PREPARATION OF NEW THIOHYDROXAMIC ACID DERIVATIVES: SYNTHESIS OF SUBSTITUTED 1-HYDROXY-1,2-DIHYDROIMIDAZOLE-2-THIONES

Derek H. R. Barton, Ching-Yu Chern, and Catherine Tachdjian1*

Department of Chemistry, Texas A&M University, College Station, Texas 77843, U.S.A.

Abstract- A general method for the synthesis of the title compounds is reported. The *N*-phenacylarylamines (11), prepared from the corresponding phenacyl bromides (9) and arylamines (10), give the thiono (or dithio) carbamates (12) on treatment with phenoxythionocarbonyl or thiophenoxythionocarbonyl chlorides and potassium carbonate in dichloromethane. The desired thiohydroxamic acids (13) are obtained by heating compounds (12) with hydroxylamine hydrochloride in pyridine/ethanol.

Since a decade the acyl derivatives of *N*-hydroxy-2-thiopyridone (1) have been widely used for the mild generation of carbon centered radicals under mild conditions.² More recently its application was also extended to the efficient generation of nitrogen³ and oxygen⁴ centered radicals. A number of other thiohydroxamic acids have been prepared (Scheme 1) and the photochemistry of their *O*-acyl derivatives has been investigated.⁵⁻⁷

Dedicated to Professor Alan R. Katritzky on the occasion of his 65th Birthday--with anticipation of many more to come.

Despite their similar radical behavior, the rate of radical chain propagation varies greatly depending on the parent thiohydroxamic acids structure. Some of them such as the acyl derivatives of $(2)^5$ and $(7)^6$ are more light sensitive than the thiopyridone derivative. In contrast the acyl derivatives of (8) show a slower rate when photolyzed under identical conditions.⁶ Others such as the thiohydroxamic acid derivatives (3, 4, 5 and 6) require the use of a UV lamp.⁷ As a part of our ongoing research on thiohydroxamic acids we describe in the present paper the preparation of novel substituted 1-hydroxy-1,2-dihydroimidazoline-2-thiones. A number of analogs have been synthesized following a three step synthesis starting from the commercially available substituted phenacyl bromides (9) and arylamines (10) (Scheme 2).

a: $R^{1}=R^{2}=R^{3}=H$ b: $R^{1}=R^{2}=H$ $R^{3}=Me$ c: $R^{1}=R^{2}=H$ $R^{3}=OMe$ d: $R^{1}=R^{2}=H$ $R^{3}=OPh$ e: $R^{1}=H$ $R^{2}=R^{3}=Me$ f: $R^{1}=Me$ $R^{2}=R^{3}=H$ g: $R^{1}=R^{3}=Me$ $R^{2}=H$ h: $R^{1}=Me$ $R^{2}=H$ $R^{3}=OMe$ i: $R^{1}=Me$ $R^{2}=H$ $R^{3}=OPh$ j: $R^{1}=OMe$ $R^{2}=R^{3}=H$ k: $R^{1}=OMe$ $R^{2}=H$ $R^{3}=Me$ l: $R^{1}=R^{3}=OMe$ $R^{2}=H$ m: $R^{1}=OMe$ $R^{2}=H$ $R^{3}=OPh$ n: $R^{1}=OMe$ $R^{2}=R^{3}=Me$ o: $R^{1}=Br$ $R^{2}=H$ $R^{3}=Me$ $R^{2}=H$ $R^{3}=Me$ q: $R^{1}=Br$ $R^{2}=H$ $R^{3}=OMe$ r: $R^{1}=Br$ $R^{2}=H$ $R^{3}=OPh$ s: $R^{1}=C1$ $R^{2}=R^{3}=H$ t: $R^{1}=C1$ $R^{2}=H$ $R^{3}=OMe$ u: $R^{1}=C1$ $R^{2}=H$ $R^{3}=OMe$

Several procedures are reported in the literature for the preparation of substituted *N*-phenacylarylamines. Low yields of (11) were obtained when the reaction was carried in refluxing ethanol in the presence of potassium carbonate.⁸ We found that the best method consists in treating the substituted phenacyl bromide (9) with 2 equivalent of the arylamine (10) in ether at room temperature.⁹ Compounds (11) are quite instable but can be stored as crystals for a long period of time. The introduction of the thiocarbonyl moiety was successfully achieved by reacting (11a-u) with phenyl chlorothiono (or dithio) formate and potassium carbonate in dichloromethane at room temperature. The use of pyridine instead of K₂CO₃ gave also a good yield of (12). However it was difficult in this case to obtain the pure product even after crystallization. The cyclization step leading to the thiohydroxamic acids (13a-u) was effected by refluxing (12a-u) with hydroxylamine hydrochloride in a mixture of pyridine-ethanol.

