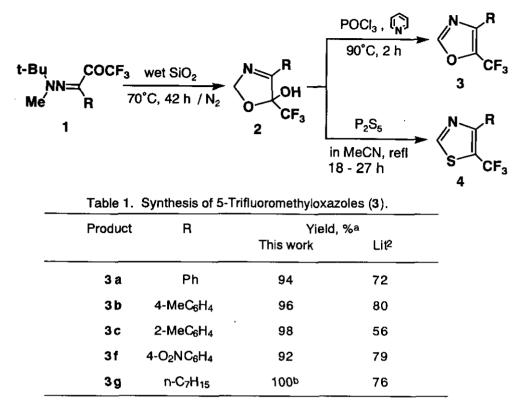
CONVENIENT SYNTHETIC METHODS FOR 5-TRIFLUOROMETHYL-OXAZOLES AND 5-TRIFLUOROMETHYLTHIAZOLES


Yasuhiro Kamitori, Masaru Hojo, Ryoichi Masuda,* Masaaki Wada, and Toshiya Takahashi

Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe 657, Japan

<u>Abstract</u> - 5-(Trifluoromethyl)oxazoles (3) and 5-(trifluoromethyl)thiazoles (4) were conveniently as well as effectively synthesized from 3-(N-*tert*-butyl-N-methylhydrazono)-1,1,1-trifluoroalkan-2-ones (1) *via* 5-(trifluoromethyl)-3-oxazoline (2). One-pot conversion of 1 to 4 also proceeded successfully.

Fluorine-containing heterocycles are very attractive compounds because of their potentially high biological activities.¹ In previous paper,² we reported the synthesis of 5-(trifluoromethyl)-3- oxazolines (2) and 5-(trifluoromethyl)oxazoles (3), in which 2 was synthesized from 3-N-*tert*-butyl-N-methylhydrazono)-1,1,1-trifluoroalkan-2-ones (1) by a thermal treatment in the presence of silica gel and 3 was obtainable by two steps conversion including chlorination of 2 and subsequent dehydrochlorination. As for the conversion of 2 to 3, we found recently more efficient and facile method. In addition, we also found very convenient method for conversion of 2 to 5-(trifluoromethyl)thiazoles (4). Now, we wish to communicate about these two effective methods accessing 3 and 4.

According to usual method³ 1 was obtained from aldehyde N-*tert*-butyl-N-methylhydrazones and trifluoroacetic anhydride (TFAA). By heating 1 adsorbed on wet silica gel gave the corresponding 5-(trifluoromethyl)-3-oxazolines (2) in moderate to good yields.² Thus obtained 2 b was reacted with 2.4 molar equiv. of POCl₃ in the presence of 8.8 molar equiv. of pyridine for 2 h at 90°C affording the corresponding 5-(trifluoromethyl)oxazole (3 b) in 96% yield. Quite similarly 2 a-g

a) Pure isolated yield. b) In this case, longer reaction time, 4 h was needed.

could be dehydrated to the corresponding **3 a-g**, in excellent to quantitative yields. In each cases the yields of **3** were superior to those in the case of the previously reported two steps method.² These are summarized in Table 1.

Conversion of 2 to 5-(trifluoromethyl)thiazoles (4) was examined with the use of several sulfurating reagents under a variety of conditions. Among them, use of P_2S_5 as a sulfurating reagent in acetonitrile under reflux conditions led to the best result. For instance 2 b (1 mmol) and P_2S_5 (1 mmol) was dissolved in acetonitrile (10 ml) under N₂, and the mixture was refluxed for 16 h. The reaction mixture was diluted with CH_2Cl_2 (100 ml), then washed thoroughly with aq. Na₂CO₃, and dried over Na₂SO₄. The solvent was removed and the residue was chromatographed on silica gel, eluting with benzene, to give 4-(*p*-tolyl)-5-(trifluoromethyl)thiazole (4 b) in 55% yield. Also one-pot conversion of hydrazone (1) to thiazole (4) was examined. To silica gel⁴ (3 g) was added water (0.12 ml) and the whole was mixed well. Thus obtained wet silica gel and a solution of

Product	R	Time ^a h	Yield ^b %	Oven. temp.∘ °C / torr	¹H Nmr (CCl₄/TMS)₫
4 a	Ph	21	30	90 / 6	7.17-7.73 (m, 5H _{arom}), 8.68 (s, 1H, CH)
4 b	4-MeC ₆ H₄	18	36	75 / 5	2.40 (s, 3H, CH ₃), 7.18, 7.60 (d, <i>J</i> = 8 Hz, 4H _{arom}), 8.77 (s, 1H, CH)
4 d	4-MeOC ₆ H₄	27	18	100 / 4	3.78 (s, 3H, OCH₃), 6.80, 7.54 (d, <i>J</i> = 9 Hz, 4H _{arom}), 8.67(s, 1H, CH)
4 e	4-CIC ₆ H₄	27	25	100 / 6	7.27, 7.54 (d, <i>J</i> = 9 Hz, 4H _{arom}), 8.71 (s, 1H, CH)
4f	4-O₂NC ₆ H₄	21		119.5-120.5° (cyclohexane)	7.74, 8.19 (d, <i>J</i> = 9Hz, 4H _{arom}), 8.82 (s, 1H, CH) ^f
4 h	ـلــــــــــــــــــــــــــــــــــــ	18	18	95 / 6	0.87-2.85 (d, J= 6Hz, s, s and m, 16H, CH₃, CH₂, CH), 4.95 (t, J= 6 Hz, 1H, =CH-), 8.53 (s, 1H, CH)

Table 2. Synthesis of 5-(Trifluoromethyl)thiazoles by One-pot Method.

a) Reaction time of second step from 2 to 4. b) Yield refer to pure isolated compounds. c) Oven temperature of Kugelrohr distillation. d) Recorded at 60 MHz on a JEOL PMX60SI. e) mp uncollected, measured with a Mitamura Riken model 7-12 apparatus. f) As a solvent CDCb was used.

