COMPOUNDS WITH BRIDGEHEAD NITROGEN PART 74l. NMR SPECTRA AND STEREOCHEMISTRY OF 1,3,10,10a-TETRAHYDRO-5H-OXAZOLO[3,4-b]ISOQUINOLINE AND 1,5, **6,l0b-TETRAHYDRO-3H-OXAZOLO[4,3-a]ISOQUINOLINE**

Trevor A. Crabb^{*a} and Asmita V. Patel^b

- **a** Deparfment of Chemistry, University of Portsmouth, Portsmouth, POI 2DT. UK
- b School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DZ, UK

Abstract - Whereas **1,3,10,10a-tetrahydro-5H-oxazolo[3,4-b]isoquinoline** adopts an equilibrium in CDC13 solution at **295** K in which the trans-fused conformation predominates, **1,5,6,l0b-tetrahydro-3H-oxazolo[4,3-alisoquinoline** adopts the 0-inside cis-fused conformation. This difference in conformational preference has been explained partly in terms of ring-fusion strain.

Perhydro-oxazolo[3,4-a]pyridine adopts a conformational equilibrium² in CDCl₃ solution at 298 K between 67% trans-fused conformer (1-t) and 33% O-inside cis-fused conformer (1-c) whereas indolizidine shows³ an extreme preference for the trans-conformer (2-t). In addition to differences in non-bonded interactions between the two systems⁴ and the generalised anomeric effect⁵ in 1, ring fusion strain (cf. trans-hydrindane⁶) may also be partially responsible for the difference in positions of conformational equilibria. Any ring fusion strain present in *trans*-indolizidine $(2-t)$ is expected^{4,7} to increase in *trans*-perhydro-oxazolo[3,4-a]pyridine (1-t) as a result of the shorter C-O bonds (1.43Å) in 1-t compared to the corresponding C-C bonds (1.54Å) in 24. The magnitude of such strain should be affected by changes in the conformation of the six-membered ring and accordingly **1,3,10,10a-tetrahydro-5H-oxazolo[3,4-b]isoquinoline** (3) and **1,5,6.10b-tetrahydr0-3H**oxazolo[4,3-*a*]isoquinoline (4) containing non-chair piperidine rings were chosen for study.

Results and Discussion

1,3,10,10a-Tetrahydro-5H-oxazolo[3,4-b]isoquinoline (3) may exist in solution as an equilibrium between a trans-fused conformer (3-t), an O-inside cis-fused conformer $(3-c₁)$ and an O-outside cis-fused conformer (3-c₂). The ¹H nmr spectrum of 3 at 295 K shows an AB quartet (δ 3.98, 4.70; J_{gem} -2.2 Hz) for the C-3 methylene protons and comparison of the corresponding C-3 methylene parameters for 1-t and 1-c (spectral parameters obtained at 183 K) of δ 3.68, 4.50 (J = 0 Hz) and δ 4.27, 4.33 (J = -5.8 Hz) respectively,² clearly demonstrates a conformational equilibria between the *trans*-fused conformation (3-t) and the *O*-inside cis -fused conformation $(3-c_1)$ but in which 3-t predominates. This is supported by strong ir absorption (Bohlmann bands⁸) in the 2800-2600 cm⁻¹ region of the spectrum characteristic of 3-t.

The ¹H nmr spectrum of 3 at 173 K did not show freezing out of the $3-t = 3-c_1$ equilibrium unlike the situation for the 1-t \Leftarrow 1-c equilibrium. This must be due to a lower energy of activation for ring inversion in the conformers of 3 (cf. conformational barrier of 5.3 kcal mol⁻¹ in half-chair cyclohexene and the ring inversion barrier of 10-11 kcal mol⁻¹ in chair cyclohexane⁹). Temperature dependent spectral changes were, however, observed. In particular, the J_{gem} of the C-3 methylene protons increased to -1.8 Hz at 193 K consistent with an increase in the proportion of the *trans*-fused conformer (3-t) at low temperatures.