We have also investigated the possibility of introducing a methyl substituent at position C-4 of the ring. The *N*-phenacylamine (15) was found to be quite difficult to obtain in good yield using the standard procedure described previously. Phenacyl bromide (14) was finally converted to the desired (15) on treatment with aniline in presence of K_2CO_3 and excess of KI in acetone at room temperature for 24 h (Scheme 3). Treatment of (15) with phenyl chlorothionoformate as usual gave (16) in 95 % yield. The cyclization step was also more difficult to realize on this derivative and was finally achieved by the use of a large excess of hydroxylamine hydrochloride and pyridine. Nevertheless we were able to get the thiohydroxamic (17) in 65% yield.

Scheme 3

EXPERIMENTAL

Melting points were determined with a Kofler hot-stage melting point apparatus and are uncorrected. Ir spectra were recorded on a Perkin Elmer 881 spectrophotometer. ¹H Nmr were recorded using a Varian Gemini 200 or a Varian XL 200E (200 MHz) and tetramethylsilane as internal reference. ¹³C Nmr were determined on Varian Gemini 200 or a Varian XL 200E (50 MHz) spectrometer. Microanalyses were performed by Atlantic Microlab Inc., Norcross, GA. Solvents were used either as purchased or dried and purified by standard methods.

General Procedure for the Preparation of Compounds (11):

A solution of the phenacyl bromide (9) (5 mmol) and arylamine (10) (10 mmol) in ether (10 ml) was stirred overnight at room temperature. The precipitate was filtered off and the filtrate evaporated under reduced pressure at 20°C. The residue was dissolved in dichloromethane and washed successively with water and brine, dried over MgSO₄, filtered and evaporated to give the *N*-arylphenacylamine (11) which crystallized from CH₂Cl₂/hexanes to form yellow crystals.

<u>11a</u>: Yield 70%, mp 97°C {lit., 9 95-97°C}, 1 H nmr (CDCl₃) δ 4.58 (2H, s), 4.90 (1H, s), 6.70 (3H, m), 7.20 (2H, t), 7.50 (3H, m), 8.00 (2H, d, J= 8.0 Hz), 13 C nmr (CDCl₃) δ 50.3, 113.0, 117.8, 127.7, 128.9, 129.4, 133.8, 134.9, 147.1, 195.0.

11b:Yield 71%, mp 129°C {lit.,⁹ 126-128°C}, ir (KBr) 3390, 1674, 1608, 1514 cm⁻¹, ¹H nmr (CDCl₃) δ 2.20 (3H, s), 4.50 (2H, s), 4.65 (1H, br), 6.60 (2H, d, J= 8.5 Hz), 7.00 (2H, d, J= 8.5 Hz), 7.50 (3H, m), 7.90 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 20.1, 50.5, 113.2, 127.0, 127.8, 128.9, 129.9, 133.8, 135.1, 145.0, 195.6. **11c**: Yield 85%, mp 89-90°C {lit.,¹⁰ 90.5-91.5°C}, ir (CH₂Cl₂) 3397, 1689, 1510, 1216 cm⁻¹, ¹H nmr (CDCl₃) δ 3.75 (3H, s), 4.40 (1H, br), 4.55 (2H, s), 6.65 (2H, d, J= 9.0 Hz), 6.80 (2H, d, J= 9.0 Hz), 7.40-7.60 (3H, m), 8.00 (2H, d, J= 8.1 Hz), ¹³C nmr (CDCl₃) δ 51.2, 55.7, 114.2, 115.0, 127.7, 127.8, 128.8, 133.7, 135.0, 141.4, 152.2, 195.4.

