridine",⁸⁶ 2,6-dihydroxypyrimidine,¹⁸⁵ 4-cinnolone,³⁴⁷ and phthalazinone.⁵⁸¹ Particular attention has been given to the tautomerism of the nucleic acid bases in view of their biological importance. We have shown that it is possible to use basicity measurements to deduce the tautomeric equilibria of uracil⁸⁵ and of cytosine¹¹⁴ derivatives, and of thiouracil.¹⁰⁴⁸ Molecular orbital methods have been applied: the AM1 method gives excellent results for the gas phase¹⁰⁴⁹ (in agreement with photoelectron spectra¹¹³⁴) and with suitable corrections for solvent polarity¹⁰⁸⁵ very good estimates for solution phase equilibria¹¹⁹⁴ (this theoretical work was in collaboration with Professors Karelson and Zerner).

We have studied the tautomerism of a variety of azoles including aminoisoxazoles,⁸¹ 3-,¹⁴⁹ 4-,³⁶⁵ and 5-hydroxyisoxazoles,^{80,97} hydroxypyrazoles,^{147,148,174} hydroxytriazoles,²⁰³ aminotetrazoles,^{319,349,359} N-hydroxyimidazoles,^{429,348} hydroxyoxadiazoles¹⁷³ and Reissert salts.⁵⁷¹ Theoretical treatment including solvent effects gives results in agreement with experimental data.¹¹³³ Examples of the dominant tautomeric form for azoles are given in Scheme 8.

In our reviews of heteroaromatic tautomerism,^{393,514,1193} it has been emphasized that it is now relatively easy to predict the tautomeric structure of the vast majority of heterocycles and that this knowledge enables a far easier understanding of their chemical and physical behavior.

C. The Electrophilic Substitution of Heteroaromatics

The objectives of our work in electrophilic substitution can be summarized as the elucidation of reaction mechanisms and the determination of the quantitative effects of the replacement of one or more carbon atoms in benzene by heteroatoms, the correlation of rates with theory leading to a better understanding of preparative work, the optimization of reaction conditions, and the prediction of new reactions. We have attempted to reach these objectives using mainly hydrogen exchange and nitration reactions of a wide variety of heteroaromatic compounds.²⁰⁶

Hydrogen exchange can easily be followed by proton nmr and conveniently studied in aqueous media where acidity function behavior is well understood. Dependence of the rates on acidity²²³ (for an example see Scheme 9) indicate which species is undergoing reaction, whether it be cation, free base, covalent hydrate, etc. Kinetic salt effects on these rates were investigated.⁴⁸⁶

For the quantitative comparison of hydrogen exchange rates, we worked out a procedure⁴¹³ for extrapolating rates to an acidity of pH = 0 and a temperature of 100°C. We applied this to monosubstituted benzenes⁴¹⁵ and to rates that we measured⁴⁶² for methylpyridines,^{118,92,115} aminopyridines,³⁵¹ pyridones,^{155,225} and pyrones and thiopyrones.²³³ Hydrogen exchange has also been quantitatively determined in pyridazines,²⁵⁶ pyridine 1-oxides,^{131,224} and quinolones,^{225,245} and studies as an intramolecular reaction at the 3-position of pyridines.⁹⁵⁰ In pyrimidines, reaction can proceed via a covalent hydrate.^{262,264} Hydrogen exchange rates were compared with those of p-substituted anilines²⁵⁴ and with phenols.²⁵⁵

Among bicyclic compounds (cf Scheme 10), we have studied quinoline and isoquinoline and their N-oxides,³³⁴ and 2-²⁴⁵ and 4-quinolones,²²⁵ and compared the results with beta-naphthol;³³⁵ the immonium group in indolenium cation was shown to direct <u>para</u>.¹⁵⁰ In the azole series we investigated pyrazoles,⁴¹⁸ isoxazoles and isothiazoles,^{352,454} and azaindoles.⁴¹⁴ For comparison purposes we measured benzene and naphthalene.⁴⁵³

The bromination was studied of 2-aminopyridines;³⁰⁸ pyridones are chlorinated first on nitrogen; the N-chloro derivatives then rearrange to 3- and 5-chloropyridones⁸⁵¹ (see Scheme 11).

In our studies of nitration we have shown that pyridines are normally nitrated in the beta position as their conjugate acids; however if the basicity of the nitrogen is sufficiently reduced, nitration can occur in the beta-position also on the free base.²²⁰ Again, nitration can be directed to the alpha-position²²¹ and depending on the particular compound, can occur on the conjugate acid or the free base (see Scheme 12). Nitration has been studied for aminopyridines,³⁸⁸ and their 1-methyl cations,³⁸⁹ pyridones,^{261,368,390} 3-hydroxypyridines,³⁰⁷ benzoquinuclidine,^{326,361} pyrimidinones,³³³ thiazoles,⁵⁰³ isothiazoles,⁵⁰⁴ pyrazoles in the 3- and 5-positions,⁵⁰⁷ and triazolones.⁷⁴⁶

In the case of pyridine 1-oxides, nitration normally occurs in the gamma position on the free base, or in the beta position in the conjugate acid. In addition, we have found cases where nitration can occur in the alpha position of a pyridine 1-oxide both on the free base and on the conjugate acid.²²²

We have also studied the nitration in phenyl groups of phenyl- and benzyl-substituted pyridines and their 1-oxides,^{19,253} pyrazolones,⁴⁵¹ pyrazoles,⁴⁵² 3-hydroxypyrazoles,⁵⁰¹ isoxazoles,⁵⁰⁶ 4-pyrones,⁸⁷³ and 1-phenylpyridinium cations.⁸⁹⁴ The orientation of electrophilic substitution in phenyl substituted heterocycles has been rationalized theoretically.⁸⁹⁴

We developed⁵⁰² an extrapolation procedure to allow the comparison of nitration rates under standard conditions, i.e., 35% sulphuric acid and 25°C, and processed the data from approximately 130 compounds to show the quantitative effects of heteroatoms and substituents. Hammett treatments showed linear behavior within closely related classes of compounds.⁵⁰⁵ However, a comparison of standard rates for hydrogen exchange with those for nitration showed⁶⁰¹ no clear pattern indicating clearly that no unique order of the susceptability of individual ring positions towards electrophilic attack by different reagents exists.⁵¹³ Hence no single reactivity index can be used as such a measure.

Our work in electrophilic substitution was first reviewed in 1967,²⁰⁶ and an account in Italian appeared soon after.²⁶⁶ Quantitative effects of the electrophilic substitution of heterocycles were covered in 1977 for our own work,⁵⁶⁶ and then for the whole field in a comprehensive monograph.¹⁰⁸⁶ A recent article has presented a historical survey.¹²⁴⁹

D. Cycloadditions of Six-Membered Heteroaromatic Betaines

We discovered³⁵³ that 1-methylpyridinium-3-oxide reacts regiospecifically across the 2-, 6-positions with a variety of electron-deficient olefins to give, in most cases, mixtures of diastereo isomers. Kinetic rates were determined.^{550,596,857} Useful syntheses of tropones and tropolones³⁰² using these cycloadducts were developed³⁵⁴ (Scheme 17) and the route extended to benzotropones,³⁷⁹ to analogues with further substituents,⁵⁴³ and to benzoanulated azines.^{493,538} Interesting further transformations occur: thus, the 1-phenacyl substituent gave a double addition,⁴⁸⁵ the 1-oxidophthalazinium adducts rearrange to benzdiazocenes,⁵⁵⁷ a novel pyridine to quinoline ring annulation was achieved,^{599,668} and photooxidation investigated.⁵²⁷ Cycloadditions were achieved with 1, ω -bis-(3-oxidopyridium)alkanes⁵⁹⁵ and with 3-hydroxypyridine-2-thione derivatives.⁷¹¹

3-Hydroxypyridine itself undergoes this cycloaddition in its zwitterionic tautomeric form. The cycloadducts can again be transformed into tropolones⁶⁴⁴ and can also serve as a form of protection because the cycloaddition readily reverts. In this way, 4-bromo-3-hydroxypyridine could be prepared.⁵⁴⁴ 3-Hydroxypyridines and 4-hydroxyisoquinoline also react with two molecules of benzyne to yield the expected products of N-phenylation and cycloaddition.⁵³⁹ We also found syntheses of benzopyranopyridones.^{378,438}

1-Phenyl-3-oxidopyridinium readily undergoes cycloadditions with electron-deficient olefins,⁵⁴⁰ benzynes,³⁷⁷ and also with styrenes.⁴³⁷ The adducts can cyclize further.^{554,637} We found that 1-arylpyridine-3-oxides undergo photochemical interconversion with bicyclic isomers.⁵⁴⁵ Mass spectra of these compounds were recorded.^{553,604}

When an electron-withdrawing substituent was placed on the pyridine-nitrogen atom, then cycloadditions also succeeded with unactivated olefins. We used 2,4-dinitrophenyl^{405,441,484} and 5-nitro-2-pyridyl as the substituents. In the latter case reversible dimerization of the betaine now occurred.⁴³⁵ The unsymmetrical dimer had formed by reaction of the 2,6-positions of one ring and the 2, 4-positions of the other. This demonstrated the orbital symmetry control and led to several predictions (Scheme 19), which could then be achieved experimentally: (i) 4π components form adducts across the 2, 4-positions (we used 1,3-dienes),⁵⁴² (ii) 6π components give adducts thermally across the 2, 6-positions (we used fulvenes),⁵⁴² (iii) 2π components yield adducts thermally across the 2-position and oxygen atom, and across the 4-position and oxygen (we used chloroketenes),^{561,659,674} and (iv) 2π components give adducts photochemically across the 2, 4-positions (we used photochemical dimerization of 1-phenyl-⁴⁹² and other⁶⁴⁵ pyridine-3-oxides - some of the dimers cyclize to diazadiamantanes).⁵⁷² Some of the products fragment to furans.^{784,985}

A further increase in reactivity was obtained by using the 4,6-dimethyl-2-pyrimidinyl substituent.⁴⁹¹ In this case two dimers were formed, one under kinetic and one under thermodymic control.⁵⁴¹ It was possible to rationalize all the site and regio and part of the stereoselectivity, of these addition reactions using molecular orbital methods.⁶²⁹ The FMO energies could be directly correlated with rate constants. We have also studied as N-subsitutents in 3-oxidopyridiniums the following groups: 1,3,5-triazinyl,⁵⁷⁹ acylvinyl,^{655,671} nitrophenylvinyl,⁷²⁸ pyridyl,⁶⁶⁹ quinoxolinyl,⁶⁶⁹ and others.^{628,664} Several 3-iminopyridines were prepared and their structures studied.⁵⁸² Our work on the cycloadditions of six-membered betaines has been reviewed.^{517,652,653,1030,1221}

E. Metallation at Ring Carbon: Strategies for Protection, Activation, and Direction in Lithiation Chemistry The activation to proton loss of a CH group in the presence of a heterocyclic NH group has been a classical problem in heterocyclic chemistry which we have tackled by a variety of methods. Our first approach was to use CO_2 which allows⁸⁸² a one-pot¹⁰¹⁷ conversion of indoles into 2-substituted indoles (Scheme 21). The reaction involves a carbanic acid intermediate and at the end CO_2 is lost by gentle heating. This method was extended to pyrroles,¹⁰¹³ to tetrahydroquinoline¹⁰⁴³ and tetrahydroisoquinoline,⁹¹⁵ and to thiazolidine.⁹⁷⁴ The method also works well for phenothiazine¹⁰¹⁸ and phenoxazine.⁹³² In the case of 2-pyridone, the activation surprisingly occurs⁹⁶⁴ at the 4-position. When applied to 2-alkylindoles the CO_2 protection method enables substitution in the 2-alkyl group⁸⁹⁸ (Scheme 22).

As an extention we developed the aminal protecting group which has enabled the selective lithiation of carbazoles and benzocarbazoles,⁹⁹⁶ of imidazoles, benzimidazoles, and pyrazoles,¹⁰⁰¹ and of triazoles.¹¹⁶⁹ It also works well for indole.¹¹⁴⁷ This method is illustrated for imidazole in Scheme 23; the aminal formation requires a separate step but the remained of the reaction can be carried out in one pot although the substituted aminal can be isolated if desired.

The third strategy was the use of hemiaminal anion intermediates illustrated in Scheme 24 for benzimidazole.¹⁰⁵⁸ The method has been extended to pyrazole;¹⁰⁸¹ it goes in one pot, the CH₂OH group is lost by gentle heating with excess H₂O.