Since the dihedral angles between H-10a and the C-1 methylene bonds are the same (ca. 30° and 150°) in

a Spectra of **3** in 1:1 CFCI₃: CD₂CI₂; spectra of **4** in CDCI₃

b Spectrum obtained at 295 K

7.05-7.6

H-Ar

c chemical shifts and coupling constants of C-10, C-10a and C-1 protons obtained by computer simulation

7.11-7.21

4.36

 $7.0 - 7.2$

- d Spectrum obtained at 197 K
- e Chemical shifts and coupling constants of C-5, C-6 methylene protons obtained by computer

** Respective signals may be interchanged.

both the 3-t and 3-c₁ conformers of 3 whereas in 3-c₂ these are *ca.* 30^o and 90^o, then marked changes with temperature in the magnitude of the vicinal coupling constants involving the C-10 methylene protons **are** to be expected if $3-c_2$ is involved in the equilibria. The observation that the coupling constants (obtained from simulation of the five-spin system (C-1 to C-10) at 295 K (J = 8.5 Hz and 6.2 Hz) and at 193 K (J = 9.0 Hz and 6.4 Hz) are very similar point to the absence of $3-c_2$. In addition, the values of $J_{10a, 1ax'}$ and $J_{10a, 1eq'}$ of 8.5 and 6.2 Hz respectively (Table 1) compare closely with the corresponding couplings($J_{1ax};_{8a} = 9.5$ Hz, $J_{1eq',8a} = 6.5 \text{ Hz}$ ¹⁰ between H-8a and the C-1 methylene protons in the *trans*-fused *trans*-(H-6, H-8a)-6**methylperhydro-oxazolo**[3,4-a]pyridine (5). A distinction between conformers (3-t) and (3-c₁) cannot be made on the basis of these couplings since they are of similar magnitude in both systems.

Dreiding models show a pseudoaxial/equatorial relationship between the C-10 methylene protons and axial H-10a in both 3-t and 3-c₂ which should give rise to one large vicinal coupling constant J_{10a, 10ax}' and one small coupling constant $J_{10a,10eq}$. In 3-c₁, however, the C-10a-H bond approaches bisection of the C-10 methylene group and such a conformation would be characterised by two small vicinal coupling constants. The vicinal couplings $J_{10a,10ax}$ and $J_{10a,10ca}$ obtained by simulation of the spectra increased from 8.1 to 10.1 Hz and from 3.8 to 5.0 Hz respectively with reduction in temperature indicating a significant proportion of 3-c₁ in the conformational equilibrium at 295 K.

This conclusion is supported by the changes in the magnitude of the J_{gem} of the C-10 methylene protons with temperature. The observed value of -17 Hz at 193 K is consistent with conformation (3-t) in which there is a near bisection of the C-10 methylene protons by the plane of the aromatic ring in which a significant negative contribution to J_{gem} is expected.¹¹ Conformation (3-c₁), however, readily accommodates a very small angle between the plane of the aromatic ring and one of the C-10-H bonds consistent with a very small ΔJ contribution from the π system and consequently an expected J_{gem} of ca. -11 Hz. The J_{gem} of -14.3 Hz observed at 295 K falls between these extreme values.

The predominance of 3-t in the equilibrium for 3 is confirmed by comparison of the ^{13}C nmr parameters (Table 2) of **1-t** and 3-t. The chemical shifts for C-l and C-3 (6 72.0 and 87.2 respectively) of 3-t in particular are very close to the values (δ 71.6 and 85.8 respectively)² of 1-t. Thus all the spectral data indicates an equilibrium for 3 between 3-t and $3-c₁$ in which 3-t predominates and in which the proportion of 3-1 increases with decreasing temperature,

In contrast to the J_{gem} of the NCH₂O protons of -2.2 Hz in 3, the J_{gem} value for the C-3 methylene protons in 4 is -6.4 Hz (cf. -5.8 Hz for 1-c). This together with the absence of Bohlmann bands⁸ in the ir spectrum indicates the exclusive existence of 4 in the O-inside cis-fused conformation $(4-c_1)$. In addition the ¹H nmr spectrum of 4 showed an ABX system for H-10b (δ 4.36) and the C-1 methylene protons (δ 3.50, 4.06; $J_{1eq',1ax'} = -6.8$ Hz, $J_{1eq', 10b} = 8.2$ Hz and $J_{1ax', 10b} = 9.4$ Hz) consistent with conformation (4-c₁). The preference for 4-c₁ was confirmed from the ¹³C nmr chemical shifts of 4 in which the resonance of C-3 (δ 88.6) closely matches that $(\delta 88.5)^2$ of the corresponding carbon of 1-c. The chemical shift $(\delta 68.1)$ of C-1 in 4 is relatively downfield of that (δ 62.9) in 1-c since the γ_{ax} effect between the C-1 methylene group and the C-7 methylene group in 1-c has been replaced in $4-c_1$ by an interaction involving the sp² C-6a. Analysis of the 4-spin C(5)H₂-C(6)H₂ system gave the ¹H nmr couplings quoted in Table 1 which are in accord with a fully staggered geometry.