11d:Yield 82%, mp 120-122°C, ir (CHCl₃) 3378, 1676, 1591, 1216, 1160, 1060 cm⁻¹, ¹H nmr (CDCl₃) δ 4.57 (2H, s), 4.75 (1H, br), 6.65 (2H, d, J= 8.9 Hz), 6.89-7.05 (5H, m), 7.25 (2H, m), 7.50 (3H, m), 8.00 (2H, J= 8.0 Hz). ¹³C nmr (CDCl₃) δ 50.7, 114.1, 117.2, 121.4, 122.1, 127.9, 129.0, 129.6, 134.0, 135.0, 143.9, 148.2, 159.2, 195.4.

<u>11e</u>: Yield 90%, mp 149°C, ir (CH₂Cl₂) 3417, 3055, 2986, 1689, 1592, 1504, 1420, 1261, 1023 cm⁻¹, ¹H nmr (CDCl₃) δ 2.25 (3H, s), 2.27 (3H, s), 4.60 (2H, s), 6.00 (1H, bs), 6.70 (1H, d, J= 7.8 Hz), 6.9-7.1 (2H, m), 7.50-7.70 (3H, m), 8.10 (2H, d, J= 8.1 Hz), ¹³C nmr (CDCl₃) δ 17.3, 20.3, 50.6, 110.1, 122.5, 126.5, 127.2, 127.7, 128.8, 131.1, 133.7, 134.9, 142.7, 195.3.

<u>11</u> Yield 73%, mp 120°C, ir (KBr) 3390, 1671, 1599 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 4.55 (2H, s), 4.80 (1H, br), 6.70 (3H, m), 7.15-7.35 (4H, m), 7.90 (2H, d, J= 8.1 Hz). ¹³C nmr (CDCl₃) δ 21.6, 50.1, 113.0, 117.7, 127.8, 129.3, 129.5, 132.4, 144.7, 147.1, 194.5.

<u>11g</u>: Yield 81%, mp 130~133°C {lit.,¹¹ 120-121°C}, ir (CH₂Cl₂) 3404, 3055, 2987, 1686, 1605, 1512, 1420, 1261, 1178 cm⁻¹, ¹H nmr (CDCl₃) δ 2.30 (3H, s), 2.40 (3H, s), 4.60 (2H, s), 4.70 (1H, bs), 6.70 (2H, d, J= 8.6)

Hz), 7.10 (2H, d, J= 8.1 Hz), 7.30 (2H, d, J= 8.6 Hz), 7.90 (2H, d, J= 8.1 Hz), ¹³C nmr (CDCl₃) δ 20.3, 21.6, 50.5, 113.1, 126.9, 127.7, 129.4, 129.7, 132.4, 144.6, 144.8, 194.7.

<u>11h</u>: Yield 89%, mp 93°C, ir (CH₂Cl₂) 3404, 3000, 2953, 2834, 1683, 1605, 1568, 1509, 1459, 1347, 1236, 1178, 1141, 1034 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 3.80 (3H, s), 4.50 (2H, s), 4.70 (1H, bs), 6.70 (2H, d, J= 9.1 Hz), 6.80 (2H, d, J= 9.1 Hz), 7.30 (2H, d, J= 8.1 Hz), 7.90 (2H, d, J= 8.1 Hz), ¹³C nmr (CDCl₃) δ 21.6, 51.0, 55.7, 114.1, 114.9, 127.7, 129.4, 132.4, 141.5, 144.6, 152.2, 194.9.

<u>111</u>: Yield 89%, mp 138~140°C, ir (CH₂Cl₂) 3402, 3055, 2986, 1685, 1605, 1507, 1486, 1420, 1348, 1262, 1179, 1071 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 4.60 (2H, s), 4.80 (1H, bs), 6.70 (2H, d, J= 9.0 Hz), 6.90-7.10 (5H, m), 7.20-7.40 (4H, m), 7.90 (2H, d, J= 8.3 Hz), ¹³C nmr (CDCl₃) δ 21.7, 50.5, 113.9, 117.0, 121.3, 121.9, 127.8, 129.4, 129.5, 132.3, 143.8, 144.8, 147.7, 159.0, 194.6.