We have also studied the selective lithiation at ring CH groups for various other five- and six-membered heterocycles in the search for synthetically useful transformations. 2-Carbamoyl-⁷³⁰ and 2-benzothiazolylthio-pyridines⁹²⁸ are readily lithiated in the 3-position. 2-Substituted thiazoles,⁹⁷⁶ and 3,4-disubstituted thiazole-2-thiones,⁶⁹⁵ are lithiated in the 5-position. In alkylpyrazoles, lithiation was shown to occur at N- or C-alkyl group or at a ring carbon atom depending on the conditions⁸¹⁰ (Scheme 25). In all cases reactions of the lithiated derivatives with electrophiles gave convenient synthesis of the corresponding substituted heterocycles.

4-Bromoimidazole gives 1,4-dilithioimidazole which provides a general route to 4-substituted imidazoles¹⁰⁴⁶ (Scheme 26). 4- and 4,6-Di-substituted dibenzothiophene have been obtained via lithiation.¹¹⁴² In the course of the above work, the first examples of the imino-Wittig rearrangement were uncovered.⁷³⁵

Our work on protection and activation to lithiation by the CO_2 method was first reviewed in 1987.⁹⁶¹ A more general account of the lithiation of heterocycles was presented in 1988 under the title activation of α -sp³ centres toward electrophilic substitution in alcohols and amines.¹⁰¹⁴ In 1989, strategies for protection, activation and direction in lithiation chemistry were covered.¹⁰⁷⁵ Finally, a comprehensive review Generation and Reactions of sp²-Carbanionic Centres in the Vicinity of Heterocyclic Nitrogen Atoms appeared in 1993.¹²⁸¹

F. Ring Opening/Ring Interconversion: Pyrylium to Pyridinium

The pyrylium to pyridinium ring transformation represents the first step of our two stage conversion of amino group to other functionality (see later, Scheme 83), the second stage of which is described in Section IV A).

We have studied in detail the mechanism of the reaction of primary amines with pyrylium salts to give pyridinium cations, both by UV and nmr. Assignment⁶⁹⁷ of all the carbon signals in starting materials and intermediates⁷⁰⁶ showed (cf Scheme 27) that the primary and secondary alkylamines react with pyrylium salts <u>a</u> by fast ring opening to yield vinylogous amides <u>b</u> which in the former case slowly cyclize to pyridinium cations <u>c</u>. This ring closure requires acid catalysis and the kinetic investigation⁷²² has allowed correct preparative conditions to be determined⁶⁶² for the transformations of many types of amines by pyrylium salts into pyridiniums.⁷⁵⁰ The dependence of the rates of reaction on the structure of the amine and the pyrylium salt has been investigated in detail.⁸⁶⁷ Pyrylium cation conversion to pyridines by NH₃ has been studied in the gas phase by mass spectra.⁸⁵⁰ Pyrylium cations and methoxide give 2-methoxypyrans <u>d</u> without ring opening.⁶¹⁶

2- and 2,6-Di-ethoxycarbonylpyryliums have been reacted with amines to give, after hydrolysis and decarboxylation, pyridinium cations with unsubstituted 2-, or 2,6-positions,^{731,808} alternatively de-ethoxycarbonylation can be achieved by direct treatment with amines.⁷⁶⁵ The products can then undergo Kroehnke reactions with nitroso compounds (Scheme 28).⁸⁰⁷

Aminobenzoic acids are converted by pyrylium cations into N-arylpyridinium betaines,⁵⁹² and dimethyl p-aminoethylacetal gave products which readily cyclized (Scheme 29) to condensed quinolizinium systems.⁷⁰⁷ Sulfonium ylides of type ArCOCH⁻S⁺R₂ react with pyrylium cations to induce ring - contraction and produce furans.^{487,494} Pyryliums react readily with hydrazine derivatives to give pyridiniums which cyclize (Scheme 30) if they contain a reactive 2-substituent.⁷¹⁸ Chelidonic acid is converted by amines into the corresponding 4-pyridone-2,6-dicarboxylic acid.⁸⁴⁷

Thiopyrylium cations react with amines in part by hydrogen abstraction, and in part by conversion to pyridiniums.⁶⁷⁵ Ring interconversions of pyrone-imines with isomeric pyridones, and corresponding ring interconversions of their sulfur analogs, have been elucidated with the help of mass spectra.^{532,577}

Pyridinium betaines are converted by H_2O_2 into pyrroles^{622,676} (Scheme 31) and 2-aminopyridinium cations are ring opened by BuLi into ϖ -alkylaminopentadiene nitriles⁷⁶⁸ (Scheme 32).

Much of this work on ring interconversion has been reviewed together with the corresponding reactions of pyridinium cations with nucleophiles in accounts of amino group transformation to other functionality: for references see Section IVA.

G. N-Oxides

The fact that the N-oxide group in pyridine-N-oxide could act as both an electron source and an electron sink was an early fascination. This diverse polarizability was demonstrated by various physical methods including dipole moments¹² involving comparison with BCl₃ derivatives and BH₃ analogues,^{16,17} and by infrared and ultraviolet²⁷ spectroscopy. Infrared spectra were used to show that carbonyl groups²⁰ could gain electron density from the 4-position of the ring and methoxy groups could donate electron density to this position. The cyano group⁴⁵ also withdrew electron density and an infrared method was developed for comparing the electronic properties of two aryl groups by placing them at the ends of an acetylenic bond.⁵¹ Proton chemical shifts of 4-substituted pyridine 1-oxides⁷¹ offer confirmatory evidence that the electron density at various ring positions decreases Ph > 3Py > 3PyO > 2Py > cationic rings. The conclusions from this work are shown in Scheme 33.

In addition to the aspects of aromaticity, tautomerism and electrophilic substitution discussed (in Section II, 1-3), our investigations of pyridine oxides have encompassed: preparation^{9,15} (including the use of PhCN-H₂O₂ for aminopyridines⁹⁸³), displacement reactions of 2-chloro and 2-chloromethyl,⁶⁰⁵ diazotization of the 2-amino,¹¹ selective reduction of other groups,¹⁸ a color test,⁴¹ pyridoxine analogs,¹¹⁹ basicity⁴⁹ and UV spectra⁵⁷ of amino- and nitro-phenyl derivatives, and basicity,⁵⁰ dipole moments¹⁸⁸ and UV spectra⁶⁰ of 4-styryl and 4-phenylethynyl derivatives. Steric and electronic effects rationalized the orientation of the N-oxidation and N-methylation of the isomeric (N,N-dimethylamino)pyridines³⁶² (Scheme 34).

The radical ion pair mechanism of rearrangment of 2-methylpyridinium 1-oxide with Ac_2O to give 2-acetoxymethylpyridine suggested by Oae was confirmed by O-18 studies.^{252,269} 2-Ethoxycarbonylaminopyridine 1-oxides cyclize to bicycles^{8,14} (Scheme 35). Substituent ring interactions in pyrazines and their N-oxides were elucidated by dipole moments.³⁸³ Stabilized radicals from 1-hydroxybenzimidazole 3-oxides were studied.²⁴⁶

The reactions of N-alkoxypyridinium cations with nucleophiles has been intensely investigated and shown to proceed in diverse ways by attack on the ring, directly on the substituent or on an atom removed in the substituent.²⁹² An early idea of this ease of ring opening was found¹⁷⁵ in a UV investigation the reaction N-methoxypyridinium cation with base. Later, secondary amines were found to give ring open products which could be isolated²³⁵ (Scheme 37).

Sodium 4,6-diphenyl-1-oxido-2-pyridone converts primary halides into aldehydes by thermolysis of intermediate 1-alkoxyl-2-pyridones;^{569,642} corresponding quinazolinones are reagents for conversion of benzyl halides into benzaldehyde^{608,642} (Scherne 38) and for transformation of phenacyl halides into arylglyoxals.⁷⁰⁴ N-Aryloxy- and N-alkoxy-2-pyridones thermally rearrange the RO group to the 3-position.⁶²³ Other novel rearrangements of 1-substituted derivatives of 4,6-diphenyl-2-pyridone include loss of CH₂O from 1-(OCH₂CH₂CH₂CH₂CH=CH₂) groups and transposition of the remainder of the substituent to the 3-position, rearrangement of 1-(OCOR) groups to the 3 and 5 positions, and of 1-[OC(:NH)R] to 3-NHCOR derivatives.⁶⁸⁴

A quite different N-oxide is embodied by the case of benzofuroxan. We demonstrated⁶⁷ that the benzofuroxan equilibriation is slow at low temperatures and rapid at high temperatures on the nmr time scale (Scheme 39). We studied the influence of substituents,^{112,219} and of heteroatoms in the benzene ring,³¹⁴ on the rates and equilibrium constants for this rearrangement (further work on benzofuroxans is mentioned under rearrangements; see Section II-11). 5-Amino- and 5-hydroxybenzofuroxans have been studied.¹⁹³ Isomerism in simple furoxans has been clarified²⁸² (Scheme 40). Work on the acyl-N-oxides has included M.O. study of rearrangements of 1-acyloxybenzofrizoles,¹²⁵⁸ shown by cross over to be intermolecular¹¹⁹⁷ (Scheme 41).

N-Oxide chemistry was first reviewed in 1956.¹⁰ We later published a comprehensive monograph³²⁷ and recently another review.¹²⁴⁸

H. N-Imides and N-N Linked Heterocycles

Our interest in pyridine 1-oxides led naturally to a preoccupation with the corresponding N-imides. Thus, reactions of 1-amino-2,4,6-triphenylpyridinium salts have been studied,^{710,749} and systematic investigations on heterocyclic N-imides conducted.³²⁴ N-Diarylaminopyridinium cations undergo S_NR' type reactions with nucleophile (Scheme 42),⁸⁶³ and 1-amino-4,6-diphenyl-2-pyridone was shown to convert aldehydes into nitriles (Scheme 43).^{590,640}

Nitration of 1-aminopyridinium cation²⁹³ was shown to form stable pyridine N-nitroimide⁴⁷⁴ and such behavior is typical of hydrazidium salts⁴⁰⁸ (Scheme 44). N-Aminoazoles can be nitrated in the amino group by base catalysis⁴⁰⁹ (Scheme 45). We have compared the chemical and physical properties of pyridine 1-nitroimides with M.O. theoretical predictions⁵⁴⁷ and studied their nmr behavior.⁵⁰⁹ Hydroxy-pyridine and -quinoline 1-nitroimides were prepared.⁴²⁸

The chemistry of N-N linked biheterocycles has been investigated systematically.⁵¹¹ The reactions of a variety of N-amino heterocycles with bielectrophiles were exploited to prepare diverse N-N linked biheterocycles: neutral species, monocations and dications^{475,576} as illustrated in Scheme 46.

Pyridoniopyridinium cations prepared from 1-aminopyridinium cations and pyrones⁴⁸⁹ have considerable synthetic potential. They are converted by $POCl_3$ into 4-chloropyridiniopyridinium dications which can be transformed into 1-arylpyridinium salts, pyridine disulfones, cyanopyridines,⁵⁷⁴ and into 4-pyridyl(aryl)amines.⁷⁸⁷

Use of the related 1-(2,6-dimethyl-4-pyridone-1-yl)pyridinium has been developed into a general method for the preparation of 4-substituted pyridines^{614,617} (Scheme 47). The 2,6-methyl groups shield the 2 and 6 positions from nucleophilic attack as shown by the X-ray geometry.⁸⁶⁸ Nucleophiles thus introduced have included the cyano group,⁶³⁸ aryl and alkyl groups⁶⁸² from Grignard reagents, alkyl- and aryl-thio groups,⁷¹⁹ nitroalkyl groups,⁷¹³ acylalkyl groups,⁶⁸¹ alkylcarboxyalkyl,⁷²⁰ and phosphorus containing⁷¹⁵ groups (Scheme 48). However, while carbanions from carbon acids of pK_a 7-14 attack the 4-position, those from weaker acids cause ring opening at the 2-position.⁷²¹ This work was extended to benzpyridines⁷⁰⁸ and to the use of N-pyrryl groups.⁷⁰⁹ Aminopyridones react with pyrrones to give N,N-bispyridones.⁶⁰⁷

3-Carbamoylthiazole-2-thiones undergo a thermal benzidine-like rearrangement⁸⁶⁰ (Scheme 49). The so-called "dihydrobenzo-1,2,3,4-tetrazines" were shown to be 1-aminobenzotriazoles¹³⁷ (Scheme 50).