CONCLUSION

Comparison of the J_{gem} values for the NCH₂O protons (CDCl₃ solution, 298 K) of -2.5 Hz for 1-t \Leftarrow 1-c and of -2.2 Hz for 3-t \leftrightharpoons 3-c₁ indicates a slight increase in preference (ca. 5%) of 3 for the trans-fused conformation (3-t). Since the destabilising gauche butane interaction (C-1-C-7) present in 1 -c is replaced in $3-c_1$ by the more favourable interaction between the C-1 methylene and the sp^2 centre at C-9a, a shift of the equilibrium towards the cis-fused conformation $(3-c_1)$ is expected. Accordingly the observed reverse shift towards 3-t may mean a relief (relative to 1-t) of ring fusion strain due to the flexibility of the half-chair type B-ring in 3-t.

Whereas 3 prefers the trans-fused conformation (3-t), the alternative benzo-fused compound **(4)** prefers the O-inside cis-fused ring conformation $(4-c_1)$. The trans-fused conformer $(4-t)$, is destabilised by a peri-type interaction between H-10 and H-1 which is relieved in the O-inside cis-conformer $(4-c_1)$. This latter is stabilised by the generalised anomeric effect⁵ and by the replacement of a gauche butane interaction in O -inside cis-fused 1-c by the less demanding interaction involving the C-1 methylene and the $sp²$ C-6a. These interactions are not, however, sufficient to account for the preference of 4 for the O -inside cis-fused conformer. Dreiding models of the *trans*-conformers $(4-t)$ and $(3-t)$ suggest differing resistance of the B ring to fusion with the oxazolidine ring C. If half-chair type B-rings are considered for both, then trans-fusion as in 3-t involves di-equatorial bonds, whereas in 4-t, one equatorial bond and one pseudo-equatorial bond is required. In the latter case the dihedral angle between the two bonds is greater than 60⁰ and in order to accommodate ring fusion to the oxazolidine C ring these bonds have to be moved together against a relatively hard potential barrier (cf. hydrindane⁶). This provides an explanation for the extreme bias towards the *O*inside cis-fused conformer for 4.

Table 2 ¹³C Nmr chemical shifts (δ, CDCl₃ 295K) of 1,3,10,10a-tetrahydro-5H-oxazolo[3,4-b]isoquinoline (3) and **1,5,6,l0b-teuahydro-3H-oxazolo[4,3-a]isoquinoline** (4)

a,b Respective signals may be interchanged

EXPERIMENTAL

¹H and ¹³C nmr spectra were recorded in CDCl₃ or CFCl₃:CD₂Cl₂(1:1) in 5 mm tubes on a JEOL GSX-270 $(^1H, ^{13}C)$ fourier transform spectrometer at 270.16 Hz (1H) and 67.97 MHz (^{13}C), using the deuterium signal of the solvent as the lock and TMS as internal standard. The most important measurement parameters were as follows: sweep width, 3 KHz (¹H) and 18 KHz (¹³C); pulse width, 3 μs (¹H) and 4.2 μs (¹³C) (*ca.* 40 and *ca* . 45 flip angle, respectively); acquisition time, 5.459 or 0.901s; number of scans, 16-320 ($\rm{^1H}$) and 1-20 K

 $($ ¹³C $)$; and computer memory, 32K. ¹H Nmr parameters were obtained by an nmr spin simulation/interaction programme V2.10 (JEOL **NMR** COMIC programme).

13,IO,lOa-Tetrahydro-5H-oxazolo[3,4-b]isoquinoline (3).-Thel,2,3,4-tetrahydroisoquinoline-3-carboxylic acid¹² (17.7 g, 0.1 mol) was added in small amounts to lithium aluminium hydride (10 g, 0.25 mol) in dry tetrahydrofuran (200 ml). After completion of the addition, the mixture was heated on a water-bath for 1 h. The usual work up gave a viscous oil which solidified on freezing to give the crude required alcohol (11.0 g, 69%). The whole of this was shaken with excess 36% aqueous formaldehyde solution for 0.5 h when the mixture was basified (aqueous 10% NaOH) and extracted three times with ether. The ether solution was dried $(Na₂SO₄)$ and evaporated to leave a viscous oil which was dissolved in petroleum ether (bp 40-60^oC) and passed through a short column of alumina. The solid thus obtained was purified by sublimation at 30-35^oC at 0.1 mmHg to give 9.4 g (80 %) of 1,3,10,10a-tetrahydro-5H-oxazolo[3,4-b]isoquinoline as fine colourless crystals, mp 49-50^oC. (Anal.Calcd for C₁₁H₁₃NO : C, 75.4; H, 7.5; N, 8.0%. Found: C, 75.2; H, 7.5; N, 7.8) : v_{max} (cm⁻¹) 2808 ε^2 (60), 2772 (55), 2750 (55), 2697 (20). Picrate, mp 170-171^oC (Anal.Calcd for $C_{17}H_{16}N_4O_7$: C, 50.5; H, 4.0; N, 13.9. Found C, 50.3; H, 4.1; N, 13.8).