<u>11</u>; Yield 85%, mp 105-106°C {lit.,¹¹ 108-109°C}, ir (CH₂Cl₂) 3400, 1679, 1600, 1503, 1350, 1223, 1172 cm⁻¹, ¹H nmr (CDCl₃) δ 3.88 (3H, s), 4.53 (1H, s), 4.63 (1H, br), 6.71 (3H, m), 6.95 (2H, d, J= 8.9 Hz), 7.21 (2H, m), 7.98 (2H, d, J= 8.9 Hz), ¹³C nmr (CDCl₃) δ 49.8, 55.5, 113.0, 117.6, 127.8, 129.3, 130.0, 147.1, 164.0, 193.4.

11k: Yield 58%, mp 119°C, ir (KBr) 3398, 1672, 1592, 1504 cm⁻¹, ¹H nmr (CDCl₃) δ 2.27 (3H, s), 3.89 (3H, s), 4.54 (2H, s), 4.60 (1H, br), 6.65 (2H, d, J= 8.5 Hz), 7.00 (2H, d, J= 8.5 Hz), 7.05 (2H, d, J= 8.9 Hz), 8.00 (2H, d, J= 8.9 Hz), ¹³C nmr (CDCl₃) δ 20.3, 50.3, 55.5, 113.9, 126.8, 129.8, 129.9, 144.9, 163.9, 193.6.

<u>111</u>: Yield 82%, mp 125-126°C {lit.,¹⁰ 127-128°C}, ir (CHCl₃) 3405, 1679, 1589, 1509, 1348, 1260, 1235, 1172, 1032 cm⁻¹; ¹H nmr (CDCl₃) δ 3.75 (3H, s), 3.89 (3H, s), 4.54 (2H, s), 6.73 (2H, d, J= 8.9 Hz), 6.85 (2H, d, J= 9.0 Hz), 6.95 (2H, J= 8.9 Hz), 8.00 (2H, d, J= 9.0 Hz). ¹³C nmr (CDCl₃) δ 51.0, 55.5, 55.7, 114.1, 114.7, 115.1, 130.2, 132.1, 141.1, 152.8, 164.3, 194.0.

11m: Yield 85%, mp 75 °C, ir (CH₂Cl₂) 3395, 3055, 2985, 1687, 1592, 1487, 1421, 1251, 1166, 1108, 1027 cm⁻¹, ¹H nmr (CDCl₃) δ 3.90 (3H, s), 4.60 (2H, s), 6.10 (1H, bs), 6.70 (2H, d, J= 8.9 Hz), 6.90-7.00 (6H, m), 7.2-7.3 (3H, m), 8.00 (2H, d, J= 9.0 Hz), ¹³C nmr (CDCl₃) δ 50.5, 55.4, 113.9, 114.2, 117.0, 118.5, 119.6, 121.1, 121.8, 127.6, 129.3, 129.6, 129.9, 143.4, 147.9, 158.7, 163.9, 193.3.

<u>11n</u>: Yield 89%, mp 114°C, ir (CH₂Cl₂) 3413, 3052, 2983, 1679, 1599, 1509, 1420, 1347, 1309, 1258, 1167, 1028 cm⁻¹, ¹H nmr (CDCl₃) δ 2.30 (6H, s), 3.90 (3H, s), 4.60 (2H, s), 4.70 (1H, bs), 6.70 (1H, d, J= 7.8 Hz), 6.90-7.00 (4H, m), 8.00 (2H, d, J= 8.8 Hz), ¹³C nmr (CDCl₃) δ 17.3, 20.3, 50.2, 55.5, 110.1, 114.0, 122.6, 126.3, 127.2, 127.9, 130.0, 131.1, 142.9, 163.9, 193.7.

<u>110</u>: Yield 89%, mp 119°C {lit.,¹¹ 124 °C}, ir (CH₂Cl₂) 3405, 1694, 1601, 1502, 1437, 1398, 1349, 1316, 1217, 1145, 1090 cm⁻¹, ¹H nmr (CDCl₃) δ 4.55 (2H, s), 4.80 (1H, bs), 6.60-6.80 (3H, m), 7.20 (2H, m), 7.60 (2H, d, J= 8.8 Hz), 7.90 (2H, d, J= 8.8 Hz), ¹³C nmr (CDCl₃) δ 50.3, 113.0, 117.9, 129.0, 129.1, 129.3, 132.1, 133.6, 146.9, 194.1.