Our work on N-imides has been reviewed along with that on N-oxides.¹²⁴⁸

I. Substituents Attached to Nitrogen of Six-Membered Rings

The majority of our work on N-alkyl and N-aryl substituted pyridinium cations has been concerned with synthetic methods not necessarily dealing with heterocyclic chemistry, and is accordingly considered later in section IV.1. Considerable further work has dealt with mechanistic aspects of the scission of the N-C bond of an N-alkyl substituent at a pyridinium ring with regard to the detailed mechanism as is also considered later (section V.1). We consider here the metallation of N-substituents their photocyclization, and reactions of ylids and N-vinylpyridiniums, but initially mention that the first N-(t-alkyl)pyridinium cations were prepared by silver-assisted solvolysis.⁸³³

N-Alkyl-⁷⁰¹ and N-benzyl-groups⁶⁸⁵ in 4,6-diphenylpyridones are C-lithiated : the former spontaneously add to a second molecule of the substrate, while the latter give normal substitution products with electrophiles⁷⁵⁴ (Scheme 51). Similar work has been carried out with simple 1-methyl- and 1-benzyl-pyridones.⁸⁰² 1-Trimethylsilyl-2-pyridone provided stable CH_2 -lithiated intermediates⁹⁶⁹ (Scheme 51) as did 1-benzylpyrimidinones.⁷⁵⁵

1,2-Diarylpyridinium cations undergo photocyclization⁶²⁰ and corresponding photobicyclization are known^{677,852} (Scheme 52). The cyclized products easily form pseudo bases by water addition.⁸⁰⁶ The photochemistry of pyridinium salts has been reviewed.⁹³¹

1-Methylpyridinium ylide was formed from 1-carboxymethylpyridinium betaine, and trapped (Scheme 53).⁵⁷⁸ Pyridinium ylides cycloadd chalcones to give tetrahydroindolizines⁷¹⁶ and react with aldehydes⁸³⁶ and Michael acceptors.⁸⁰⁴ Cyano-stabilized ylides show analogous reactions.⁷⁷⁹ We have rearranged ylides into azepines⁹²⁷ and obtained tetrazole-stabilized ylides.⁵³⁷

N-Vinylpyridinium salts have been prepared via β -chloroethylamine and pyrylium cation reactions,⁵⁹⁷ and by other satisfactory preparative methods.^{745,828} N-Vinylpyridinium salts act as Michael acceptors⁸⁰³ and undergo a remarkable rearrangement with base (Scheme 54).^{829,849} The reduced 1-vinyl-1,2-dihydropyridines undergo a different general rearrangement and fragmentation to give pyridines and olefins cf Scheme 55.⁷⁶⁴ We prepared N-cyclohexenylpyridinium salts.⁹³⁴

N-(2-Propynyl)pyridinium cations rearrange to the N-allenyl isomers.^{827,874} The first heterocyclic ynammonium salts were made via isomerization (Scheme 56).⁸⁷⁵ In collaboration with Prof. Anders the chemistry of N-(1-haloalkyl)pyridinium salts have been exploited.¹⁰⁵⁹

J. N-Substituents in Azoles

Again, the majority of our work on N-substituted azoles is considered under the preparative aspects section IV.2. We consider here some aspects of the C-lithiation of N-substituents, and of their isomerization.

We found the 1-benzyl-3-substituted imidazolones could be C-lithiated in the CH_2 group, whereas the 1-ethyl analogs underwent reaction in a N-phenyl ring (cf Scheme 57).⁷⁴⁸ N-Phenylthiomethyl-carbazole,⁸⁷⁶ -pyrazole,¹⁰²⁸ and -benzimidazole⁹³⁶ are easily lithiated at the CH_2 group, and in each case the reactions can be exploited for the synthesis of N-substituted derivatives by subsequent removal of the S-phenyl group, as illustrated for carbazole in Scheme 58. In N-alkylpyrazoles, lithiation was shown to be favored kinetically at the N-substituent, but thermodynamically on the ring⁸¹¹ (see also document in section II-5).

Isomerizations of N-(α -aminoalkyl)-1,2,4-triazoles and -tetrazoles (Scheme 59) have been studied by nmr, and equilibrium constants and activation parameters measured.¹¹⁷⁰

Much of this literature work has been reviewed along with our other work on lithiation of heterocycles (for references see Section IIE).

K. Substituent Induced Rearrangements and Ring Chain Tautomerism

Our demonstration that benzofuroxans exist (see Scheme 29 of Section II-7) as rapidly equilibrating forms, led us to investigate aza-analogs. Most o-bisazobenzenes were confirmed to exist in the open chain form, but if a sufficiently electron withdrawing N:NX group is present, then spontaneous ring closure occurs, cf Scheme $60.^{134}$ α -Bisacylhydrazones oxidize to cyclic products (Scheme 61), the structures of which was elucidated.^{331,382}

Benzofuroxans with a suitable 4-substituent undergo¹²⁷ thermal rearrangements (Scheme 62) as demonstrated for nitro, 93,96 for arylazo and nitroso, 189 for aryl and iminoalkyl, 190 and for nitroso²⁶³ derivatives (Scheme 64).

The generality of this bicyclic rearrangment has been demonstrated³⁵⁵ by its applicability outside benzofuroxans. However the oxygen does not jump in furazanobenzofuroxan (Scheme 63).^{166,217}

Benzofuroxans are alkylated on nitrogen and the cations thus formed rearrange to 1-hydroxybenzoimidazole-3-oxides (Scheme 65).^{195,218}

Discovery of an isoxazole to triazole conversion⁷³ led us to deliniate²³² the general monocyclic rearrangement (Scheme 66) corresponding to the bicyclic rearrangement mentioned above and investigate its limitations⁵³⁶ (Scheme 67).

The bicyclic rearrangements have been reviewed. 613,1283

L. Mechanisms of Ring Closures

Using nmr techniques we have studied the intermediates formed in the ring closure reactions involved in the formation of some of the common heterocyclic rings. In this work, we have elucidated the mechanisms of the Knorr synthesis of pyrroles,⁹¹⁴ of the synthesis of pyrimidines⁸⁹⁰ from 1,3-dicarbonyl compounds with amidines and ureas (Scheme 68), of the Hantzsch pyridine synthesis,⁹¹⁷ and of the reactions of β -keto esters with hydroxylamine^{76,906} and with substituted hydrazines⁹⁴⁶ (Scheme 69). This work has been reviewed.⁹⁶⁵

III. Five- and Six-Membered Non-Aromatic Heterocycles

A. Five-Membered Non-Aromatic Azoles

Our studies of azolenine chemistry have been carried out in conjunction with the research group of Professor M. V. Sammes. 2H-Pyrrole-2,2-dicarboxylic esters readily rearrange to isomeric 1H-pyrroles,⁸⁶² and Paal-Knorr reactions of blocked 1,4-diketones also lead to rearrangement.^{834,984} 2H-Azirines and enamines give dihydropyrroles which are converted by acid into pyrrole-2-carboxylic acids.⁸³⁵ We have also studied reactions of 4H-pyrazole,⁸³⁷ and 2H-imidazoles⁷⁸⁸ quaternary salts. The chemistry of these classes of compounds have been reviewed in five chapters in *Advances in Heterocyclic Chemistry* comprising the 2H-and 3H-pyrroles,⁷⁴² the 3H-pyrazoles,⁷⁷⁵ the 4H-pyrazoles,⁷⁷⁶ the 2H-imidazoles⁸¹⁵ and the 4H-imidazoles.⁸¹⁶

B. Six-Membered Conformational Analysis

The conformations of six-membered saturated and partially saturated heterocyclic rings have been studied by a variety of physical and chemical methods, particularly with respect to the relative energies of the conformations and the energies of activation for passage between those conformations. Many of the ring systems mentioned were prepared for the first time by our group. The major topics studied have been (i) the conformation equilibrium of cyclic NH groups, (ii) the conformational behavior of N-alkyl groups leading to (iii) studies on the quaternization kinetics of N-alkyl compounds and the conformations and configurations of the resulting quaternary salts.

A major method for determining the orientation of NH group from the overtones for the N-H in the infrared spectrum was applied first to piperidines and morpholines,^{260,270} and later to piperazines, hexahydropyrimidines, tetrahydro-1,2- and 1,3-oxazine, and tetrahydro-1,3-thiazine.³⁷⁶ Conclusions regarding the equilibria from IR-band shapes of some of the systems studied are shown in Scheme 70 and an illustration of the contours given in Scheme 71.⁴¹⁰

N-Alkylpiperidines (cf Scheme 72) have been studied by dipole moments,^{140,213,309,310} by variable temperature nmr spectroscopy,⁵³¹ and by differential proton shifts.³⁴¹ Other compounds studied containing a single nitrogen include quinolizidines⁷⁵ (IR⁸⁸ and rates of quaternization¹⁶⁸ studies), tropanes,¹⁹¹ azadecalines,^{141,212} N-alkyl-^{194,257} and N-arylpiperidones,³²⁵ and N-alkylpiperidine N-oxides.³⁴⁴ Spiropiperidines have afforded information regarding the steric requirements of alternative groups in systems of the type shown in Scheme 73 ^{338,339,340,381,412,455}

The kinetics and orientation of quaternization of piperidines, 183,316,417,467,469 X-ray analysis of the corresponding quaternary salts, 274,375 the additivity of molecular interactions 258 and the orientation of lactone formation 215 (Scheme 74) have received attention.

Further studies have been carried out on the following systems with several nitrogen atoms hexahydropyridazines,^{358,380} hexahydropyrimidines,^{311,580,692} piperazines,^{214,563} hexahydro-1,3,5-triazines,^{312,419,646} and hexahydro-1,2,4-triazines,^{587,649} as well as hexahydrotetrazines (Scheme 76)^{283,432,456,459,528,648,690,1029} and decahydroquinazolines⁴⁸¹ perhydropyrazinopyrazines⁵⁴⁹. 2-oxa-9,10-diazodecaline⁵⁷⁰ 1,4,5,8-tetradecalines.⁷³⁶

Similar work has presented a rather complete picture of the conformational equilibria in six-membered rings containing nitrogen and oxygen or nitrogen and sulfur: 1,2-466,471 and 1,3-tetrahydroxazines,337,490,691 dihydrobenzoxazines,^{1298,1312} 1,2,4-,⁶⁵⁸ 1,2,5-^{594,650} and 1,3,4-oxadiazines^{663,551}, dihydro-1,3-oxazines 1,4,2-dioxazines,406,468 1.3.5-oxadiazine and 1,3.5-dioxazine.600 1,2,4,5-dioxadiazines,651 and 1,4,2,5-dioxadiazines.⁶⁰² perhydro-1,3-thiazines,^{526,692} perhydro-1,3,5-thiadiazines,367,385 and -1.3.4-thiodiazines,^{587,689} dihydro-1,3,5-dithiazines,³⁶⁰ and various bicycles.⁵⁴⁶ The conformational equilibria can be very different from the carbocyclic analogs. Thus, e.g., in 5-t-butyl-dihydro-1,3,5-dithiazine, the t-Bu is preferentially axial (Scheme 77).360

We have also investigated the conformations of six-membered rings not containing nitrogen. Among oxygen compounds we have studied tetrahydro-4-pyranones³⁵⁰ 1,4-dioxans and benzo-1,4-dioxans,^{170,315} 1,3-dioxans.³¹⁷ Among sulphur derivatives we have studied the quaternization of thiacyclohexanes,²⁵⁹ hydrogen exchange orientation in thiacyclohexone sulfoxides²⁷⁷ and sulfones³⁶⁴ 1,3-dithians,⁴³¹ and among phosphorus compounds phosphorinane-1,4-diones.⁴⁶¹

Dihydroheteroaromatics studied included 3,4-dihydroquinolines,³⁴² dihydrouracils,²⁹¹ cyclic thiophosphates,³¹³ together with some partially unsaturated benzenoid systems 1,2-dihydronaphthalenes,²⁸¹ tetrahydrobiphenanthryls,²³⁰ bicycloctadienes.⁴²²

N-SO₂CH₃ groups in piperazines are mainly equatorial.⁴⁷⁸ Conformations of N-OMe groups have been studied.⁵⁶⁸ It was shown that the nmr shift reagents can give false conclusions because of differential complexing.⁴³³ Related systems studied in the course of this work include acyclic hydrazines and 1,3,4-oxadiazolidines;⁴³⁶ N-inversion energies for the latter (Scheme 80) demonstrate the importance of strain in N-inversion of hydrazines.^{376,498} Photoelectron spectra helped to confirm many conformational assignments.⁶⁸⁸

