A SIMPLE APPROACH TO PYRIMIDINE AND QUINAZOLINE DERIVATIVES BY [4+2] CYCLOADDITION OF 1,3-DIAZADIENES AND ENAMINES

José Barluenga,* Miguel Tomás, Alfredo Ballesteros, and Luis A. López

Instituto Universitario de Química Organometálica "Enrique Moles", Facultad de *Qufmica, Universidad de Oviedo,* 33071- *Oviedo, Spain*

Abstract- The reaction of 2-trimethylsilyloxy- (1) and 2-trimethylsilylthio-1,3diazabutadienes (2) with enamines derived from aliphatic aldehydes leads regioand stereoselectively to substituted tetrahydropyrimidin-2(1H)-ones (3) and thiones (4) in high yields. Extension of this cycloaddition to cyclic enamines, *e.g.* derived from cyclohexanone, leading to quinazoline derivatives (9-10) is also described. These heterocycles undergo hydrolysis and dehydration to 3.4-dihydropyrimidine **(7-8)** and **3,4,5,6,7,8-hexahydroquinazoline** (11-12) derivatives.

In the last years azadienes have become valuable materials for the synthesis of heterocycles;¹ in particular, the [4+21 cycloaddition reaction has been demonstrated by several groups to be a powerful and versatile tool for constructing interesting pyridine and related structures.2 Moreover, the preparation of complex polycyclic molecules has been nicely achieved by means of the intramolecular Diels-Alder reaction of 1- and 2-azadienes.³ Heterodienes containing two heteroatoms have also been studied, though to a much lesser extent; among them, significant examples are 1,2-diaza-,⁴ 1-oxa-2-aza-,⁵ 1-oxa-3-aza-,⁶ and 1-thia-3-azadienes.⁷ On the other hand, we turned some attention to the synthetic utility of 1.3 -diazadienes⁸ and we learned from the literature that most reports on $[4+2]$ cycloadditions of these systems dealt with reactive dienophiles, like heterocumulenes (ketenes, 9) isocyanates, 8,10 and sulfene¹¹) and dimethyl acetylenedicarboxylate $(DMAD)^{9c,10b,12}$ (Figure 1).

Figure 1

On the contrary, cycloaddition reactions of 1,3-diazadienes with electron-rich olefines have not been reported, as far as we **are** aware.13 However, the potential of this reaction has been advanced by Boger and co-workers, who synthesized desacetamido P-3A, a peptide-derived natural product, by the [4+2] cycloaddition of a cyclic 1,3 diazadiene, 2,4,6-tris(ethoxycarbonyl)-1,3,5-triazine, with diaminoethene.¹⁴ In this paper we detail the inverse electron demand $[4+2]$ cycloaddition of 2-trimethylsilyloxy- and 2-trimethylsilylthio-1.3-diazadienes with enamines derived horn both aldehydes and cyclohexanone leading to pyrimidine and quinazoline derivatives.l5

RESULTS AND DISCUSSION

The preparation of 1,3-diazadienes (1) and (2) is readily carried out at 25-60°C, in quantitative yield, by treatment of N-trimethylsilylimines¹⁶ with one equivalent of the corresponding isocyanate or isothiocyanate, respectively, as reported previously.⁸ However, throughout this work, compounds (1-2) were not isolated, but formed in situ and then reacted with the appropriate enamine.

Synthesis of Pyrimidine Derivatives.

The resulting solutions of 1.3-diazadienes (1-2) in methylene chloride were stirred at room temperature with enamines derived from aliphatic aldehydes and pyrrolidine or piperidine; further aqueous work-up led, in high yields (80-93%). to solid pyrimidines (3.4). which were washed with ether and recrystallized from hexanechloroform (Scheme 1, Table I). The reaction proved to be regio- and stereoselective, a sole isomer being detected in the crude reaction mixture $(^{1}H$ nmr, 300 MHz). The regiochemistry was assigned on the basis of the ¹³C nmr data, which show the C₆ aminal carbon at 79.5-86.5 ppm; moreover, hydrolysis and dehydration leading to their 3,4-dihydro derivatives confirmed this assesment (vide infra). The proposed stereochemistry, formally arising from an *endo*-transition state, is evidenced from the large coupling constants ($3J > 9$ Hz) found in most instances for H_4 -H₅ and for H_5 -H₆ as well as from nuclear Overhauser enhancement experiments (Figure 2). Selected NOE data for compound (3a): irradiation at axial hydrogen H_4 (δ = 4.35) caused positive enhancement of H₆ (9.15%) and the methylene protons at C₅ (7.91%); in turn, irradiation at H₆ (δ = 4.55) resulted in positive enhancement of **Hq** (8.89%) and the methylene protons at *Cs* (6.33%).

Scheme 1

Figure 2

Table I. Pyrimidin-2($1H$)-ones (3) and -thiones (4)

^aRecrystallized from hexane-chlorofom.