<u>11p</u>: Yield 86%, mp 146-147°C {lit.,⁸ 154°C}, ir (CH₂Cl₂) 3409, 2923, 1687, 1614, 1583, 1517, 1347, 1215, 1142, 1071 cm⁻¹, ¹H nmr (CDCl₃) δ 2.30 (3H, s), 4.50 (2H, s), 4.70 (1H, bs), 6.60 (2H, d, J= 8.5 Hz), 7.00 (2H, d, J= 8.5 Hz), 7.60 (2H, d, J= 8.5 Hz), 7.80 (2H, d, J= 8.5 Hz), ¹³C nmr (CDCl₃) δ 20.4, 50.7, 113.1, 127.1, 129.0, 129.2, 129.8, 132.1, 133.6, 144.7. 194.4.

<u>11q</u>: Yield 93%, mp 124-125°C, ir (CH₂Cl₂) 3406, 1687, 1584, 1510, 1464, 1386, 1347, 1236, 1215, 1142, 1070, 1035 cm⁻¹, ¹H nmr (CDCl₃) δ 3.75 (3H, s), 4.50 (2H, s), 4.70 (1H, bs), 6.70 (2H, d, J= 9.0 Hz), 6.80 (2H, d, J= 9.0 Hz), 7.70 (2H, d, J= 8.7 Hz), 7.90 (2H, d, J= 8.7 Hz), ¹³C nmr (CDCl₃) δ 51.2, 55.7, 114.3, 115.1, 129.1, 129.3, 132.3, 133.8, 141.4, 152.6, 194.9.

<u>11r</u>: Yield 89%, mp 138-139°C, ir (CH₂Cl₂) 3392, 1678, 1577, 1499, 1478, 1388, 1341, 1225, 1050, 1026 cm⁻¹, ¹H nmr (CDCl₃) δ 4.60 (2H, s), 4.80 (1H, bs), 6.70 (2H, d, J= 8.9 Hz), 6.90-7.10 (5H, m), 7.40 (2H, t, J= 8.5 Hz), 7.70 (2H, d, J= 8.8 Hz), 7.90 (2H, d, J= 8.8 Hz), ¹³C nmr (CDCl₃) δ 50.6, 113.8, 116.9, 121.0, 121.8, 128.8, 129.0, 129.3, 132.0, 133.3, 143.4, 147.7, 158.7, 194.0.

<u>11s</u>: Yield 93%, mp 114-115°C {lit.,¹¹ 114°C}, ir (CH₂Cl₂) 3407, 3052, 2985, 1688, 1600, 1261 cm⁻¹, ¹H nmr (CDCl₃) δ 4.56 (2H, s), 4.85 (1H, bs), 6.70-6.80 (3H, m), 7.20 (2H, m), 7.50 (2H, d, J= 8.7 Hz), 7.90 (2H, d, J= 8.7 Hz), ¹³C nmr (CDCl₃) δ 50.3, 113.0, 117.9, 129.1, 129.2, 129.4, 133.2, 140.3, 146.9, 193.9.

<u>11t</u>: Yield 84%, mp 133-135°C (lit.,⁸ 130°C), ir (CH₂Cl₂) 3407, 1686, 1615, 1517, 1216, 1143, 1092 cm⁻¹, ¹H nmr (CDCl₃) δ 2.20 (3H, s), 4.50 (2H, s), 4.60 (1H, bs), 6.60 (2H, d, J= 8.5 Hz), 7.00 (2H, d, J= 8.5 Hz), 7.50 (2H, d, J= 9.0 Hz), 8.00 (2H, d, J= 9.0 Hz), ¹³C nmr (CDCl₃) δ 20.3, 50.6, 113.1, 127.1, 129.1, 129.1, 129.8, 133.2, 140.1, 144.6, 194.1.

<u>11u</u>: Yield 91%, mp 118-120°C, ir (CH₂Cl₂) 3403, 3053, 1687, 1589, 1510, 1462, 1392, 1347, 1262, 1237, 1216, 1092, 1035 cm⁻¹, ¹H nmr (CDCl₃) δ 3.75 (3H, s), 4.50 (2H, s), 4.70 (1H, bs), 6.70 (2H, d, J= 9.1 Hz), 6.80 (2H, d, J= 9.1 Hz), 7.50 (2H, d, J= 8.8 Hz), 7.90 (2H, d, J= 8.8 Hz), ¹³C nmr (CDCl₃) δ 51.2, 55.6, 114.3, 115.1, 129.2, 129.3, 133.4, 140.3, 141.4, 152.6, 194.6.