Quantitative approaches to intramolecular interactions were proposed^{208,411} and applied to determine rotamer populations of axial cyclohexylamine.³⁴³ Two types of N-inversions must be considered³⁵⁷: those where one substituent passes another and those where it does not. N-Alkyl inversion barriers must be considered in terms of the two half barriers ax \checkmark ts and eq \checkmark ts to avoid ambiguity.⁶²⁶

Reviews of this work^{208,267,294,510} include NH equilibria in six-membered saturated rings,⁴⁷⁷ N-methyl inversion barriers in six-membered rings⁷⁰⁵ and the whole area of conformational equilibria in saturated six-membered rings.⁸¹⁷

IV. The Role of Heterocycles in Organic Synthesis

A. Pyrylium and Pyridinium Cations

In analogy with the well-known concept of dehydration, we have used pyrylium cations as "deammoniating" agents to remove the elements of ammonia from a compound. The deammoniation of primary alkyl primary amines to olefin^{712,766,777} requires a temperature of 150°C, but secondary alkyl primary amines are converted directly at 20°C into olefins at high yields (Scheme 82).⁷⁵⁷ Pyrylium salts can also be used to deammoniate with simultaneous rearrangement, hydrazides into isocyanates,^{560,636} and amidrazones into carbodimides.^{584,641,747}

Many transformations of primary amines through pyridinium salts into compounds in which the original amino group has been replaced by a nucleophile have been developed as viable synthetic methods (see Scheme 83). Thus, using the appropriate nucleophile (given in brackets) compounds of the following types have been prepared: phthalimides⁶⁷² (potassium phthalimide), sulfonimides⁶⁷² (sulfonimide sodium salts), tertiary amines⁶³⁰ (secondary amines), ammonium salts^{630,687} (tertiary amines), nitro compounds⁸²⁰ (nitrates), azides⁶⁷² (sodium azide), phosphonium salts (trialkylphosphines). Using oxygen nucleophiles, the following have been prepared: alcohols⁷¹⁷ (sodium o-hydroxymethylbenzoate) carboxylic esters^{573,632} (carboxylate salts), nitrates⁶⁹³ (sodium nitrate), ethers (sodium alkoxides) aldehydes⁶⁴³ (sodium N-hydroxypyridone). Using sulfur nucleophiles have made sulfones (sodium sulfinites), thioethers (sodium mercaptides), we dithiocarbonates 598,639 (sodium alkyldithiocarbonates), xanthates (sodium dithiocarbamates), thiocyanates^{598,639} (potassium thiocyanate), and other S-functionality,⁶⁶⁶ also selenocyanates (sodium selenocyanate). The following halides have been made using the appropriate halide ions: fluorides,^{686,619} chlorides, 634,657 bromides, 634,679 and iodides. 585,633

Intramolecular displacements have also succeeded,⁷³³ as for example, in the preparation of alcohols (Scheme 84).⁷¹⁷ All of these reactions proceed by $S_N 2$ displacements and the stereoelectronic restrictions have been explored in the intramolecular mode.⁷⁵⁸

Although the conditions required in our initial recipes utilizing triphenylpyridine as a leaving group often involved quite high temperatures, the introduction of other, especially the pentacyclic, leaving groups and the use of appropriate counter ions and phase transfer catalysts⁷¹⁷ have provided much milder recipes. This required the synthesis of a variety of sterically strained pyrylium cations such as <u>A</u> in Scheme 85^{680,714} pyryliums with polycarbocyclic,^{785,902} heteroaryl^{667,751}, and 4-ethoxycarbonyl substituents.⁷⁷⁸ We also synthesized colored and fluorescent pyryliums (eg B of Scheme 85) as markers for amino group⁸⁴⁸ and the dioxoniakerkulene derivative <u>C</u> (Scheme 85).⁷⁸² Methods were developed for pyrylium counterion interchange.⁶⁶⁵ We have also studied similar reactions of five-membered heteroaromatic oxonium cations (eg D).⁷⁵²

However, when the sodium derivative of a nitroalkane is used, C-alkylation takes place,⁶²⁵ by what has been shown to be a non-chain radicaloid reaction,^{698,913} in a useful preparative method.^{732,854} Radicaloid migration of N-substituents was found to occur on thermolysis of pyridinium anhydro bases.⁷⁶⁹ Other C-nucleophiles to which N-alkyl substituents can be transformed in preparatively good yield include malonate, acetoacetate, etc.⁷¹⁴ This technique enabled the preparation of hindered malonates under mild conditions (see Scheme 86).⁹⁶²

Various techniques have been elaborated for the replacement of NH_2 by H. Allyl- and benzyl-amines are deaminated by conversion into 2,4,6-triphenylpyridinium salts, reduction to the 1,2-dihydro derivatives and then thermolysis.^{559,635} For unactivated alkylamines, 2,3,5,6-tetraphenylpyridiniums are reduced to 1,4-dihydro derivatives, which thermolyze to RH in good yield (Scheme 87A).^{621,683} We found that aryl- and heteroaryl-amines can be deaminated using the tricyclic pyrylium fluoride: the mechanism of Scheme 87B is postulated.⁷³⁴ The pentacyclic pyrylium also allows smooth deamination.⁸³⁸

N-Arylpyridinium salts normally do not undergo nucleophilic displacement reactions, with the exception of the pyrolyses of aryl iodides⁶³³ and of aryl thiocyanates^{618,673} at temperatures above 160°C. This is because the stereoelectronic requirements are not favored. However, intramolecular reaction can be much easier. The first example we found was a photochemical rearrangement of an N-aryl group to 2-benzimidazolyl substituent.⁷⁷⁰ N-Phenyl groups can be transferred onto adjacent acyl substituents, allowing the transformation of anilines into phenols⁷⁸⁹ (Scheme 88); onto thiocarbonyl, transforming anilines into thiophenols;⁷⁹⁰ onto amide, producing diarylamines;⁷⁹¹ or onto oximino groups.⁸⁶⁴ The ease of transformation is greatly increased for N-heteroaryl groups⁷⁹² enabling a very smooth conversion of, for example, 2-aminopyridine into 2-pyridone (Scheme 89).⁷⁹³

Other intramolecular reactions with participation of the N-alkyl substituents of pyridinium salts have been developed. These include simple cyclizations [see Sections II-F and II-I], also the use of an ortho-nitrophenyl substituent to oxidize a benzyl-type N-substituent to carboxylic acid,⁷⁵³ and the conversion of amines into aldehydes using pyridinium-2-carbonyl azides.⁷⁵⁹

We have prepared suitably water soluble pyrylium salts⁸⁴⁰ and studied the kinetics of their reaction with amines⁸⁴³ and thus enabled the pyridinium ring formation^{841,842} to be effected in aqueous solution. Studies of the kinetics of displacement^{869,870} reactions of N-alkyl substituents from the water-soluble pyridinium salts allowed the development of the optimized conditions for the ϖ -amino group of lysine to be replaced by PhS and by PhCH₂S groups by two-step reactions in aqueous solutions at temperatures below 75°C, as could the terminal amino group in glycyl-glycine (Scheme 90).⁸⁴⁶ Proteins undergo⁸⁴⁴ reactions of this type, and kanomycins A and B react exclusively at the 6-amino group.⁸⁴⁵ In collaboration with Professor Dill, such water soluble pyridiniums have been used to block amino groups in complex natural products,^{895,982,1005} and in collaboration with Professor Stevens to modify membrane proteins.¹⁰²⁷ In high polarity media, α -amino acids react with pyrylium cations with spontaneous decarboxylation to the corresponding N-alkylpyridinium cations.⁷⁸⁶

The work described above has made it possible to carry out some transformations that were previously difficult or impossible such as the C-alkylation of nitroalkane anions and the easy preparation of benzyl fluorides. It enables naturally occurring amino compounds to be used, and for amino groups to be converted selectively in multifunctional compounds. It opens up the possibility of transformations of aryl amines without using nitrous acid. The methodology is particularly useful for systems when the amines are available and the corresponding halides or tosylates are unstable - e.g. furfuryl systems,⁶³¹ ϖ -substituted picolines,⁶⁵⁶ and substitutes for nitrogen mustards⁷⁶³ (see Scheme 91). Pyrylium mediated transformations of neopentylamine yield the unrearranged products in good yield.⁷⁸⁰ The conversion of primary amino groups into other functionality mediated by pyrylium cations has been reviewed.^{696,818}

B. Benzotriazole Chemistry

1. Condensation Products with Aldehydes and Amine Benzotriazole reacts with aliphatic and aromatic aldehydes to yield adducts⁹³⁸ which are converted by SOCl₂ into chloroalkylbenzotriazoles⁹⁴¹ and which condense with amines,⁹³⁹ advantageously in aqueous solution¹⁰⁷² (Scheme 92). Dynamic equilibria (shown by the cross-over method to be intermolecular⁹⁴⁴) exist between the 1-substituted and the 2-substituted derivatives for both the aldehyde adducts¹¹³⁵ and the amine products for which ΔG depends on stabilization of the cation intermediates^{1040,1150} and which have been calculated by M.O.;¹¹⁴⁸ ionization equilibria were measured conductometrically.¹³¹⁶

Such intermediates allow rapid synthesis of symmetrical secondary amines using $(BtCH_2)_2NH$ (Scheme 93),¹⁰⁴⁴ conversion of primary and secondary aliphatic amines into unsymmetrical tertiary amines,¹⁰⁴⁴ and primary aromatic amine into either secondary,^{940,1074,1156} or tertiary amines^{1093,1094} (Scheme 94). Thus, 2-aminopyridine is alkylated regiospecifically at the amino group.⁹⁴⁰ Some ketones also give adducts which are converted to tertiary amines.¹⁰⁷⁷

Primary amines with BtH and CH₂O form useful 1:1:1, 2:2:1, and 2:3:2 adducts.¹¹²⁷ We have successfully prepared secondary aliphatic amines,¹⁰⁹⁶ 1,2,6-trisubstituted piperidines,¹¹⁴⁵ vicinal secondary and tertiary diamines,¹¹⁴⁶ and N,N-disubstituted hydroxylamines,¹⁰⁴⁴ converted mono- into 1,1-disubstituted hydrazines,¹¹⁴⁷ and accessed polyfluoroalkyl secondary and tertiary amines,¹¹⁹⁸ α -aminoesters,¹⁰⁷⁸ α -aminoaldehydes,¹¹⁶⁶ β -aminoesters,^{1175,1079} imines,¹²²⁶ α -(arylidineamino)alkylamines,¹¹⁸¹ N,N-disubstituted thioureas and carbodiimides,¹¹⁹⁵ propargylamines,¹⁰⁷⁶ 2-substituted N-alkyl-iminodiacetic acids,¹¹⁶⁵ N-t-butylated amines.¹¹²⁸ The Bi^{III}-AI promoted alkylation of α -aminoacetonitriles provides a route to unsym-secondary amines.¹¹²⁸ The Bi^{III}-AI promoted alkylation of organometallics was studied.¹²⁷⁸

aldehydes and ketones.¹¹⁷¹ Aminoalkylbenzotriazoles aminoalkylate electron rich heterocycles¹²⁷⁶ (Scheme 95) and alcohols and thiols;¹³⁰⁹ they add to enamines and vinyl ethers in novel routes to 1,3-diamines and 1,3-aminoalcohols.¹²⁹⁰ Derived immonium cations undergo cycloadditions with olefins and dienes.¹²⁹⁵

In related eliminations, Bt-assisted synthesis of enamines and dienamines^{1173,1233} (Scheme 96) have been realized. Conversely BtH adds to enamines.¹²⁷⁵ Oxidation of BtCH(Bt)NHAr with H_2O_2 -SeO₂ allows t-butylation of aromatic amines.¹⁰⁴⁵

2. Amidoalkylation Bt-mediated alkylation of amides occurs specifically at the N-atom and in high yield, 987,1002 secondary amides also react. 1293 Thioamides can also be alkylated at the nitrogen atom using this technique 1002,1020 as can sulfonamides. 1032 Amidoalkylations are advantageously accomplished by Bt-methodology (cf Scheme 97), as applied to CH-acids, 1206 aromatic compounds, 1228 hemithioaminals, 1229 N-(α -alkoxyalkyl)amides, 1257 4H-1,3-oxazines 1262 and mono-acyl- α -aminoglycines. 1042 Intramolecular amidoalkylation leads to dihydro-3-isoquinolones. 1288 BtCH₂NHCHO enables convenient synthesis of α -substituted isocyanides, 1308 unsymmetrical formamidines, 1130 α -hydroxyaldehydes and oxazoles. 1083 Benzotriazole assisted synthesis of acylaminonitriles has led to novel peptide elongation 1131 and advantageous synthesis of monoacylaminals (Scheme 98) and related peptides. 1144 Hydroxamic acids yield N-(α -hydroxybenzyl)benzamides. 1163

3. Preparation of Ethers and Sulfides Applications of Bt to the synthesis of oxygen compounds include a general ether synthesis^{1060,1196,1224} (Scheme 99) and a route to enol ethers.¹²²⁵ Conversely, benzotriazole adds readily to vinyl ethers to give products which afford substituted ethers¹¹²⁹ (Scheme 100).