Then heterocycles (3-4) were dissolved in **THF** and convened stereoselectively into their hydroxy derivatives **(5-** 6) by stirring with 1M H2SO4 at room temperature (Scheme 2, Table II).The stereochemistry of the isomer formed, in which the hydroxy group is axially oriented in the corresponding chair-like conformation, was based on the ¹H nmr data $[J (H_4-H_5) = 11.1-11.3 Hz, J (H_5-H_6) = 2.3-2.5 Hz]$ and reflects the contribution of the anomeric effect.¹⁷

Tetrahydropyrimidinones (5) and -thiones (6) were then dehydrated in nearly quantitative yield to the dihydro derivatives (7-8) by refluxing in benzene in the presence of p-toluenesulfonic acid (Scheme 2, Table **11).** The structure shown is in agreement with the ¹H and ¹³C nmr data and confirmed the regiochemistry given for their precursors (3-6); thus, **H4** and **H6** appears around 5.1 and 6.1 ppm, respectively, as singlets and the p-enamine carbon Cg is observed at 110-1 16 ppm as a quaternary carbon **(DEPT** experiments).

Compound	R ¹	R ²	R ³	Yield (%)	mp (°C) ^a
5a	Ph	Ph	E _t	84	133-135
7а				98	112-114
5b	2-Thienyl	Ph	Me	91	146-148
7b				97	123-125
5c	Ph	4-MeC6H4	Me	87	138-139
7c				87	107-109
6	Ph	Ph	Me	90	142-143
8				91	130-132

Table II: Pyrimidin-2($1H$)-ones (5, 7) and -thiones ($6, 8$)

a Recrystallized from hexane-tetrahydrofuran $(5 \text{ and } 6)$ and from hexane-chloroform $(7 \text{ and } 8)$.

Synthesis of Quinazoline Derivatives.

Next we used enamines derived from cyclohexanone in order to apply the reaction to the synthesis of the fused pyrimidine skeleton (Scheme 3, Table **111).** Therefore, heterodienes (1) were treated with 1 morpholinocyclohexene at room temperature giving rise, after aqueous work-up, to quinazoline-2-ones (9); in the same way, compounds (2) reacted with 1-morpholinocyclohexene to furnish quinazoline-2-thiones (10). In the former case, the initially generated morpholino substituted quinazolines underwent hydrolysis in water to the hydroxy derivatives (9). Both quinazolines (9) and (10) were formed in a stereoselective fashion based on the ^IH nmr of the crude reaction mixture; the relative stereochemistry of the C_{8a} center was not determined because of signal overlaping in the **'H** nmr spectra, while the trans-diaxial relationship between **H4** and **H4,** becomes clear from the large coupling constants $[J (H_4-H_{4a}) = 10-12$ Hz] found. Compounds (9) were subjected to dehydration in the presence of p-toluenesulfonic acid yielding **hexahydropyrimidin-2-ones** (11); similarly, quinazolines (10) could be converted into (12) by successive hydrolysis with diluted sulfuric acid and dehydration with p toluenesulfonic acid in refluxing benzene.

Scheme 3

^aRecrystallized from hexane-chloroform.

Conclusions.

The present work describes for the first time the ability of 1,3-diazadienes to undergo a $[4+2]$ cycloaddition to electron-rich olefines, like enamines. The process takes place at room temperature leading regio- and stereoselectively to pyrimidine and quinazoline derivatives; this approach to the pyrimidine ring combines fourand two-atom fragments and involves formation of N₁-C₆ and C₄-C₅ bonds. It should be pointed that high yields are obtained in all instances and that the process requires starting materials as simple and available as trimetylsilylimines, iso(thio)cyanates and enamines.

ACKNOWLEDGEMENT

This work was supported in part by the Dirección General de Investigación Científica y Técnica (DGICYT, PB88-0500). L.A.L. thanks the Ministerio de Educación y Ciencia for a predoctoral scholarship.

EXPERIMENTAL

Ir spectra were recorded on a Pye-Unicam SP-1000 or a Perkin-Elmer 298 and nmr spectra were performed on a Varian FT-80A and a Brüker AC-300 spectrometers using CDCl₃ as a solvent and tetramethylsilane as an internal reference, except the ¹³C nmr spectra of compounds (5) and (6) which were recorded in DMSO-d₆. Mass spectra were obtained by EI (70 eV) from a Hewlett Packard 5987 apparatus. Melting points were measured in open capillary tubes using a Buchi-Tottoli apparatus, and **are** uncorrected. All solvents used were distilled prior to use. The reagents were of the best commercial grade available. Diazahutadienes were prepared in *situ* according to a previous report.8

General Procedure for the Preparation of Cycloadducts (3) and (4).

To a solution of 1,3-diazabutadiene (1-2) (5.4 mmol) in methylene chloride (20 ml) was added a solution of enamine (6.5 mmol) in methylene cbloride (10 ml) at room temperature and the mixture was stirred for 4 h. The resulting mixture was diluted with ice-water, extracted with methylene chloride and the organic layer was dried over sodium sulfate. Evaporation of the solvent in **vacuo** gave yellow solids, which were washed with ether to give pure compounds (3-4); for analytical purposes, these compounds were recrystallized from hexanechloroform. Reaction yields and mp **are** given in Table I.

5-Ethyl-1,4-diphenyl-6-pyrrolidino-3,4,5,6-tetrahydropyrimidin-2(l~)-one (3a).