1 (1 mmol) in CH_2CI_2 (1 ml) were combined and the whole was stirred thoroughly, and was evaporated to dryness. The powder was introduced into a flask flashed with nitrogen and heated for 42 h⁵ at 70°C. The reaction mixture was allowed to cool to room temperature, then P_2S_5 (3 mmol) and acetonitrile (10 ml) was added, and the mixture was stirred for 18 - 27 h under reflux conditions. Silica gel was filtered off and washed thoroughly with CH_2CI_2 . Washings and filtrate were combined, and the mixture was washed with aq. Na_2CO_3 and water. The organic layer was dried over Na_2SO_4 and the solvent was removed. The residual material was fractionated by silica gel column, eluting with benzene, to afford pure 4. In all cases in Table 2, one-pot conversion of 1 to 4 proceeded successfully. The yield (36%) of 4 b, for example is apparently higher than that (27.5%) as the result of two-pot method via isolation of 2 b.

The structure of 4 was confirmed mainly by ¹H nmr and ir spectra, and microanalysis.⁶ In ¹³C nmr spectra (in CDCb),⁷ thiazole ring carbons of 4 b appear at δ 153.3 (C2, ¹*J*_{CH} = 212.4 Hz), 157.2 (C4, ³*J*_{CF} = 2.4 Hz), and 120.5 (C5, ²*J*_{CF} = 37.8 Hz).

In conclusion we can present very convenient synthetic methods accessing 5-(trifluoromethyl)oxazoles (3) and 5-(trifluoromethyl)thiazoles (4) starting from aldehyde *tert*-butyl(methyl)hydrazones.

REFERENCES AND NOTES

يعطدها و

- 1. Review: R. Filler, "Organofluorine Chemicals and their Industrial Applications", ed. R. E. Banks, Ellis Horwood: London, 1979, p.123.
- 2. Y. Kamitori, M. Hojo, R. Masuda, T. Takahashi, and M. Wada, Heterocycles, 1992, 34, 1047.
- 3. Y. Kamitori, M. Hojo, R. Masuda, T. Fujitani, S. Ohara, and T. Yokoyama, *J. Org. Chem.*, 1988, **5** 3 129.
- 4. Wakogel C300 for column chromatography dries at 180°C for 2 h under reduced pressure before use.
- 5. In the case of 1 h, 2 h was sufficient for the complete conversion.
- 6. 4 a: Ir (KBr) 1422 (m), 1342 (s), 1168 (s), 1127 (s), 1096 (m), 1014 (s), 908 (m) cm⁻¹. Anal. Calcd for C₁₀H₆NF₃S: C, 52.40; H, 2.64; N, 6.11. Found C, 52.35; H, 2.56; N, 6.12. 4 b: Ir (KBr) 1501 (s) 1350 (s), 1168 (s), 1130 (s), 1096 (s), 1013 (s), 912 (m), 815 (m) cm⁻¹. Anal. Calcd for C₁₁H₁₈NF₃S: C, 54.32; H, 3.31; N, 5.76. Found C, 54.20; H, 3.32; N, 5.76. 4 d: Ir (KBr) 1600 (m), 1490 (s), 1342 (s), 1260 (s), 1165 (s), 1122 (s), 1009 (s), 907 (m), 828 (s) cm⁻¹. Anal. Calcd for C₁₁H₈NOF₃S: C, 50.96; H, 3.11; N, 5.40. Found C, 51.37; H, 3.39; N, 5.61. 4 e: Ir (KBr) 1525 (m), 1481 (s), 1345 (s), 1277 (m), 1219 (m), 1170 (s), 1130 (2), 1088 (s), 1014 (s), 909 (s) cm⁻¹. Anal. Calcd for C₁₀H₅NCIF₃S: C, 45.55; H, 1.91; N, 5.31. Found C, 45.28; H, 2.19; N, 5.15. 4f: Ir (KBr) 1601 (m), 1528 (s), 1345 (s), 1300 (s), 1164(s), 1131 (s), 1092 (s), 1014 (s), 910 (m), 857 (s) cm⁻¹. Anal. Calcd for C₁₀H₅N₂O₂F₃S: C, 43.80; H, 1.84; N, 10.22. Found C, 44.00; H, 1.86; N, 10.51. 4h: Ir (KBr) 2960 (m), 2920 (m), 1530 (m), 1340 (s), 1293 (m), 1161 (s), 1130 (s), 1018 (s), cm⁻¹. Anal. Calcd for C₁₂H₁₈NF₃S: C, 56.30; H, 6.54; N, 5.05. Found C, 55.85; H, 6.42; N, 4.77.
 7. Recorded at 59.5 MHz on a Bruker AC250.

Received, 31st May, 1993