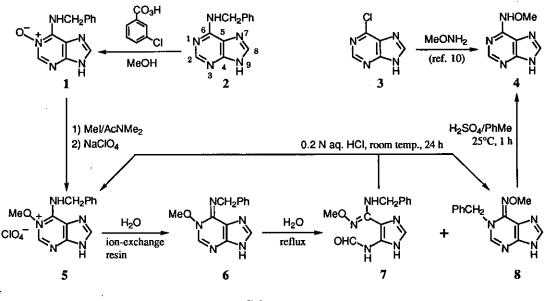
OXIDATION OF N⁶-BENZYLADENINE WITH m-CHLOROPER-OXYBENZOIC ACID: FORMATION OF THE N(1)-OXIDE[†]

Tozo Fujii,* Kazuo Ogawa, and Taisuke Itaya

Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan


Abstract—Oxidation of N^6 -benzyladenine (2) with *m*-chloroperoxybenzoic acid in MeOH has been found to give N^6 -benzyladenine 1-oxide (1) as the main product. The structure of 1 has been established by leading it to N^6 -methoxyadenine (4) through *O*-methylation, Dimroth rearrangement, and nonreductive debenzylation.

In 1982, Nasyr *et al.*¹ reported the preparation of an *N*-oxide [mp 222–224°C (decomp.)] of the synthetic cytokinin N^6 -benzyladenine (2) in 33% yield by treating 2 with 15% aqueous H₂O₂ in trifluoroacetic acid at 65–70°C for 1 h or at 20°C for 17 h. The *N*-oxide was found to exhibit a cytokinin activity similar to that of 2 or kinetin,^{1,2} but its chemical and spectral characterization was too incomplete to specify the location of the *N*-oxide function. In the present study, we investigated the *m*-chloroperoxybenzoic acid (MCPBA) oxidation of 2 in MeOH.

Treatment of 2 with MCPBA in MeOH at 30°C for 20 h furnished an N-oxide (mp $201-202^{\circ}C$)^{3,4} in 35% yield, together with 25% recovery of 2. The following chemical evidence permitted us to assign the 1-oxide structure (1) to this N-oxide (Scheme 1). On methylation with MeI in AcNMe₂ at 25°C for 20 h, 1 gave, after treatment of the product with aqueous NaClO₄, the 1-methoxy derivative as the perchlorate salt (5) [mp 195–197°C (decomp.)]⁵ in 72% yield. Conversion of 5 into the free base (6) by the use of Amberlite IRA-402 (HCO₃⁻) and treatment of 6 with boiling H₂O for 18 h produced the oily monocyclic amidine derivative (7)⁶ and the Dimroth

[†] Dedicated to Professor Alan R. Katritzky (University of Florida) on the occasion of his 65th birthday.

rearrangement product (8) [mp 241–242°C (decomp.)]⁷ in 16% and 56% yields, respectively. The monocycle (7) underwent recyclization in 0.2 N aqueous HCl at room temperature in 24 h, affording both the N⁶-methoxy derivative (8) and the 1-methoxy isomer [isolated as the perchlorate salt (5)] in 63% and 15% yields, respectively. All these findings were analogous to those reported previously by us for N⁶,9-dimethyladenine 1-oxide⁸ and for adenine 1-oxide.^{9,10}

Scheme 1

Final identification of 8 as the N^6 -methoxy derivative rested on its nonreductive debenzylation leading to the formation of N^6 -methoxyadenine (4). When debenzylated with conc. H₂SO₄ at 25°C for 1 h in the presence of toluene,¹¹ 8 provided 4 [mp *ca.* 200°C (decomp.)] in 87% yield, and this sample was identical with authentic 4¹⁰ synthesized from 6-chloropurine (3) and methoxyamine.

The uv spectra of 1 in H₂O at various pH's⁴ corresponded to those^{9,12} of adenine 1-oxide with an expected bathochromic shift of maxima due to N^6 -benzylation. This suggests the preponderance of the N(1)-oxide form over the tautomeric N(1)-OH form in H₂O for the neutral species of 1, as in the case of adenine 1-oxide.^{13,14} In summary, the above results reveal that the main product from the MCPBA oxidation of N^6 -benzyladenine (2) is the 1-oxide (1). This directivity in oxidation is in general agreement with that observed in similar MCPBA oxidations of 9-substituted analogues, such as N^6 ,9-dimethyladenine,⁸ N^6 -methyladenosine,¹⁵ and 2',3',5'-tri-O-benzoyl- N^6 -methyladenosine.¹⁵ Interestingly, a pilot experiment has suggested that the main product obtained

in our hands from the trifluoroperoxyacetic acid oxidation of 2 according to the procedure of the Russian group¹ is not 1, but may be the N(7)-oxide. We are now in the process of confirming its outcome.

ACKNOWLEDGMENT

The authors are grateful to Messrs. Kado Ikeda, Katsuhiro Ikeda, and Fujio Nohara, Ikeda Mohando Co., Ltd., for their interest and encouragement.