Ir (KBr) 3310, 1690 cm-I. IH Nmr 6 0.85 (t, 3H, J = 7.5 Hz), 1.3-1.5 (m, 6H), 2.20 (m, lH), 2.35 (m, 4H), 4.35 (d, 1H, J = 7.1 Hz), 4.55 (d, 1H, J = 6.5 Hz), 4.90 (s, 1H, NH), 7.1-7.4 (m, 10H). ¹³C Nmr δ 156.5 (s), 142.3 (s), 141.5 (s), 128.5 (d), 128.3 (d), 128.2 (d), 127.6 (d), 127.0 (d), 126.2 (d), 79.5 (d), 57.5 (d), 48.2 (t), 44.8 (d), 24.0 (t), 22.9 (t), 10.9 **(q)** ppm. Ms **mlz** 349 (M+). Anal. Calcd for C22H27N30: C, 75.61; H, 7.79; N, 12.02. Found: C, 75.42; H, 7.81; N, 12.18.

5-Methyl-l-(4-methylphenyl)-4-phenyl-6-piperidino-3,4,5,6-tetrahydropyrimidin-2(l~)-one (3h).

Ir (KBr) 3290, 1700 cm-l. 'H Nmr **6** 0.80 (d, 3H, **J** = 6.6 Hz), 1.1-1.3 (m, 6H), 2.25 (m, lH), 2.30 (s, 3H), 2.4-2.6 (m, 4H), 4.10 (d, lH, **J** = 10.5 Hz), 4.35 (d, lH, J = 8.9 Hz), 4.80 (s, lH, NH), 7.1-7.4 (m, 9H). 13c Nmr **⁶**157.4 **(s),** 140.1 (s), 139.0 (s), 135.8 (s), 128.9 (d), 128.6 (d), 128.2 (d), 127.2 (d), 84.7 (d), 60.0 (d), 49.0 **(t),** 39.8 **(d),** 26.4 (t), 24.6 (t), 21.0 (q), 15.1 (q) ppm. Ms *m/z* 363 (M+). Anal. Calcd for C₂₃H₂₉N₃O: C, 76.00; H, 8.04; N, 11.56. Found: C, 75.87; H, 8.13; N, 11.72.

5-Methyl-l-(4-methylphenyl)-6-piperidino-4-(2-thienyl)-3,4,5,6-tetrahydropyrimidin-2(lH) one (3c).

Ir (KBr) 3300, 1690 cm-I. IH Nmr 6 0.90 (d, 3H, **1** = 6.5 Hz), 1.1-1.3 (m, 6H), 2.20 (m, lH), 2.30 (s, 3H),

2.4-2.6 (m, 4H), 4.35 (d, 1H, J = 8.9 Hz), 4.50 (d, 1H, J = 10.5 Hz), 4.90 (s, 1H, NH), 6.9-7.3 (m, 7H). 13C Nmr 6 156.7 (s), 143.3 (s), 138.7 (s), 135.7 (s), 128.8 (d), 128.0 (d), 126.3 (d), 125.7 (d), 125.0 (d), 84.5 (d), 55.5 (d), 48.8 (t), 40.8 (d), 26.2 (t), 24.5 (t), 20.9 **(q),** 15.1 **(q)** ppm. Ms m/z 369 (M+). Anal. Calcd for C21H27N30S: C, 68.26: H, 7.36; N, 11.37. Found: C, 68.23; H, 7.38; N, 11.25.

5-Methyl-l-phenyl-6-piperidino-4-(2-thienyl)-3,4,5,6tetrahydropyrimidin-2(l~)-one (3d).

Ir (KBr) 3290, 1700 cm⁻¹. ¹H Nmr δ 0.90 (d, 3H, J = 6.6 Hz), 1.1-1.3 (m, 6H), 2.30 (m, 1H), 2.4-2.6 (m, 4H), 4.40 (d, 1H, J = 8.9 Hz), 4.50 (d, 1H, J = 10.5 Hz), 4.90 (s, 1H, NH), 6.9-7.4 (m, 8H). ¹³C Nmr δ 156.5 (s), 142.7 (s), 138.8 (s), 128.6(d), 128.4 (d), 128.0 (d), 127.1 (d), 125.7 (d), 125.1 (d), 84.3 (d), 58.6 (d), 48.7 (t), 40.1 (d), 26.3 (t), 24.6 (t), 15.2 (q) ppm. Ms m/z 355 (M⁺). Anal. Calcd for C₂₀H₂₅N₃OS: C, 67.57: H, 7.09: N, 11.82. Found: C, 67.49; H, 7.18; N, 11.92.

5-Methyl-1,4-diphenyI-6-piperidino-3,4,5,6-tetrahydropyrimidin-2(lH)-thione (4a).

Ir (KBr) 3280 cm⁻¹. ¹H Nmr δ 0.80 (t, 3H, J = 6.5 Hz), 1.0-1.2 (m, 6H), 2.3-2.4 (m, 3H), 2.5-2.6 (m, 2H), 4.20 (d, 1H, J = 10.6 Hz), 4.40 (d, 1H, J = 9.6 Hz), 6.50 (s, 1H, NH), 7.3-7.4 (m, 10H). ¹³C Nmr δ 181.4(s), 144.2 (s), 138.3 (s), 128.9 (d), 128.7 (dl, 128.6 (d), 128.0 (d), 127.3 (d), 126.9 (d), 86.4 (d), 61.7 (d), 48.6 (t), 37.9 (d), 25.9 (t), 24.2 (t), 14.57 (q) ppm. Ms m/z 365 (M⁺). Anal. Calcd for C₂₂H₂₇N₃S: C, 72.29; H, 7.44; N, 11.49. Found: C, 72.23; H, 7.52; N. 11.47.