General Procedure for the Preparation of Compounds (12a-u and 16):

Phenoxythionocarbonyl or thiophenoxythionocarbonyl chlorides (11 mmol) and K_2CO_3 (1.52 g, 11 mmol) were added to a solution of (11a-u) or (15) (10 mmol) in dichloromethane (20 ml). The reaction mixture was stirred for 12 h at room temperature and the salt which precipitated was filtered. The solution was then washed successively with 1% aqueous sodium hydrogen carbonate, water and brine and dried over MgSO₄. After filtration and evaporation of the solvent under vacuum, the resulting solid was crystallized to give the corresponding thiocarbamates (12a-u) or (16).

12a: Yield 90%, white crystals, mp 143°C (CH₂Cl₂/ EtOH), ir (CH₂Cl₂) 1702, 1444, 1220, 1202, 1180 cm⁻¹, ¹H nmr (CDCl₃) δ 5.60 (2H, s), 7.00-7.50 (13 H, m), 8.00 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 62.4, 122.4, 122.6, 125.8, 126.5, 127.8, 128.0, 128.7, 129.1, 129.3, 133.6, 135.1, 142.7, 154.1, 189.3, 192.0. Anal. Calcd for C₂₁H₁₇NO₂S: C,72.59; H, 4.93; N, 4.03; S, 9.23. Found: C, 72.68; H, 4.94; N, 4.04; S, 9.16.

12b: Yield 69 %, white crystals, mp 105°C (CH₂Cl₂/hexanes) ir (KBr) 1690, 1441, 1198, 1173 cm⁻¹, ¹H nmr (CDCl₃) δ 2.36 (3H, s), 5.42 and 5.63 (2H, 2s, 0.5:1.5), 7.00 -7.60 (12H, m), 8.00 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 20.1, 65.2, 122.0 to 129.9 (CH), 133.6, 135.1, 137.9, 140.1, 154.2, 189.5, 195.6.

<u>12c</u>: Yield 92%, yellow crystals, mp 50°C, ir (CH₂Cl₂) 1700, 1592, 1508, 1445, 1221, 1203, 1181 cm⁻¹, ¹H nmr (CDCl₃) δ 3.78 (3H, s), 5.60 (2H, s), 6.90 (2H, m), 7.10-7.60 (10 H, m), 7.95 (2H, d, J= 8.0 Hz), ¹³C nmr

(CDCl₃) & 55.4, 62.6, 114.4 to 129.0 (CH), 133.6, 135.1, 135.4, 154.0, 159.0, 189.7, 192.2. Anal. Calcd for C₂₂H₁₉NO₃S: C,70.00; H, 5.07; N, 3.71; S, 8.49. Found: C, 70.08; H, 5.11; N, 3.74; S, 8.42.

<u>12d</u>: Yield 92%, yellow crystals, mp 57-58°C (ether/hexanes), ir (CHCl₃) 3065, 2924, 1699, 1589, 1426, 1443, 1382, 1348, 1288, 1222, 1018 cm⁻¹, ¹H nmr (CDCl₃) δ 2.34 (3H, s), 3.85 (3H, s), 5.40 and 5.60 (2H, 2s, 0.5:1.5), 6.90-7.60 (17H, m), 7.95 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 62.5, 118.7 to 129.8 (CH), 133.7, 134.9, 137.4, 154.1, 156.2, 157, 189.6, 192.0.

<u>12e</u>: Yield 93%, white crystals, mp 58°C (ether/hexanes), ir (CH₂Cl₂) 3053, 2984, 1700, 1592, 1492, 1443, 1381, 1298, 1184, 1020 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 2.60 (3H, s), 5.00 (1H, d, J= 17.5 Hz), 6.30 (1H, d, J= 17.5 Hz), 7.10-7.70 (11H, m), 8.10 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 17.4, 20.7, 61.4, 122.1, 125.5, 126.6, 127.6, 128.4, 128.7, 128.8, 131.3, 133.3, 133.6, 134.7, 137.9, 134.0, 153.8, 189.2, 191.6.