REFERENCES AND NOTES

- 1. I. A. Nasyr, G. P. Mozgovaya, Yu. V. Karabanov, I. V. Boldyrev, V. P. Borisenko, and V. M. Cherkasov, Fiziol. Akt. Veshchestva, 1982, 14, 91 (Chem. Abstr., 1983, 99, 48877n).
- G. P. Mozgovaya, V. S. Petrenko, I. V. Boldyrev, and V. M. Cherkasov, Fiziol. Akt. Veshchestva, 1984, 16, 57 (Chem. Abstr., 1985, 103, 2068x).
- 3. Satisfactory analytical and/or spectroscopic data were obtained for all new compounds described.
- 4. Selected spectral data: ms m/z: 241 (M⁺); uv λ^{95% aq. EtOH} 238 nm (ε 41800), 274 (11100); λ^{H2O}_{max} (pH 1) 265 (15200); λ^{H2O}_{max} (pH 7) 236 (39300), 273 (12200); λ^{H2O}_{max} (pH 13) 239 (47300), 279 (11200); ¹H nmr (Me₂SO-d₆) δ: 5.24 (2H, d, J = 6 Hz, NHCH₂Ph), 7.2–7.5 (5H, m, NHCH₂Ph), 8.28 [1H, s, C(8)-H], 8.58 [1H, s, C(2)-H], 8.84 (1H, t, J = 6 Hz, NHCH₂Ph), 13.42 [1H, broad (br), N(9)-H].
- Selected spectral data for 5: uv λ^{95% aq. EtOH} 269 nm (ε 13700); λ^{H2O}_{max} (pH 1) 264 (14800); λ^{H2O}_{max} (pH 7) 226 (shoulder) (18300), 277 (14500); λ^{H2O}_{max} (pH 13) 273 (16300); ¹H nmr (Me₂SO-d₆) δ: 4.19 (3H, s, OMe), 5.44 (2H, s, NHCH₂Ph), 7.2–7.5 (5H, m, NHCH₂Ph), 8.53 [1H, s, C(8)-H], 9.16 [1H, s, C(2)-H], 10.30 and 14.29 (1H each, br, two NH's).
- 6. Selected spectral data for 7: ms m/z: 273 (M⁺); ir v^{CHCl3}_{max} (at 0.005 M) 1670 cm⁻¹; ¹H nmr (CDCl₃) δ: 3.79 (3H, s, OMe), 4.95 (2H, d, J = 7 Hz, NHCH₂Ph), 5.69 (1H, t, J = 7 Hz, NHCH₂Ph), 7.2–7.4 [6H, m, NHCH₂Ph and C(2)-H], 8.33 (1H, s, NHCHO), 10.04 and 11.12 (1H each, br, two NH's).
- Selected spectral data for 8: uv λ^{95% aq. EtOH} 276 nm (ε 10900); λ^{H2O}_{max} (pH 1) 280 (9100); λ^{H2O}_{max} (pH 7) 274 (11700); λ^{H2O}_{max} (pH 13) 277 (13800); ¹H nmr (Me₂SO-d₆) δ: 3.68 (3H, s, OMe), 4.98 (2H, s, CH₂Ph), 7.2–7.4 (5H, m, CH₂Ph), 7.88 [1H, d, J = 0.7 Hz, C(8)-H], 8.00 [1H, s, C(2)-H], 12.48 (1H, br, NH).
- 8. T. Fujii, F. Tanaka, K. Mohri, and T. Itaya, Chem. Pharm. Bull., 1974, 22, 2211.
- 9. T. Fujii and T. Itaya, Tetrahedron, 1971, 27, 351.

- 10. T. Fujii, T. Sato, and T. Itaya, Chem. Pharm. Bull., 1971, 19, 1731.
- (a) L. M. Weinstock, R. J. Tull, A. W. Douglas, and I. Shinkai, J. Org. Chem., 1980, 45, 5419; (b) N. J. Leonard, T. Fujii, and T. Saito, Chem. Pharm. Bull., 1986, 34, 2037; (c) K. Ogawa, M. Nishii, J. Inagaki, F. Nohara, T. Saito, T. Itaya, and T. Fujii, *ibid.*, 1992, 40, 343; (d) Idem, *ibid.*, 1992, 40, 1315; (e) K. Ogawa, M. Nishii, F. Nohara, T. Saito, T. Itaya, and T. Fujii, *ibid.*, 1992, 40, 612.
- 12. M. A. Stevens, D. I. Magrath, H. W. Smith, and G. B. Brown, J. Am. Chem. Soc., 1958, 80, 2755.
- 13. G. B. Brown, Prog. Nucleic Acid Res. Mol. Biol., 1968, 8, 209.
- 14. (a) M. A. Stevens and G. B. Brown, J. Am. Chem. Soc., 1958, 80, 2759; (b) J. C. Parham, T. G. Winn, and G. B. Brown, J. Org. Chem., 1971, 36, 2639.
- 15. T. Endo and J. Zemlicka, J. Org. Chem., 1988, 53, 1887.

Received, 2nd August, 1993