Novel routes to 1,3-diethers¹²⁵⁹ and to 1,3-amino ethers¹²⁶⁰ are provided by additions to enol ethers of $1-(\alpha-alkoxyalkyl)$ - and $1-(\alpha-aminoalkyl)$ -benzotriazoles, respectively (Scheme 101).

In sulfur chemistry, new synthons were reported for *t*-alkyl sulfides¹¹⁸⁹ (Scheme 102) and for vinyl sulfides.¹¹⁹⁰ The isomerization of N-(α -arylthioalkyl)benzotriazoles was studied¹¹⁹¹ and these compounds used for intermolecular thioalkylation,¹³⁰⁷ and for aromatic annulation.¹²⁸⁵

4. Benzotriazole Stabilized Carbanions Benzotriazolylmethyl-N-heterocycles undergo deprotonation and subsequent reaction with electrophiles.¹⁰⁵³ 1-(Carbazol-9-ylmethyl)benzotriazole (Scheme 103) is the basis of efficient formyl¹²⁰⁴ and acyl anion synthons,¹²¹⁰ including β -aminoacylanions.¹²⁹¹ ArCH(Bt)₂ allows synthesis of aryl ketones.⁹⁴² Bt₃CH is a useful synthon for ⁻CO₂H,¹¹⁶⁴ and BtCH(OMe)⁻ is a methylal anion equivalent.¹³²¹

N-Vinyl-, N-allyl- and N-propenyl-benzotriazoles and their lithium derivatives¹²⁶⁴ (Scheme 104) and 1-(trimethylsilylmethyl)benzotriazole¹¹¹⁹ have been studied. N-Propagylbenzotriazole opens up new routes to furans¹²⁹⁴ and pyrroles.¹³³² Deprotonation of Bt-mediated imine intermediates has led to novel synthesis of enaminones and dienaminones¹³¹⁰ (cf. also ¹³³⁷). Cyclopropanations of 1,1-diarylethylenes are achieved with α -Bt-carbanions.¹³⁰³ 2-Methylbenzotriazole anion opens the door to Bt-radical chemistry.¹³²⁹

5. Benzotriazolylalkylation Benzotriazole mediated transformations allow the elaboration of phenols¹¹⁸³ (Scheme 105), of phenol ethers,¹¹⁸⁴ and of anilines,¹³²⁰ and also the preparations of symmetrical and unsymmetrical 1,1-bis(heteroalkyl)alkanes.¹²⁹⁶ o-(α -Benzotriazolylalkyl)phenols shown to be effective precursors for o-quinone methides.¹²⁷³ 1-(Arylmethyl)benzotriazoles¹²⁵² allow a novel diarylacetylene synthesis.¹²⁵³ Methylenebisanilines¹¹⁶⁰ and other diarylmethanes and heterocyclic analogues¹²⁰⁵ are accessible using Bt-methodology as are N-substituted heteroaromatics.¹³¹¹

6. Applications of Sulfonylbenzotriazoles These form convenient sulforylation reagents.¹³²³ Reaction of sodium carboxylates with benzensulfonylbenzotriazole gives the corresponding N-acylbenzotriazoles¹²⁷⁷ (Scheme 106). 1,1'-Carbonyl- and 1,1'-sulfonyl-dibenzotriazole are versatile reagents for dehydration¹³⁰⁰ and the latter allows new alkylations of benzotriazole.¹²⁸⁴ 1-Alkoxycarbonylbenzotriazoles undergo decarboxylative rearrangement.¹³²⁶

7. Phosphorus Benzotriazole Chemistry The readily available benzotriazolylphosphinamine $BtCH_2N:PPh_3$ affords a general route to primary amines (Scheme 107),¹⁰⁸² and new routes to carbodiimides, imines, and isothiocyanates,¹¹⁶² and to 1,4,5-trisubstituted imidazoles.¹¹²¹ It has been converted into convenient 1,2- and 1,3-monoazabisylid equivalents,¹²⁹² and used to prepare functionalized N,S-acetals.¹³³¹ Other Bt-P compounds have been studied.¹²⁸²

8. *Miscellaneous* New N-alkylations of benzotriazole and of 1,2,4-triazole have been reported.^{1220,1330} The rates and mechanisms of the interconversion of 1- and 2-arylmethylbenzotriazoles have been studied.¹¹³⁹ Substitution reactions of 1-chloromethylbenzotriazole give benzotriazol-1-ylmethylammonium salts,^{937,1056} undergo other substitutions,¹²⁸⁰ and easily form Wittig reagents.¹⁰¹⁵ α -Hydroxyalkylbenzotriazoles yield the fluoro derivatives with DAST.¹³⁰² 1-Hydroxymethylbenzotriazole converts nitriles into N-(benzotriazolylmethyl)amides by the Ritter reaction.¹²⁶⁸ Amines and benzotriazole add to unsaturated aldehydes to give 1,3-bis(benzotriazolyl)propylamines,¹²⁷⁰ intermediates for the preparation of propenylidenimiun cations.¹²⁷¹

The addition of organolithium reagents to O-(1-benzotriazolylalkyl)oximes¹²⁵⁴ is the key step in a convenient non-oxidative conversion of aldehydes into acids. The phenylhydrazones of benzotriazolylmethyl ketones react with Grignards to replace the Bt group in a reaction equivalent to $R^- + R'COCH_2^+ - R'COCH_2^{-1} R^{1092}$ 1-Cyanobenzotriazole (Scheme 108) is a safe and convenient cyanide cation equivalent.¹²²² We have also studied the chemistry of Bt-derivatives of glyoxal.¹¹⁴¹

(BtCH₂)₂NOH is a 1,3-dipole synthon;¹¹³² other Bt-derived 1,3-dipoles yield pyrroles and dihydropyrroles (Scheme 109).¹²²⁷ Diazidobis(benzotriazolyl)methane provides a novel route to 2H-imidazoles.¹¹²⁵ A benzotetrazolotriazepine was prepared.¹²⁰³

Early work examined Graebe-Ulmann reactions of 1-phenylbenzotriazoles.^{1,4} Flash vacuum pyrolysis of N-vinylbenzotriazoles gives N-phenylketimines.⁹⁸⁶ Ring fragmentations of benzotriazolyl carbanions were explored.¹¹⁸² Exceptionally, scission of the azole ring can occur in organometallic reactions of N-substituted benzotriazoles.¹⁰⁹⁷ Novel Dimroth rearrangements in the benzotriazole system were elucidated by ¹H and ¹³C NMR.¹²⁵⁶ Benzotriazole containing lubricants show improved oxidation stability;¹¹⁷⁸ benzotriazole methodology was used in the synthesis of an amino acid based sweetener.¹²⁶⁶ Benzotriazoles with fused heterocyclic rings have made.¹²⁵⁵

9. Overviews Our work on benzotriazole was first briefly reviewed in 1988.⁹⁸¹ A comprehensive survey of progress up to 1991 is available,¹²³² and also a short survey of some of the more recent progress.¹²⁴¹

C. Protective Methods and Lithiation

The 4-pyridylethyl group has been introduced⁸⁵⁵ as a new group for the protection of active hydrogen compounds with release effected by successive quaternization and very mild base treatment. It has been used successfully for carboxylic acids,⁸⁵⁵ heterocyclic NH groups,⁹⁵¹ and sulfur functionality (Scheme 110).⁹⁰⁷ The 2,2-pyridylpropane-1,3-diol similarly provides^{966,1021} novel protection for carbonyl groups. 1,2,3-Triazoles and aziridines have been prepared using 2,4-pyridylethyl azide and then removing the 4-pyridylethyl group.⁹⁷⁸

The method of CO₂ protection and activation in lithiation chemistry (see Section IV-3) has proved very useful in the ortho-lithiation of N-alkylanilines,^{916,1026} and benzanilide.⁹⁶⁰ It has been extended to naphthylamines and enables the activation of the C-methyl group in o,N-dimethylaniline (Scheme 111).^{1208,1120} The same strategy allows substitution in the CH₂ group of benzyl alcohol (Scheme 112) and benzylamine.⁹⁶³ α -Lithio(trimethylsilylmethyl)lithium carbonate is a methanol dianione synthon.⁹⁶⁷

Vinylsulfinamides are available from trimethylsilylmethanesulfinamides via a Peterson reaction (Scheme 113).¹¹⁸⁸ β -Lithiation of carboxamides was studied.¹³¹⁸

V. The Role of Heterocycles in Attempts to Understand Mechanisms

A. Nucleophilic Substitution at sp³ Carbon

The kinetics and mechanisms of nucleophilic displacements of N-substituted pyridinium cations have been intensively studied in work that has varied the leaving group, the N-substituent, studied the effect of substitution in N-benzyl substituents^{725,762} and considered the effect of the nucleophile and of the solvent.^{761,798,839} It has been shown that increase in the strain of the starting compound and in particular constraining α -phenyl groups to near planarity^{700,800} results in marked steric acceleration. Solvolysis rates of N- α -methylallyl and N- α -phenylethyl derivatives have been studied.⁷⁹⁹ The influence of the nature of the N-substituent,^{743,796} electronic effects in the leaving group,⁷⁶⁰ kinetic effects of α -heteroaryl substituents,⁸⁰¹ steric effects in the leaving group,⁷²⁴ ionic strength⁷²³, pressure,⁸³¹ substrate concentration or aggregation,⁸⁷² traces of water,⁹⁴⁵ and nature of the gegenion⁹⁴⁵ have been examined. Crystallographic evidence has been obtained for steric crowding in the substrates and correlated with rate acceleration.⁹⁴⁷ Rates obtained spectrophotometrically have been checked conductometrically.⁷⁹⁵ Products from reactions with solvent in the absence of nucleophile have been identified.⁹⁰¹

The above work has been interpreted in terms of the diagram of Scheme 114 and the following conclusions have been drawn. t-Alkylpyridinium cations solvolize exclusively⁹⁰⁰ by an S_N1 type mechanism. The solvolysis of N-secondary alkylpyridinium cations^{797,881} can occur by both S_N2 and S_N1 , cf Scheme 115. In non-nucleophilic and weakly nucleophilic solvents, the S_N1 can dominate even in the presence of sufficiently small concentrations of good nucleophiles. However, in the presence of nucleophiles the bimolecular S_N2 mechanism competes effectively with the S_N1 mechanism. N-(Primary-alkyl)pyridinium cations can react⁸³² either by an S_N1 or and S_N2 mechanism depending on the circumstances.⁸⁶⁶ In particular, there is evidence for a clean mechanistic change-over with S_N1 to S_N2 with no merging of these mechanisms.⁶⁹⁹

Further, S_N1 type reactio. 3 can occur by two distinct mechanisms involving intimate ion molecule pairs or involving free carbonium ions. There is no indication of any merging of these mechanisms^{798,889} (cf Scheme 116). Reactions via intimate ion molecule pairs can be either second order when rate determining attack by nucleophile occurs, or first order when rate determining formation of an ion molecular pair, with no evidence of any merging between them. Bimolecular S_N2 reactions can proceed by rate determining attack of a nucleophile either on the substrate or ion molecule pair formed in a fast pre-equilibrium.⁸³¹ There is no evidence of merging of these mechanisms.⁸⁸⁹

Solvolysis of N-n-octyl acridinium cations in phenol gave the unrearranged phenyloctyl ethers and all the isomeric straight chain o- and p-octylphenols: the results point to primary carbonium ion intermediates.⁷⁶⁷ Studies of the transfer of alkyl groups from N-alkylpyridinium iodides to pyridines showed that alkyl iodides could be intermediates.⁶⁴⁷ The formation of σ , π , and charge-transfer complexes between pyridinium cations and various anions has been studied⁹⁰⁵ together with subsequent reactions with N-substituent transfer is not favored.⁹⁰³