 $5-Methyl-1-phenyl-6-piperidino-4-(2-thienyl)-3,4,5,6-tetrahydropyrimidin-2(1H)-thione (4b).$ **Ir** (KBr) 3310 cm-'. 'H Nmr 6 0.90 **(t,** 3H, J = 6.5 Hz), 1.1-1.3 (m, 6H), 2.3-2.4(m, 3H), 2.5-2.6 (m, ZH), 4.40 (d, 1H. J = 9.6 Hz), 4.64 (d, IH, **1** = 10.8 Hz), 6.60 (s, IH, NH), 6.9-7.4 (m, 8H). 13C Nmr 6 181.0 (s), 144.1 **(s),** 141.2 (s), 128.9 (d), 128.1 (d), 127.0 (d), 126.7 (d), 126.6 (d), 125.7 (d), 86.5 (d), 57.0 (d), 48.7 (t), 39.0 (d), 26.0 (t), 24.2 (t), 14.9 (q) ppm. Ms m/z 371 (M⁺). Anal. Calcd for C₂₀H₂₅N₃S₂: C, 64.65; H, 6.78; N, 11.31. Found: C, 64.54; H, 6.89: N, 11.41.

General Procedure for the Hydrolysis of Compounds (3) and (4) to (5) and (6).

A mixture of aminopyrimidine (3-4) (2 mmol) and sulfuric acid (1 M, 5 ml) in tetrahydrofuran (20 ml) was stirred at room temperature for 4 h. The resulting mixture was diluted with water, extracted with methylene chloride, and was dried over sodium sulfate. Evaporation of the solvent in **vacuo** gave white solids, which were washed with ether to give pure compounds (5-6); for analytical purposes, these compounds were recrystallized from hexane-tetrahydrofuran. Reaction yields and mp are given in Table II.

5-Ethyl-6-hydroxy-l,4-diphenyl-3,4,5,6-tetrahydropyrimidin-2(l~)-one (5a).

¹¹(KBr) 3400, 3280, 1670 cm-I. 'H Nmr 6 0.85 (t, 3H, J = 7.5 Hz), 1.10 (m, lH), 1.35 (m, lH), 1.95 (m, 1H), 4.40 (d, 1H, J = 11.3 Hz), 4.95 (s, 1H, NH), 5.10 (d, 1H, J = 2.5 Hz), 7.15-7.5 (m, 11H). ¹³C Nmr δ 153.1 (s), 141.8 (s), 141.4 (s), 128.4 (d), 128.3 (d), 128.1 (d), 127.7 (d), 127.1 (d), 126.3 (d), 82.6 (d), 56.9 (dl, 42.5 (dl, 23.0 (t), 11.8 **(q)** ppm. Ms m/z 296 (M+). Anal. Calcd for C18H20N202: **C,** 72.95; H, 6.80; N, 9.45. Found: C. 72.85; H, 6.81: N, 9.50.

 6 -Hydroxy-5-methyl-1-phenyl-4- $(2$ -thienyl)-3,4,5,6-tetrahydropyrimidin- $2(1H)$ -one $(5b)$. **II** Wr) 3450, 3280, 1690 cm-'. IH Nmr 6 0.80 (d, 3H, **J** = 6.9 Hz), 2.20 (m, lH), 4.60 (d, IH, J = 11.2 Hz), 4.90 (d, 1H. **J=** 2.3 Hz), 4.95 (s, IH, **NH),** 6.8-7.4 (m, 9H). '3C Nmr 6 153.3 (s), 145.7 (s), 143.1 (s), 128.4 (d), 127.1 (d), 126.6 (d), 126.2 (d), 125.6 (d), 125.4 (d), 83.0 (d), 52.7 (d), 41.5 (d), 13.7 (q) ppm. Anal. Calcd for C₁₅H₁₆N₂O₂S: C, 62.48; H, 5.59; N, 9.71. Found: C, 62.38; H, 5.67; N, 9.69.

6-Hydroxy-5-methyl-1-(4-methylphenyl)-4-phenyl-3,4,5,6-tetrahydropyrimidin-2(1~)-one $(5c).$

Ir (KBr) 3400, 3280, 1690 cm-I. 'H Nmr 6 0.80 (d, 3H, **J** = 6.8 Hz), 2.20 (m, lH), 2.30 (s, 3H), 4.40 (d, lH, J = 11.2 Hz), 4.90 (s, 1H. NH), 4.95 (d, IH, **J** = 2.5 Hz), 7.0-7.4 (m. 10H). 13C Nmr 6 153.9 (s), 141.8 (s), 140.7 6). 134.4 (s), 128.8 (d), 128.5 (d), 127.8 (dl, 127.0 (dl, 83.3 (d), 56.8 (d), 40.4 (d), 20.8 **(q),** 13.7 (q) ppm. Ms m/z 296 (M⁺). Anal. Calcd for C₁₈H₂₀N₂O₂: C, 72.95; H, 6.80; N, 9.45. Found: C, 72.85; H, 6.81; N, 9.50.