1,5,6,l0b-Teirahydro-3H-oxarolo[4,3-a]isoquinoline (4).- A solution of ethyl isoquinaldinate (11.3 g, 0.056 mol) in dry tetrahydrofuran (100 ml) was added dropwise to lithium aluminium hydride (4.26 g, 0.112 **mol)** in dry tetrahydrofuran (250 ml) with stining. The mixture was then refluxed for 1.5 h, cooled and the excess hydride destroyed by the addition of water. The mixture was basified (10% aqueous NaOH), filtered, and the tetrahydrofuran was removed under vacuum. The residue was extracted with chloroform and dried (Na2S04). The solvent was removed under vacuum to give 1-isoquinolylcarbinol (7.5 g, 75%) as a dark red viscous oil. The alcohol (7.5 g) in glacial acetic acid (150 ml) was hydrogenated at atmospheric pressure in the presence of PtO₂ catalyst (0.8 g) until the calculated volume of hydrogen had been absorbed. After work up in the usual way, the **1-(1,2,3,4-tetrahydroquinolyl)carbinol** was obtained as a dark brown viscous oil (5.3 g, 71%). A solution of the alcohol (5.3 g) dissolved in absolute ethanol (20 ml) was shaken with excess 36% aqueous formaldehyde for 5 h. After removal of the alcohol in **vacuo,** the residue was treated with excess 10% aqueous NaOH and extracted three times with chloroform. The chloroform solution was dried (Na₂SO₄) and the solvent removed to leave a dark brown viscous residue (3.8 g, 68%). This was dissolved in petroleum ether (bp 40-60°C), and was passed through a short column containing alumina to give a yellow

viscous oil which was sublimed at 90° at 0.1 mmHg to give 3.1 g (55 %) of **1,5,6,lOb-tetrahydro-3H***oxazolo[4,3-a]isoquinoline* as fine colourless crystals, mp 42.5-44.5°C. (Anal.Calcd for $C_{11}H_{13}NO$: C, 75.4; H, 7.4; N, 8.0.Found: C, 75.4; H, 7.6: N, 8.1): vmax (cm-') 2835 **ca** (45). 2803 (12).

REFERENCES

- 1. Part 73, T.A. Crabb, S.T. Ingate, and T.G. Nevell, **J. Chem. Res. (S),** 1993, 170.
- **2.** T.A. Crabb. A.N. Trethewey, and Y. Takeuchi, **Magn. Reson. Chem.,** 1988.26.345.
- 3. H.A. Aaron and C.P. Ferguson, **Tenahedron Len.,** 1968,6191; L. Banting, T. A. Crabb, and A.N. Trethewey, **Magn. Reson. Chem.,** 1987.25.352.
- 4. T.A. Crabb in **Cyclic Organoninogen Stereodynamics, ed.** by **J.** B. **Lamben** and Y. Takeuchi, VCH, Weinheim 1992, vol. 1, p. 253.
- 5. P. Deslongchamps, **Stereoelecnonic Effects in Organic Chemishy,** Pergamon, Oxford, 1983.
- 6. E.L. Eliel, N.L. Allinger. S.J. Angyal, and G.A. Morrison, **Confomational Analysis** Interscience, New York, 1965.
- 7. T.A. Crabb and J.M. Hall, **J. Chem. Sac., Perkin Trans. 1,** 1976,203.
- 8. F. Bohlmann, **Chem Ber.,** '1958.91, 2157.
- 9. F.A.L. Anet and M.Z. Haq, **J.** Am. **Chem. Sac.,** 1965,87,3147.
- 10. T.A. Crabb and R.F. Newton, **Tetrahedron,,** 1968.24, 1997.
- 11. M. Barfield and **D.M.** Grant, **J. Am. Chem. Soc.,** 1961, 83, 4726: 1963, 85, 1899.
- 12. S. Archer, **J. Org. Chem.,** 1951, 16, 430.

Received, **27th July,** 1993