In addition to the regular S_N1 and S_N2 mechanisms, we have shown that certain carbanions, especially nitroalkane anions, react with N-alkylpyridiniums to transfer the N-alkyl group by a non-chain radical mechanism⁷⁸¹ (see also section IV-1). The effect of pyridinium ring substitution on rates has been investigated.⁷⁸³ In collaboration with Professor Moreno-Manas, we showed that β -diketone anions procure a radical chain reaction.¹¹⁷² This work on radical mechanisms has been reviewed.⁹¹¹

Collisionally activated dissociation⁹⁷⁵ of N-alkylpyridinium to allyl cations and pyridines¹¹²³ and to olefins and pyridinium cations¹¹²⁴ in the gas phase (in collaboration with Professor Eyler) strongly supports these conclusions. In our gas phase work we also elucidated other fragmentations¹⁰⁷⁰ especially for 1-benzyloxypyridinium.¹¹³⁶ We also studied N-(diarylmethyl)pyridiniums,¹²¹² considered substituent effects on appearance potentials,¹²⁴³ and elucidated ion-molecule reactions. ¹³³⁸ p-Methylbenzylpyridiniums can dissociate to give the quinodimethane.¹²⁶⁵ The stability of ion-molecule complexes as possible reaction intermediates has been investigated¹²⁰⁷ in collaboration with Professor Anders. Our work in this area has been reviewed^{822,859,881,1003,1099} and the rate variations treated chemometrically.⁸⁷¹

B. Stabilization of Free Radicals

In 1972 we conceived⁴⁰⁴ the principle of merostabilization: when an electron donor and an electron acceptor group are simultaneously substituted at the same carbon atom, such a carbon atom centered radical RC·AD is stabilized more than the mean stabilization of the two radicals RC·A₂ and RC·D₂. This principle was demonstrated by the preparation of various stable indole, pyrazole⁴³⁹ (Scheme 118) and pyridinyl⁴⁴⁰ radicals. More recently we have carried out calculations to assess quantitatively the merostabilization energy of carbon-centered radicals⁸⁹⁹ and examined solvent effects¹¹²² on such stabilization energies.¹²⁰² Stable radicals from 1-hydroxybenzimidazole-3-oxide were investigated by esr.¹²⁰²

C. Infrared Measures of Intramolecular Interactions

Our studies in infrared spectroscopy commenced with a systematic investigation of classes of substituted heterocycles which identified series of bands characteristic of variously substituted rings: 2-,²⁴ 3-²⁵ and 4-²³ substituted pyridines, 2-,²² 3-⁴⁰ and 4-substituted²¹ pyridine 1-oxides, substituted pyridinium-boron trichloride complexes,³² pyridinium anhydrobases.¹⁹⁷ For comparison we studied mono-²⁸ and ortho-,³⁸ meta-,³⁴ and para-³³ di-substituted benzenes. We noticed that the marked variations found in the apparent extinction coefficients of the ring stretching bands could be rationalized by considering the effects of the substituent (s) on the charge distribution in the ring.²⁹ These qualitative results, which were extended to pyridones⁵⁶ and pyrones,⁷⁷ encouraged the more quantitative approach (see below). Five-membered rings examined on a semi-quantitative basis include 2-substituted furans,³⁰ 2-³⁷ and 3-¹¹⁷ substituted thiophenes, and isoxazoles.⁷⁸ Among polycyclics we examined monosubstituted quinolines,⁵⁵ substituted quinoxalines,¹¹⁶ and quinoxaline-2,³⁻⁴ and quinazolines.¹⁴⁵ This work has been reviewed.⁴³

Concurrently with these studies of the effects of the orientation and nature of substituents on characteristic ring vibrations, we investigated the influence of the various rings on characteristic substituent vibrations for the following groups: alkoxy,³⁵ acylamino,³⁶ amino and alkylamino,³⁹ carbamoyl,⁴⁸ halogens,⁵³ sulfonamido,⁵⁹ nitro.⁶³ The orientation of methoxy and nitro groups in bicyclic systems can be deduced from their spectra.¹⁴⁴ We introduced a partial deuteration technique which allows the unambigous proof of the presence of an NH₂ group in a molecule because the remaining NH-stretch in NHD occurs between the sym and asym modes of NH₂: this was applied to various heterocyclic amino compounds^{164,187} (Scheme 119) and to distinguish NN-and NN'-disubstituted ureas.²⁹⁰ Vibrational spectroscopy allowed the structure of hexanitrosobenzene to be settled as benzotrisfuroxan.²³⁸ Band assignments were made in halobenzenes,³⁷⁴ we identified the C=O in benzotropones,⁷⁰ and recorded regularities of the spectra of esters^{64,65} and ketones.⁷⁹

Scheme 120. Equations Relating 1600 cm Band Intensity to σ_R^{0} in Substituted Benzenes
Monosubstituted Benzenes : A = 17600 $(\sigma_R^{o})^2$ + 100
Monosubstituted Durene : A durene = 11300 $(\sigma_R^{o})^2$ - 30
meta-Disubstituted Benzenes : A meta = 18230 [$(\sigma_R^{0}1)^2 + (\sigma_R^{0}2)^2 + \sigma_R^{0}1\sigma_R^{0}2$] + 500
para-Disubstituted Benzenes : A para = 15000 [$\sigma_R^0 1 - \sigma_R^0 2 + \lambda$] + 170

Encouraged to make more quantitative measurements, we discovered¹⁵⁷ that the square root of the integrated intensity of the two ring stretching bands near 1600 cm⁻¹ in monosubstituted benzenes¹⁸⁰ is proportional to σ_R° (cf Scheme 120). A similar relationship holds for meta-disubstituted benzenes.²⁷⁵ For para-disubstituted benzenes²⁴⁸ the interaction between the substituents can be deduced⁴⁴² from the corresponding deviation. Similarly in durenes²⁴⁷ the angle of twist can be correlated with the decrease in intensity and the effective σ value. We have also considered the ring stretch near 1500 cm⁻¹.²⁸⁴ This work has been extended to substituted pyridines and pyridine N-oxides²⁷⁶ and also to furans and thiophenes,³⁹⁶ and selenophens.⁵⁰⁸

Considerable insight has also been obtained in the nature of interactions between substituents and the ethylene system. For monosubstituted ethylenes^{278,306} the equation $A_{eth} = 27,100 (\sigma_R^o)^2 + 80$ holds (cf Scherne 121); this is of similar form to that found ealier for monosubstituted benzenes. Infrared intensities for $v_{C=C}$ of 1,1-disubstituted ethylenes are proportional to the sum of the aquares of σ_R^o for the substituents.⁴⁷⁰ In *cis*- and *trans*-1,2-disubstituted ethylenes, substituent interactions are qualitatively similar and quantitatively *ca* 1.5 times those in the corresponding *para*-disubstituted benzenes (cf Scherne 122).⁴⁹⁹ Similar relationships hold for mono-⁴⁴⁸ and disubstituted⁴⁴⁹ acetylenes (Scherne 123).

This work has given much insight into substituent groups and σ_R° values for many common substituents have been listed. Hyperconjugation was investigated for alkyl groups.^{303,443} Ethynyl is a weak donor but highly polarizable.⁴⁴⁷ Conjugative possibilities and conformations have been studied for ether and thioalkoxy groups,³⁹⁷ and for acyl groups,³⁹⁸ in ethylenes and benzenes. Among S-substituents, resonance donation varies SMe > SH >> SBu^t;⁴⁴⁵ SO₂Me is an acceptor, but SOMe a resonance donor.⁴⁴⁶ We have shown that charged ammonio substituents are resonance electron donors while the charged diazo substituent is a strong acceptor.³⁹¹ Trivalent phosphorus substituents are generally weak in resonance interaction,^{479,480} other metalloids show more interaction.²⁷⁹ Isocyanate, isothiocyanate and azide are all moderate electron donors, but can each accept electrons from stronger donors,³⁰⁵ NSO is similar.⁴⁴⁴ SiMe₃ is a weak and CH₂SiMe₃ a strong donor³⁹² as is CH₂SnMe₃.⁴⁷³ Nitrile C=N stretches intensities relate precisely to substituent constants unlike frequencies.⁴²³

Scheme 124. Energy Terms for Rotational Barriers in Monosubstituted Benzenes									
$E = 33 [\sigma_R^{\circ} - (\sigma_R^{\circ})_{tw}] - S$					$H = 330_{R}$ $H_{tw} = 33 (O_{R})_{tw}$				
Group	Е	R	R _{tw}	S	Group	E	R	Rtw	S
СНО	7.9	7.9	0	0	NHMe	7.4	17.2	4,3	5.5
COMe	6.3	7.2	0	0.9	OMe	2.6	14.2	7.6	4
CO ₂ Me	5.3	5.3	0	0	ОН	3.4	13.9	8.5	2
NMe ₂	5.1	17.5	4.3	8.1	NO ₂	5.8	5.6	0	ca. 0
NH ₂	8.0	15.5	4.3	3.2	CH:CH ₂	0	ca. 1	ŏ	ca. 1

We have related the σ_R° scale to the energy scale by considering rotational barriers around substituent ring bonds, both in monosubstituted benzenes^{399,450} and ethylenes (Scheme 124) and in para-disubstituted benzenes⁴⁹⁷ and trans-disubstituted ethylenes.⁵⁰⁰ We found it possible to calculate the absolute value of the infrared bands by finding the change in dipole moment along the normal coordinate for the vibration for semi-empirical M.O. methods for benzenes,^{272,304,421} for ethylenes,⁴⁰⁷ for furan,⁴⁷² for isoxazoles.⁵⁵² Most of this infrared intensity work was done in collaboration with Professor R. D. Topson.

In reviews, we covered early work,²⁰⁹ considered the role of distortions of the π -electron system of benzenes,²⁹⁷ clarified the role of σ - and π -inductive effects³³², overviewed substituent effects in olefinic systems⁵⁹³ and summarized our whole approach of the application of infrared intensities to study intramolecular interactions in organic chemistry.^{565,771}

D. Applications of NMR Spectroscopy

Nmr has been used extensively throughout most of our work. The present section references only those papers not mentioned elsewhere in this overview. Reviews of our nmr work include.^{94,125,139} Much of the work reported below was carried out in collaboration with other groups - often they provided the samples and we the answers.

The interaction between pyridines and Lewis acids was investigated by ¹H-nmr.¹⁸¹ Hydroxymethyl derivative of five-membered heterocycles were studied¹⁰¹⁰ as a background to investigation of the reaction of pyrrole with formaldehyde.¹⁰⁰⁹ The mechanism of the Wallach rearrangement of chloral to dichloracetic acid was elucidated⁶⁹ and the identity established of the products from CH₂N₂ and azopyridine¹⁹² and of the alkaloids Wisathomnine¹⁹⁹ and Chakranine.⁵² Structural problems were solved in the benzofuran field,⁹¹ for pyrrolones⁹⁰, dihydropyridazines,¹²² disulfonyl derivatives of 2-aminopyridine¹⁴² and 2-aminothiazole.¹⁵⁹ We elucidated pyrimidine photchemistry (Scheme 126),^{111,129} degradation products from elastin,¹²⁰ structures of boroxazolidines,¹⁴⁶ bond fixation in biphenylene (Scheme 127),¹⁴³ cyclohexanethione dimers¹⁶⁵ pyrrolinium salts,¹⁵⁶ dibenzobicyclooctadenes,¹³² cyanopyrrolines,¹⁶³ t-butylated pyrylium cations,²³⁶ orientation of nitroimidazoles,²³¹ autoxidation of alkylpyrroles,²³⁷ tetrahydropyrimidines,²⁸⁹ mechanism of nitropyridine 128),³¹⁸ reduction (Scheme vinylogous pyrones,⁸⁹ silsequioxanes,¹⁶⁹ conformations of aryloxyalkylaminoquanidines,²³⁴ aminoguanidines,¹⁷¹ azabicylcooctenones.⁶⁵⁴

Conformer populations around the amide bonds have been deduced for N-acylindolines³²³ and for 1,3-diacylimidazolines, 1,3-diacylhexahydropyrimidines, 1,3,5-triacylperhydrotriazines and their lithiated derivatives (Scheme 129)⁹⁴⁸ and their interconversions studied,⁹⁴⁹ and compared with X-ray results.¹²³⁹ Hindered rotations were investigated in 2-dimethylaminopyridines.²⁸⁶