6-Hydroxy-5-methyl-l,4-diphenyI-3,4,5,6-tetrahydropyrimidin-2(lH)-thione (6).

Ir (KBr) 3400, 3300 cm⁻¹. ¹H Nmr δ 0.80 (d, 3H, J = 7.6 Hz), 2.10 (m, 1H), 4.40 (d, 1H, J = 11.1 Hz), 5.00 (d, IH, **J** = 2.5 Hz), 6.10 (s, IH, NH), 7.1-7.5 (m, 11H). 13C Nmr **6** 180.7 (s), 145.1 (s), 137.7 (s), 129.0 (d), 128.5 (d), 128.3 (d), 128.0 (d), 127.3 (d), 126.9 (d), 83.2 (d), 61.5 (d), 38.5 (d), 13.1 (q) ppm. Ms m/z 298 (M⁺). Anal. Calcd for C₁₇H₁₈N₂OS: C, 68.43; H, 6.08; N, 9.39. Found: C, 68.40; H, 6.12; N, 9.27.

General Procedure for the Dehydration of Compounds (5) and (6) to (7) and (8).

In a flask equiped with a Dean-Stark trap, hydroxypyrimidines (5-6) (1.5 mmol) were dissolved in benzene (20 ml) containing a catalytic amount of p-toluenesulfonic acid. The mixture was heated to reflux for 2 h and allowed to cool to room temperature. The resulting mixture was washed with a saturated solution of sodium bicarbonate, extracted with methylene chloride and was dried over sodium sulfate. Evaporation of the solvent in **vacuo** gave compounds (7-8) as solid materials, which were recrystallized from hexane-chloroform. Reaction yields and mp are given in Table 11.

5-Ethyl-1,4-diphenyl-3,4-dihydropyrimidin-2(lH)-one (7a).

II (KBr) 3280, 1670 cm-'. lH Nmr 6 1.00 (t, 3H, I= 7.4 Hz), 1.80 (q, 2H, **J=** 7.4 Hz), 5.00 (s, IH), 5.30 (s, lH, **NH),** 6.10 (s, lH), 7.3-7.5 (m, 10H). '3C Nmr 6 152.1 (s), 142.4 (s), 140.9 (s), 128.9 (d), 128.8 (d), 128.2 (d), 127.0 (d), 126.4 (d), 126.1 (d), 123.3 (d), 116.5 (s), 60.0 (d), 23.1 (t), 11.4 (q) ppm. Ms m/z 278 $(M⁺)$. Anal. Calcd for C₁₈H₁₈N₂O: C, 77.67; H, 6.52; N, 10.06. Found: C, 77.58; H, 6.52; N, 10.12.

5-Melhyl-l-phenyl-4-(2-thienyl)-3,4-dihydropyrimidin-2(lH)-one (7h).

11 (KBr) 3300, 1670 cm-I. lH Nmr 6 1.50 (s, 3H), 5.20 (s, IH), 5.40 (s, lH, NH), 6.10 (s, IH), 6.9-7.4 (m, 8H). I3C Nmr 6 151.7 (s), 146.2 (s), 140.1 (s), 128.2 (d), 126.1 (d). 125.7 (d), 125.6 (d), 124.8 (d), 123.9 (dl, 110.4 (s), 54.7 (dl, 16.0 **(q)** ppm. Ms **miz** 270 (M+). Anal. Calcd for C15H14N20S: C, 66.64; H, 5.22; N, 10.36. Found: C, 66.59; H, 5.32; N, 10.41.

5-Methyl-l-(4-methylphenyl)-4-phenyl-3,4-dihydropyrimidin-2(l~)-one (7c).

Ir (KBr) 3300, 1700 cm-I. lH Nm 6 1.50 (s, 3H), 2.30 (s, 3H), 5.00 (s, lH), 5.20 (s, lH, NH), 6.10 (s, 1H), 7.1-7.4 (m, 9H). ¹³C Nmr δ 152.1 (s), 146.3 (s), 139.7 (s), 135.3 (s), 128.1 (d), 127.7 (d), 127.6 (d), 127.3 (d), 127.0 (dl, 126.8 (d), 110.4 (s), 56.3 (d), 20.9 **(q),** 16.0 (q) ppm. Ms **mlz** 278 (M+). Anal. Calcd for C18H18Nz0: C. 77.67; H, 6.52; N, 10.06. Found: C, 77.54; H, 6.58; N, 10.01.

5-Methyl-1,4-diphenyI-3,4-dihydropyrimidin-2(lH)-thione (8).

Ir (KBr) 3300 cm-I. IH Nm **6** 1.50 (s, 3H), 5.30 (s, lH), 6.20 (s, lH), 6.70 (s, lH, NH), 7.1-7.5 (m, 10H). I3c Nmr 6 179.2 (s), 142.3 (s), 137.8 (s), 128.8 (dl, 128.7 (d), 128.4 (d), 127.4 (dl, 126.5 (d), 126.3 **(d),** 124.0 (d), 114.3 (s), 61.1 (d), 15.8 (q) ppm. Ms m/z 280 (M⁺). Anal. Calcd for C₁₇H₁₆N₂S: C, 72.82; H, 5.75; N, 9.99. Found: C, 72.75; H, 5.67; N, 10.1 1.