We have studied extensively the proton spectra of various series of heterocycles, particularly bicycles: quinazolines,¹⁸² quinoxalines,²²⁸ cinnolones,²²⁹ quinolones,⁷²⁷ chromones and thiachromones,²⁶⁵ benzoxazoles and benzothiazoles.³²¹ Chemical shifts for these bicycles were correlated with substituent effects.^{320,387} Pyrylium cations¹³⁶ have been studied and particularly rotational equilibria in crowded derivatives.⁸⁰⁵ Other systems investigated include pyrrole-2-carboxylic acids,⁹¹⁰ carbazoles,¹⁰¹¹ pyridinium cations,¹⁰⁶⁸ dibenzothiophene,¹¹⁵⁴ dinaphthothiophenes.¹¹⁵⁸

 Scheme 130. Substituent Constants for					Scheme 131. Studies on Phosphorus NMR			
	sigma-constant				EtO OEt	FIO O OF		
substituent	α	β						
≥N.	1.0	0.6	0.8		EtO N N OEt	EtO S OEt		
≥n-o-	[1.5] †	0.7	0.4		03	0 4		
≫n∔	2.2	1.9	1.3		two ³¹ P peaks	two ³¹ P peaks		

We proposed standards for nmr in aqueous solution,⁸⁷ compared C-13 shifts in C=O and C=S compounds,¹⁰¹² and studied the nmr spectra of vinyl substituted aromatics,¹²¹⁴ correlated substituent effects and clarified shifts and coupling constants²⁰¹ determined σ -constants for heterocycles (Scheme 130) ¹⁶⁷ and demonstrated the lack of aromaticity in benzo-1,4-dioxins.²⁰⁷ In P-31 nmr work, we pointed to the correlation of shifts with degree of ionization of phosphates,⁶¹ elucidated the structure of monothiophosphates (Scheme 131),⁴² studied cyclic phosphorus derivatives,⁵⁸ hypophosphates,²¹¹ selenophosphites,²⁸⁸ reinvestigated oxidation of dialkyl phosphoroselenothioates⁶⁹⁴ and reviewed the extent of P=31 nmr studies in 1962.⁸³

E. Acidity Functions

Our work with the electrophilic substitution of heterocycles led us to examine the behavior of various substrates in strong acid. We found that amides required¹²⁴ a new acidity function¹³⁰ which we named H_A. The protonation behavior of substituted pyridines and pyridine oxides has been elucidated¹⁷² as has the second protonation of certain diacid bases²²⁶ such as aminopyridines³⁸⁴ and their N-oxides.²²⁷ It was necessary to measure the temperature variation of the H_O (Scheme 132),²⁸⁰ the H_R (Scheme 133) ⁴⁸⁸ and of the H_A acidity functions (Scheme 134).⁴⁶⁰ We showed that acidities determined by the indicator overlap method were consistent with LFE correlations.³⁰¹

We have also looked at some methods for the definition of basicity in absolute methanol⁵¹² and compared methods for pK determinations in strongly basic systems.⁵¹⁹ The solution⁸⁶¹ and gas phase⁷⁹⁴ basicities have been determined for pyridines with bulky α -substituents. σ -Constants for the pyrryl group were measured from basicities of pyrrylpyridines.⁵²³

F. Quantitative Structure Activity Relationships

Our use of statistical methods in the clarification of heteroaromaticity led to a new QSAR program¹³²⁷ and applications in other areas.¹³²⁸ In collaboration with Professor G. Musumarra we predicted GC-response factors by PLS ¹⁰⁸⁴ and have used the classical and magnetic aromaticity as new descriptors^{1217,1315} for biological activity.^{1218,1219} The MOLGEO program assists in geometry optimization.¹²⁸⁶ In collaboration with Dr. T. C. Ho we have studied the effect of nitrogen compounds on cracking catalysts.¹²⁵⁰ Much further work is in hand and this area has been reviewed.¹¹⁸⁵

VI. Applications of Heterocycles in Society

A. Dyestuffs

We have elucidated the structure of oligomeric blue dyes⁸⁹⁷ from 9-alkylcarbazoles and studied various aza⁹⁰⁴ and other analogues^{991,1052} of indoxyl dyestuffs. In the field of cyanine dyes we have prepared a variety of cycopenta-1,4-dienes with various substituents,^{992,993,994} and cyanines from imidazoloquinoline.²⁹⁸ Naphthaquinone⁹⁹⁰ and naphthalene azo¹²⁸⁷ dyes have also been examined as well as conjugated systems derived from piperazine-2,5-dione,⁹⁸⁸ dyestuffs containing the dicyanomethylide group,¹⁰⁵⁵ reactive dyes from triazines,⁸⁹² novel chromophores based on maleimide,¹⁰⁵⁴ soluble versions of Eriochrome Red B,¹³²⁵ thiopyrylium sensitizers,⁷⁷² precursors of alizarin violet-N,¹³⁰⁴ and nondiffusing bis(thiazolinethione) photographic additives.⁹²⁰

B. Polymers

Most of our work in polymer chemistry has been mainly in two areas: (i) the preparation of heterocyclic polymers carried out in collaboration with our friends at the 3M Company, and (ii) C^{13} nmr elucidation of polymer structures.

We have studied a wide range of condensation methods for the preparation of heterocyclic polymers in which two difunctional compounds were reacted with each other to form links consisting of heterocyclic rings. In this way, we have made poly-2-imidazolin-5-ones (Scheme 137),^{909,980} poly-triazolinethiones,⁹⁵⁷ poly-thiazole-2-thiones,⁹⁵⁸ poly-benzimidazoles,¹⁰⁶² and pyridines. We have also studied various polymers based on azlactone chemistry,¹⁰⁶³ looked at the polymerization of pyrylium monomers,¹⁰⁰⁴ and prepared and studied fluorescent properties of poly(1-vinylpyrene)s.¹²⁹⁷ 1-4'-Iodobutyl-4-pyridone polymerizes by self quaternization.¹³⁸

With the help of C¹³ nmr, we studied the tacticity and monomer distribution analysis in ethylene-vinyl acetate co-polymers,⁴⁶³ butadiene-acrylonitrile co-polymers,⁴⁶⁴ styrene-methyl methacrylate co-polymers (Scheme 138)⁴⁶⁵ and styrene-butadiene co-polymers.^{495,496} We have applied^{366,434} contact shift reagents to the nmr of polymers.³⁷² This work has been reviewed.^{373,520} The importance of nmr to polymer structure analysis was emphasized.³⁹⁵ In miscellaneous polymer work, we showed that 3-vinylperylene is a powerful radical trap,¹⁰⁶⁵ developed a method to formylate pendent aryl groups,¹²¹³ and made perylene condensation polymers.¹²⁶¹

Scheme 139. Novel Surfactant for Hydrocarbon Subphases C₈H₁₇SO₂-N N-SO₂

C. Surfactants and Coatings

Our work in this area (much of it in collaboration with Dr. H. D. Durst) has been in the following main directions: (i) searching for surfactants with particular ability to hydrolyze fluorophosphinates and other active agents, (ii) the preparation of novel compounds for testing as sensor coatings for the detection of agents, and (iii) the preparation of novel fluorinated surfactants for hydrocarbon subphases (Scheme 139).¹⁰⁰⁷

In the first area, we have synthesized⁹⁹⁷ many substituted o-iodoso- and o-iodoxy-benzoic acids,⁹⁶⁸ studied their catalytic activity, and developed convenient large scale preparations.¹⁰⁷³ We have investigated such compounds by nmr and X-ray methods,¹¹³⁸ considered their acidity relationships¹¹³⁷ and studied intramolecular interactions by C-13 nmr.^{1066,1067} We have looked at varied analogues (cf Scheme 140) of 4-dimethylaminopyridine^{959,1008} and its N-oxide as neutral, anionic, cationic, and zwitterionic surfactants, and found unusual activity of such anionic compounds.¹⁰⁰⁶ Copper chloride cyanopyridine complexes were prepared¹⁰⁵⁰ as catalysts, and liquid crystal behavior of N-oxide surfactants studied.¹³¹⁴

New microsensor coatings studied have included pyridinium salts^{1034,1064} acridinium betaines,¹¹⁶⁷ arylphosphonic acids,¹¹⁶⁸ 2,4,6-trisubstituted-1,3,5-triazines,¹²³¹ 2-phenyl-1-(phenylthiomethyl)benzimidazoles,¹⁰³³ thiadiazoles,¹⁰³⁷ and nicotinamides.¹⁰³⁸ We have also tested these coatings for the detection of organic vapors.¹²³⁰ Our work on microsensor coatings has been reviewed.^{1039,1157}

D. Aquathermolysis

Our work on aquathermolysis has been carried out incollaboration with Dr. Michael Siskin of the Exxon Company. Aquathermolysis, the study of the behavior of organic compounds in water at temperatures of 250° or above, has been compared with thermolysis.¹¹⁰⁰ Among aliphatic compounds cross-linked cyclohexylphenyl derivatives¹¹⁰¹ and various ethers and esters¹¹⁰² have been studied. The behavior of various of C-linked substituents in the 2-,¹¹⁰⁵ the 3-,¹¹⁰³ and 4-position¹¹⁰⁶ of pyridine have been compared with the behavior of the same substituents attached to a benzene ring.¹¹⁰⁴ Mono-substituted benzenes with a 2-carbon atom side chain oxygenated either at the α ,¹¹⁰⁸ the β ,¹¹⁰⁷ or both the α and β positions,¹¹⁰⁹ have been surveyed. The aquathermolysis of phenols,^{1110,1111} phenol ethers,¹¹¹² and arylamines¹¹¹³ has been studied in the presence and absence of sodium bisulfite. We have also looked at nitriles and amides,¹¹¹⁴ sulfides and disulfides,¹¹¹⁵ mercaptans and sulfonic acids,¹¹¹⁶ sulfur compounds in the presence of bisulfite¹¹¹⁷ and as H₂S generators.¹¹⁸⁷ The aquathermolytic behavior has been studied of thiophenes and benzothiophenes, 1245 pyrroles and benzopyrroles,¹²⁴⁷ and pyridines and benzopyridines.¹²⁴⁶ We have examined the cleavage of diaryl ethers^{1319,1186} and find that alkali metal salts show dramatic effects on the behavior of aqueous solutions at high temperatures indicating in some cases considerable hydrolysis of such salts.¹²⁵¹ Aqueous formic acid ring-cleaves pyridines (Scheme 142).¹³²² The geochemical and technological implications of aquathermolysis have been summarized.¹²²³

VII. Further Research Areas

Novel preparative methods developed include the direct amination of nitrobenzenes by vicarious nucleophilic substitution,^{908,998} a general route to meta-substituted benzenes via the directed metallation of benzenesulfinamides,¹¹⁴³ a new method for the preparation of pyridones (Scheme 143) ⁶²⁴ in which the 2-cyanopyridinium cation is an intermediate,⁶⁷⁸ novel cyclizations to prepare 1,3-benzoxazapines,⁸³⁰ and a conversion of o-nitrosophenyl azides by thermolysis to benzofurazans (Scheme 144).²⁰² The oxidation of o-hydroxyphenyl(ethoxycarbonyl)hydrazones allows the conversion of the phenolic OH into an ethoxycarbonyl group (Scheme 145),¹¹⁷⁶ the mechanism of this and similar conversions was clarified by cross-over and o-labelling experiments.¹²⁰⁹ We have described the synthesis of benzothiazoles from azlactones¹⁰¹⁶ and a one-pot procedure for the conversion of alkyl halides into phosphonic acids.¹¹⁵⁵

B. Novel Reagents

The sequence of Scheme 146 converts alkyl halides into thiols in one-pot reactions under mild conditions.⁸⁸³ Lithiated 2-methylthiobenzothiazole is a synthon for mercaptomethylation⁹³⁵ and (2-benzothiazolylthio)(trimethylsilyl)methane was developed as a general reagent for α -mercaptoalkylation.⁹⁵³ 3-Methyl-2-methylthiobenzothiazole allowes the monomethylation of primary amines *via* the sequence of Scheme 147.⁹⁴³

The Radizewski conversion of RCN into $RCONH_2$ by H_2O_2 is facilitated by use of DMSO as solvent.¹⁰⁸⁰ 2,2'-Iminodibenzoyl chloride allows the reversible dearomatization of benzimidazoles;^{530,575} the product undergoes reversible oxidation as proved by X-rays.⁸⁵⁸