General Procedure for the Preparation of Cycloadducts (9) and (10).

The procedure described for compounds (3-4) was applied for cycloadducts (9-10). The reaction yields and mp are given in Table III.

8a-Hydroxy-1,4-diphenyl-3,4,4a,5,6,7,8,8a-octahydroquinazolin-2(1H)-one (9a).

Ir (KBr) 3500, 3300, 1670 cm⁻¹. ¹H Nmr δ 1.1-2.0 (m, 9H), 3.10 (s, 1H, OH), 4.30 (d, 1H, J = 11Hz), 5.10 (s, lH, NH), 7.1-7.8 (m, 10H). l3C Nm 6 155.7 **(s),** 140.6 (s), 138.7 (s), 129.3 (d), 129.1 (d), 128.8 (d), 128.1 (dl, 128.0 (dl, 84.2 (s), 57.4 (d), 48.3 (dl, 38.1 (t), 24.9 (t), 24.7 (t), 22.3 **(t)** ppm. Ms **mlz** 322 **(M+).** Anal. Calcd for C₂₀H₂₂N₂O₂: C, 74.51; H, 6.88; N, 8.69. Found: C, 74.49; H, 6.79; N, 8.81.

8a-H~droxy-l-(4-methylphenyl)-4-phenyl-3,4,4a,5,6,7,8,8a-octahydroquinaznlin-2(lH)-nne (9b).

Ir (KBr) 3450, 3280, 1680 cm⁻¹. ¹H Nmr δ 1.1-1.8 (m, 9H), 2.20 (s, 3H), 3.00 (s, 1H, OH), 4.70 (d, 1H, **J** = 10.8 Hz), 5.10 (s, lH, NH), 7.0-7.6 (m, 9H). I3C Nm 6 156.9 (s), 140.9 (s), 137.0 (s), 136.7 (s), 128.9 (d), 128.2 (d), 127.7 (d), 126.8 (d), 78.3 (s), 54.0 (d), 43.2 (d), 32.8 (t), 24.8 **(t),** 22.6 (t), 20.6 (q), 19.0 (t) ppm. Ms m/z 336 (M⁺). Anal. Calcd for C₂₁H₂₄N₂O₂: C, 74.97; H, 7.19; N, 8.33. Found: C, 74.93; H, 7.29; N, 8.40.

8a-Morpholino-1-phenyl-4-(2-thienyl)-3,4,4a,5,6,7,8,8a-octahydroquinazolin-2(1H)-thione (10a).

Ir (KBr) 3310 cm-'. IH Nm 6 1.3-1.9 (m, 8H). 2.10 (m, lH), 2.6-2.8 (m, 4H), 3.3-3.6 (m, 4H), 5.25 (d, 1H. **^J**= 11.9 Hz), 6.65 (s, lH, HN), 7.0-7.6 (m, 8H) I3C Nmr 6 180.1 (s), 143.0 *(s),* 142.2 (s), 131.9 (d), 129.6 (d), 128.7 (d), 128.6 (d), 128.2 (d), 126.8 (d), 126.5 (d), 125.8 (d), 81.7 (s), 67.7 (t), 52.4 (d), 42.5 (broad), 41.7 (d), 31.3 (t), 23.0 (t), 22.0 (t), 19.2 (t) ppm. Ms m/z 413 (M⁺). Anal. Calcd for C₂₂H₂₇N₃OS₂: C, 63.89; H, 6.58; N, 10.16. Found: C, 63.81; H, 6.59; N, 10.08.

8a-Morpholino-1,4-diphenyl-3,4,4a,5,6,7,8,8a-octahydroquinazolin-2(1~)-thione (lob).

Ir (KBr) 3300 cm-l. IH Nmr **6** 1.0-1.8 (m, 8H), 2.10 (m, lH), 2.4-2.6 (m, 4H), 3.1-3.4 (m, 4H), 4.80 (d, 1H, J = 10.8 Hz), 6.60 (s, 1H, NH), 7.0-7.4 (m, 10H). ¹³C Nmr δ 180.0 (s), 142.8 (s), 139.3 (s), 131.5 (d), 129.4 (d), 128.6 (d), 128.4 (dl, 128.8 (d), 128.3 (d), 127.8 (d), 126.9 (d), 81.2 (s), 67.4 (t), 56.4 (d), 44.2 (broad), 40.5 **(d),** 30.7 (t), 22.4 (t), 21.8 (t), 18.9 (t) ppm. Ms **mlz** 407 (M+). Anal. Calcd for Cz4HzgN30S: C, 70.73: H, 7.17; N, 10.31. Found: C, 70.65; H, 7.18; N, 10.22.

~-(4-Methoxypbenyl)-8a-morpholino-l-phenyl-3,4,4a,5,6,7,8,8a-octahydroquinazolin-2(l~) thione $(10c)$.

Ir (KBr) 3300 cm-1. 1H Nmr 6 1.1-1.8 (m, 8H), 2.20 (m, lH), 2.6-2.8 (m, 4H), 3.3-3.5 (m, 4H), 3.90 (s, 3H), 4.80 (d, 1H, J = 11.0 Hz), 6.60 (s, 1H, NH), 6.9-7.5 (m, 9H), 13 C Nmr δ 180.1 (s), 159.6 (s), 143.0 (s), 131.7 (d), 131.1 (s), 129.5 (d), 128.5 (d), 128.2 (d), 128.0 (d), 114.1 (d), 81.5 (s), 67.6 (t), 56.0 (d), 55.1 **(q),** 44.3 (broad), 40.7 (d), 31.0 (t), 22.5 (t), 21.9 (t), 19.1 (t) ppm. Ms **mlz** 437 **(M+).** Anal. Calcd for $C_25H_{31}N_3O_2S$: C, 68.62; H, 7.14; N, 9.60. Found: C, 68.59; H, 7.12; N, 9.73.

Preparation of $1,4$ -diphenyl-3,4,5,6,7,8-hexahydroquinazolin- $2(1H)$ -one $(11a)$.

The compound (11a) was prepared by dehydration of its hydroxy precursor (9a) following the method given for the preparation of (7-8). Yield and mp is given in Table LU.

Ir (KBr) 3200, 1670 cm-I. IH Nmr 6 1.2-2.0 (m, 8H), 4.80 (s, lH), 5.50 (s, lH, NH), 7.2-7.5 (m, 10H). 13C Nmr **6** 153.5 **(s),** 143.0 (s), 137.9 (s), 130.5 (s), 129.8 (d), 128.7 (d), 128.6 (d), 127.9 (d), 127.6 (d), 126.8 (d), 108.7 (s). 60.1 **(d),** 26.7 (t), 25.9 (t), 22.4 (t), 21.7 (t) ppm. Ms **mlz** 304 (M+). Anal. Calcd for C₂₀H₂₀N₂O: C, 78.92; H, 6.62; N, 9.20. Found: C, 78.89; H, 6.68; N, 9.32.

General Procedure for the Preparation of Compounds (12).

A mixture of aminoquinazoline (10) (2 mmol) and sulfuric acid (1 M, 5 ml) in tetrahydrofuran (25 ml) was stirred at room temperature for 4 h. The resulting mixture was diluted with water, extracted with methylene chloride and the organic layer dried over sodium sulfate. Evaporation of the solvent in **vacuo** gave a solid residue, which was dissolved in benzene (30 ml) containing a catalytic amount of p-toluenesulfonic acid. A Dean-Stark trap was attached to the flask and the mixture heated to reflux for 2h and then allowed to cool to room temperature. The resulting mixture was washed with a saturated solution of sodium bicarbonate, extracted with methylene chloride and dried over sodium sulfate. Evaporation of the solvent in **vacuo** gave compounds (12) as pure solid materials, which were recrystallized from hexane-chloroform. Reaction yields and mp are given in Table III.

~-Phenyl-4-(2-thienyl)-3,4,5,6,7,8-hexahydroquinazolin-2(lK)-thione (12a).

Ir (KBr) 3280 cm-1. 1H Nmr 6 1.4-2.0 (m, 8H), 5.00 (s, lH), 6.9-7.4 (m, 8H), 7.60 (s, lH, NH). 13C Nmr 6 176.4 (s), 145.9 (s), 140.6 (9, 130.7 (s), 128.1 (d). 128.0 (d), 126.8 (d), 125.6(d), 125.1 (d), 112.3 (s), 53.9 (d), 26.8 (t), 26.0 (t), 22.4 (t), 21.2 (t) ppm. Ms m/z 326 (M⁺). Anal. Calcd for C₁₈H₁₈N₂S₂: C, 66.22; H, 5.56; N, 8.58. Found: C, 66.20; H, 5.48; N, 8.63.

1,4-Diphenyl-3,4,5,6,7,8-hexahydroquinazoin-2(1H-thione (12b).

Ir (KBr) **3310** cm-'. lH Nmr 6 **1.4-1.9** (m, 8H). **4.90** (s, 1H). **6.90 (s,** lH, NH), **7.2-7.6** (m, **10H).** 13C **Nmr** 6 **176.5** (s), **141.7** (s), **140.8** (s), **129.9** (s), **128.9** (d), **128.8** (dl, **128.6** (dl, **128.2** (d), **128.0** (d), **126.9** (d), **111.8** (s), **59.6** (d), **27.0** (t), **26.1** (t), **22.5** (t), **21.2** (t) ppm. Anal. Calcd for C20HzON2S: C, **74.96;** H, **6.29;** N, **8.74.** Found: C, **74.78:** H, **6.40:** N, **8.61.**