C. Vilsmeyer and Pyridinium 2-Betaine Chemistry

Cyclohexane-1,3-dione is converted⁸⁸⁴ by the Vilsmeyer reagent into a stable nonaromatic isomer of a benzenoid compound (Scheme 148); the product has been investigated by X-ray and theory.¹⁰¹⁹ We have studied further the reactions of cyclohexanones⁹⁵⁴ and their alkyl derivatives⁹⁵⁵ with Vilsmeyer reagents and elucidated structures of products⁹⁷⁷ and intermediates.¹⁰⁹¹ Vilsmeyer reactions of unactivated olefins have been achieved.¹²⁴²

Pyridinium-2-carboxylate betaines decarboxylate to ylides which can be captured by a variety of electrophiles⁸⁶⁵ or form cage-dimers (Scheme 149).⁸⁹³ Heating with S₈ allows a synthesis of pyridine-2-thiones⁸⁰⁹ and acid chlorides form 2-acylpyridinium salts.⁸⁶⁵ The same ylides are formed by the alkali-catalyzed clevage of 2-hydroxymethyl- and 2-formyl-pyridinium cations (Scheme 150).¹⁵³ The chemistry of bicyclic pyridinium anhydro bases has been explored.⁷⁵⁶

D. Other Preparative Chemistry

We have also prepared the following compounds and compound classes: α -aminosulfides,¹⁰³¹ 3-styrylpyridine,⁴⁴ hydrazides,² pyridine acid 1-hydroxy-7-phenoxynaphthalene,¹³¹⁷ dihydroimidazoylazoles,¹¹⁶¹ arylazo derivatives of pyridoxine,¹⁹⁶ substituted 1,4-benzodioxins;¹⁹⁸ pyrrylpyridines,⁵²⁴ benzimidazodiazocines⁵³⁵ N,S-acetals;⁹¹² branched long chain primary¹⁰⁷¹ and symmetrical sec-alkyl bromides;⁹²³ pyrazinylalkane nitriles;⁹³³ methazolamide analogs;⁹⁵⁶ phenylglycollic acids;¹³³⁵ thiadiazolopyrimididinesulfanamides;952 acids; 1305 alkylsalicylic alkylbenzocarbazoles;989 vanadyl phosphonates; 1098 thiones;1140,1201 1.3.4-thiadiazole bis-(N,N-dialkylamino)trisulfides;1159 nitroindoles;1215 tetradecyl-substituted benzacridines;¹¹⁹⁹ hindered tertiary amines;1216 aromatic 1,4-diazabicyclo octanes;¹²⁰⁰ 6-, 7-, and 8-membered sultones;¹²⁶⁷ 4,7-disubstituted phenanthrolines.¹²⁷⁴

Phthaloacylation of amino-heterocycles,⁵³⁴ the reactions of 4-dimethylaminopyridine with electrophiles,⁸²¹ of alkoxycarbonylisocyanates with nucleophiles,¹²⁹⁹ thiol-olefin co-oxidation,¹³⁴⁰ and the structure of oxidation products of semicarbazones and thiosemicarbazones⁸¹⁹ have been studied, and isonitrosoflavanones converted to imidazoles and pyrazoles.^{562,670} 3-s-Triazolylpyridines undergo cycloaddition to form tricycles.⁸⁹¹

E. Other. Physical Organic Investigations

The correct nomenclature of meso ionic compounds as heteroaromatic betaines was pointed out.³ Dipolar resonance structures were shown to be important in determining ground state charge distribution; particularly in polar media¹¹⁷⁴ whereas geometries are much less affected by solvation.⁸⁹⁶ Interactions in p-disubstituted benzenes was studied by UV spectra⁶⁸ and the influence of lone pair interactions on bond lengths discussed.¹¹²⁶ X-ray and MO investigation of α -naphthyloxymethylbenzazoles clarified geometries:¹⁰⁹⁵ X-ray structures were determined for dihydropyrroles.¹²⁴⁰

Already in 1971, a multiparameter approach to solvent effects was suggested.³³⁶ Conformations of 2-pyridylmethylene-indanones²⁴⁹ and -coumaranones²⁵⁰ were discussed in terms of the steric requirements of lone pairs. cis-trans-Equilibria about the single bonds in meta-chlorophenyl aldehydes, ethers, and ketones were studied by dipole-moments,³⁴⁵ and iminium isomerism by nmr.⁸⁷⁸ Conformational effects in the alkali metal reductions of diaryl sulfides and dibenzothiophenes were investigated by GC/MS of the products⁹⁹⁵ and evidence found for episulfide intermediates.¹⁰⁰⁰ Oxadiazole fluors¹⁰³⁵ and polysiloxane-base scintillators were examined.¹⁰³⁶ H-Bonding in dichloroacetic acid complexes was studied by Cl-35 and IR spectra.¹¹⁴⁹ Thermal O to N rearrangements of 4-alkoxypyridines were shown to be intermolecular by D-labelling.⁹⁷⁹ We studied detection of phthalic acid and related compounds by CI-ms,¹⁰⁶⁹ and measured gas-phase bonding of metal ions by crown ethers¹²⁷² and intramolecular charge-transfer properties of dicyanovinyl-substituted aromatics.¹²¹¹

In the area of aliphatic tautomerism we have studied substituent effects in acyl- and sulphonyl-⁴⁵⁸ (Scheme 151) and phenyl-amidines,⁵³³ and considered amine-imine tautomerism.⁵¹⁸

VIII. Edited Works, Reviews, Monographs, Texts, etc

A. Edited Works

Volume 1 of Advances in Heterocyclic Chemistry was published in 1963. Now, thirty years later, the series is well and truly established⁸⁸⁸ and Volume 58 will shortly appear. Physical Methods in Heterocyclic Chemistry also had Volumes 1^{100} and 2^{101} appear in 1963, Volume 3^{328} and 4^{329} in 1971, Volume 5^{369} in 1972 and Volume 6^{424} in 1974.

Comprehensive Heterocyclic Chemistry⁸⁵³ (Co-Editor-in-Chief Charles Rees) was published in eight volumes in 1984. The "Handbook of Heterocyclic Chemistry",⁸⁸⁰ authored in collaboration with the Editors of CHEC, formed a ninth volume. Work is in progress on the first supplement to CHEC, which will be entitled "Comprehensive Heterocyclic Chemistry, Second Edition" (Co-Editors-in-Chief Eric Scriven and Charles Rees), and will consist of ten volumes as an essentially new work, due to appear in 1996.

Organic Functional Group Transfermations (Co-Editors-in-Chief Otto Meth-Cohn and Charles Rees) is a new Comprehensive work due to appear in 8 volumes in 1995.

Scheme 152. Best Synthetic Methods
Free-Radical Chain Reactions in Organic Synthesis, (W. B. Motherwell, D. Crich)
Palladium Reagents in Organic Synthesis (R. F. Heck)
Organolithium Methods, (B. J. Wakefield)
Hydrogenation Methods, (P. N. Rylander)
Biotransformations in Preparative Organic Chemistry, (H. G. Davies and R. H. Green, D. R. Kelly, Cardiff, S. M. Roberts)
Photochemical Synthesis, (I. Ninomiya and T. Naito)
Borane Reagents, (A. Peiter and K. Smith, H. C. Brown)
Silicon Reagents in Organic Synthesis, (E. W. Colvin)
Methods for the Oxidation of Organic Compounds, (A. H. Haines)

The series "Best Synthetic Methods" (co-edited with Otto Meth-Cohn and Charles Rees) now comprises some fifteen volumes on various topics in organic chemistry (Scheme 152). A new venture "Organic Functional Group Transformations" (Co-Editors-in-Chief Otto Meth-Cohn and Charles Rees) is presently being written and should appear in seven volumes in 1995. The monograph series "Topics in Applied Chemistry" (co-edited with Gabi Sabongi) now comprises six volumes.

B. Reviews and Contributions to Encyclopaedias

Reviews dealing mainly with our own work have already been mentioned in the appropriate research sections and will not be referred to again. The present section lists reviews of wider scope: a general survey of heterocyclic chemistry;²⁹⁹ the structures of protonated amides⁶⁶; heterocyclic N-carboxylic acids;⁹²⁹ and N-dithiocarboxylic acids;⁹³⁰ applications of nmr to organic chemistry in the early 60's;^{107,108} the infrared spectra of heterocycles;^{82,121,363} linear free energy relationships and optical spectroscopy.³⁷¹ Contributions on heterocyclic chemistry were written for Encyclopaedia Brittanica,^{430,1333} Encyclopedia della Chimica,⁵²⁵ and Encyclopedia of Physical Science and Technology.^{925,1244}

C. Texts and Monographs

The textbook on heterocyclic chemistry entitled "Heterocyclic Chemistry" and co-authored with Jeanne Lagowski was published in 1960.⁴⁶ Translations of this book appeared in the dates indicated in the following languages French,²⁴⁰ German,²⁴² Spanish,²⁴¹ Italian,²⁴³ Polish,¹⁷⁶ Russian,⁹⁸ Japanese.²³⁹ A revised version, also co-authored with Jeanne Lagowski, was published in 1967 under the title "Principles of Heterocyclic Chemistry".²⁰⁴ The "Handbook of Heterocyclic Chemistry"⁸⁸⁰ can be considered a sequel to these two texts. Philosophy on the teaching of heterocyclic chemistry has been formulated.^{158,285} Monographs on N-oxide chemistry,³²⁷ electrophilic substitution¹⁰⁸⁶ and tautomerism⁵¹⁴ have already been mentioned.

Chapters written for Comprehensive Heterocyclic Chemistry include: Introduction,⁸²³ Review Literature of Heterocycles,⁸²⁴ and "The Structure⁸²⁵ and Reactivity⁸²⁶ of Five-Membered Rings with Two or More Heteroatoms". Two further chapters were written on the literature of heterocycles.^{179,612}

D. Miscellaneous Publications

The introduction⁸⁷⁷ for the "Chemistry Today" Encyclopedia was provided. Available methods for ascertaining the availability of chemical starting materials were reviewed,⁹²⁴ and an illustration of the refereeing system provided.¹¹⁸⁰ The work of the Chemical Education and Training Board was summarized⁴⁰³ and the university systems in UK and USA compared.⁸⁷⁹

The scope, timeliness and quality of chemical abstracts from VINITI and CAS have been compared.¹²⁸⁹

IX. Service

A light-hearted overview of my life under the title: "The Ups and Downs of Fifty Years of Heterocyclic Chemistry" will appear in J. Het. Chem.¹³³⁶

A. University of East Anglia

As Foundation Professor (1963-1980) and as first Dean of the School of Chemical Sciences (1963-1970 and again 1976-1980) I was responsible for the organization and development of chemistry at the new University of East Anglia. In particular the appointment of the academic and technical staff, the formulation of the curriculum content, the design of the buildings, the marshalling of the resources and the leadership of the new school were my responsibility. Our plans, as outlined in an early paper¹⁰⁹ were largely achieved. Original ideas, novel at the time, were applied to teaching.^{123,133} After four years at UF, I looked back to the university system in the UK in an article in *Nature*.⁸⁷⁹

B. Interaction with Industry

A major emphasis was placed at the University of East Anglia on interactions with industry at the start³²² and these were later reemphasized.^{521,522,591,606} A research review emphasizes the academic-industrial connection.¹²⁶³

In 1970, a series of annual short courses in organic chemistry were started for industrial chemists (and it is a source of great satisfaction that these are still running). In 1976, annual long courses were commenced at East Anglia to offer a further in-depth training to industrial chemists. These were later turned into industrially based Masters and PhD degrees under which system the research could be carried out at the industrial location under joint supervision and the course work at the university. At the University of Florida, several short courses have been held on campus and on the road with the participation of colleagues. Industrial academic contacts in UK and USA have been compared.⁷⁴⁴

Over the years consultancy has been provided to organizations and companies including the following: Bristol-Meyers-Squibb, Exxon, International Synthetic Rubber Company, Merck, Minnesota Mining and Manufacturing, Monsanto Ag Company, Monsanto Rubber Company, NutraSweet, Pharmatec, Pharmos, Pfizer, Reilly Industries.

Acknowledgment. I thank Hilde Delaruelle, Jeanie MacKee, Peter Rachwal, Linghong Xie and Xiaohong Zhao for devoted help in the preparation of this manuscript and the reference list.