REFERENCES

- J. Barluenga and M. Tomis, *Adv. Heterocycl. Chem.,* **1994, 57, 0000;** J. Barluenga, F. Aznar. S. $\mathbf{1}$ Fustero, and M. Tomis, *Pure* & *Appl. Chem.,* **1990.62. 1957;** J.S. Sandhu and B. Sain, *Heterocycles,* **1987.26, 777;** P.J. Campos, C:Q Tan, J.M. Gonzilez, and M.A. Rodriguez, *Tetrahedron Len.,* **1993, 34, 5321;** G.S. Poindexter, J.D. Catt, P.A. Sasse, and M.A. Kercher, *Heterocycles,* **1993, 36, 295.**
- For reviews, see: D. L. Boger and S.M. Weinreb, 'Hetero Diels-Alder Methodology in Organic Synthesis,' $\mathbf{2}$ Academic Press, San Diego, **1987;** T. Kametani and S. Hibino, *Adv. Heterocycl. Chem.,* **1987.42.245;** D.L. Boger, 'Comprehensive Organic Synthesis,' Vol. **5,** ed. by L.A. Paquette, Pergamon Press, Oxford, **1991,** chapter **4.3;** J. Barluenga, J. Joglar, F.J. Gonzilez, and S. Fustero, *Synlen,* **1990, 129.** For recent papers, see: D.L. Boger and W.L. Corbett, **J.** *Org. Chem.,* **1992, 57, 4777;** C. Trione, **L.M.** Toledo, S.D. Kuduk, F.W. Fowler, and D.S. Grierson, **J.** *Org. Chem.,* **1993, 58, 2075;** T.L. Gilchrist, A.M.d'A. Rocha-Gonsalves, and T.M.V.D. Pinho e Melo. *Tetrahedron* Len., **1993,** *34,* **4097;** F. Palacios, I. P&ez de Heredia, and G. Rubiales, *Tetrahedron Lett.,* **1993,34, 4377.**
- For instance, see: Y.4. Cheng, A.T. Lupo, Jr, and F.W. Fowler, **J.** *Am. Chem. Soc,* **1983, 105, 7696;** 3 D.L. Boger and W.L. Corbett, *J. Org. Chem.,* **1993,58,2068;** J. Barluenga, M. Tomis, A. Ballesteros, and V. Gotor, **J.** *Chem. Soc., Chem. Commun.,* **1989, 267;** L.F. Tietze and J. Utecht, *Chem. Ber.,* **1992, 125, 2259.**
- G. Ferguson, **A.J.** Lough, D. Mackay, and G. Weeratunga, **J.** *Chem. Soc., Perkin Trans.* **1. 1991, 3361.** $\overline{4}$
- T. Arnold and H.-U. Reissig, *Synlett,* **1990, 514.** $5¹$
- S. M. Weinreb and P.M. Scola, *Chem. Rev.,* **1989, 89, 1525;** M.J. Melnick and S. M. Weinreb, **J.** *Org.* 6 *Chem.,* **1988, 53, 850.**
- M. Bakasse, A. Reliquet, F. Reliquet, G. Duguay, and H. Quiniou, **J.** *Org. Chem.,* **1989, 54, 2889;** J. $\overline{7}$ Barluenga, M. Tomás, A. Ballesteros, and L.A. López, *Tetrahedron Lett.*, 1989, 30, 6923; *ibid., J. Org. Chem.,* **1991,56. 5680.**
- J. Barluenga, M. Tomis, A. Ballesteros, and L.A. Upez, *Synthesis,* **1989, 228.** 8
- a) S.N. Mazumdar, I. Ibnusaud, and M.P. Mahajan, *Tetrahedron Len.,* **1986,27,5875;** b) P. Luthardt and 9 E:U. Wiirthwein, *Tetrahedron Lett.,* **1988.29.921;** *c) I.* Ibnusaud. E.J. Padma-Malar, and N. Sundaram, *Tetrahedron Lett.,* **1990.31, 7357;** d) S.N. Mazumdar and M.P. Mahajan, *Tetrahedron,* **1991,47, 1473;** e) B. Sain, S.P. Singh, and J.S. Sandhu, *Tetrahedron Lett.,* **1991, 32, 5151;** f) S.P. Singh, A.R.

Mahajan, D. Prajapati, and J.S. Sandhu, *Synthesis,* **1991, 1026;**

- I. Matsuda, **K.** Itoh, and Y. Ishii, *J. Chem. Sac., Perkin Trans. I,* **1972, 1678; I.** Matsuda, S. Yamamoto, and Y. Ishii, *J. Chem. Sac., Perkin Trans. I,* **1976, 1523;** *ibid.,* **1976, 1528.**
- S.N. Mazumdar, M. Sharma, and M.P. Mahajan, *Tetrahedron Lett.*, 1987, 28, 2641. 11
- 12 A. Guzmán, M. Romero, F.X. Talamás, and J.M. Muchowski, *Tetrahedron Lett.*, 1992, 33, 3449.
- $13⁷$ Enamines have been shown to cycloadd to imidoyl isothiocyanates to give mixtures of cyclic and open-chain adducts. See, H.M. Blatter and H. Lukaszewski, *J.* Org. *Chem.,* **1966, 31,722.**
- D.L. Boger and Q. Dang, *J.Org. Chem.,* **1992.57. 1631.** 14
- 15 Preliminary account: J. Barluenga, M. Tomás, A. Ballesteros, and L.A. López, *Tetrahedron Lett.*, 1989, *30,* **4573.**
- D.J. **Hart,** K.4. Kanai, D.G. Thomas, and T:K. Yang, *J. Org. Chem.,* **1983,** *48,* **289.** $16¹$
- The preference for the hydroxy group in compounds **(5-6)** to adopt an axial conformation is in agreement 17 with recent studies on the anomeric effect. See, H. Booth and K.A. Khedhair, *J. Chem. Soc., Chem. Commun.,* **1985,467.**

Received, 7th October, 1993