12f: Yield 98%, white crystals, mp 118°C (ether/hexanes), ir (KBr) 1686, 1585, 1439, 1375, 1289, 1224, 1169 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 5.40 and 5.60 (2H, 2s, 0.5:1.5), 7.05 (1H, d, J= 8.1 Hz), 7.10-7.40 (8H, m), 7.55 (2H, d, J= 8.1 Hz), 7.90 (2H, d, J= 8.0 Hz). ¹³C nmr (CDCl₃) δ 21.6, 62.3, 122.4 to 129.5 (CH), 132.5, 142.8, 144.6, 154.1, 189.4, 191.5.

12g: Yield 91%, yellow crystals, mp 57°C (ether/hexanes), ir (CH₂Cl₂) 3005, 2986, 1701, 1587, 1490, 1381, 1296, 1154, 1026 cm⁻¹, ¹H nmr (CDCl₃) δ 2.38 (3H, s), 2.40 (3H, s), 5.70 and 5.40 (2H, 2s, 1.6:0.4), 7.10-7.50 (11H, m), 8.00 (2H, d, J= 9.0 Hz), ¹³C nmr (CDCl₃) δ 20.9, 21.5, 62.3, 122.2, 126.1, 127.8, 128.9, 129.2, 129.7, 130.0, 132.4, 137.7, 140.1, 144.4, 154.0, 189.3, 191.5.

12h: Yield 98%, white crystals, mp 55-58°C (ether/hexanes), ir (CH₂Cl₂) 3006, 2960, 1688, 1603, 1493, 1444, 1383, 1295, 1206, 1104, 1030 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 3.80 (3H, s), 5.60 and 5.40 (2H, s, 1.4:0.6), 6.90 (2H, d, J= 8.7 Hz), 7.00-7.40 (7H, m), 7.30 (1H, m), 7.50 (2H, d, J= 8.0 Hz), 7.90 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 21.5, 55.2, 62.4, 114.3, 122.3, 125.7, 127.5, 127.9, 128.9, 129.3, 132.4, 135.4, 144.5, 154.1, 158.7, 189.5, 191.6.

12i: Yield 94%, white crystals, mp 58°C (ether/hexanes), ir (CH₂Cl₂) 3053, 2986, 1692, 1589, 1487, 1446, 1421, 1262, 1226, 1181, 1070 cm⁻¹, ¹H nmr (CDCl₃) δ 2.60 (3H, s), 5.80 and 5.60 (2H, 2s, 1.6:0.4), 7.20-7.60 (14H, m), 7.70 (2H, d, J= 8.6 Hz), 8.10 (2H, d, J= 8.6 Hz), ¹³C nmr (CDCl₃) δ 21.7, 62.5, 118.7, 119.5, 122.4, 122.6, 123.9, 125.9, 128.0, 129.1, 129.4, 129.8, 132.6, 137.9, 144.8, 154.2, 156.3, 157.0, 189.6, 191.6.

<u>121</u>: Yield 61%, pale yellow crystals, mp 175°C (decomp) (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 1687, 1598, 1368, 1218, 1169, 1112 cm⁻¹, ¹H nmr (CDCl₃) δ 3.83 (3H, s), 5.68 (2H, s), 6.90 (2H, d, J= 8.9 Hz), 7.43 (8H, m), 7.65 (2H, m), 7.94 (2H, d, J= 8.9 Hz), ¹³C nmr (CDCl₃) δ 55.4, 63.3, 113.8, 128.0, 128.9, 129.4, 129.6, 129.8, 130.2, 132.5, 136.6, 144.2, 163.7, 190, 201.1.

<u>12k</u>: Yield 92%, pale yellow crystals, mp 125°C (ether/hexanes), ir (KBr) 1684, 1592, 1437, 1380, 1292, 1166 cm⁻¹, ¹H nmr (CDCl₃) δ 2.34 (3H, s), 3.85 (3H, s), 5.38 and 5.52 (2H, 2s, 0.5:1.5), 6.80 (2H, d, J= 8.5 Hz), 7.10 (2H, d, J= 8.5 Hz), 7.20 (3H, m), 7.32 (2H, d, J= 8.0 Hz), 7.40 (2H, d, J= 8.7 Hz), 7.95 (2H, d, J= 8.7 Hz), 1³C nmr (CDCl₃) δ 21.0, 55.5, 62.2, 113.9, 122.4, 128.5 to 130 (CH), 137.9, 140.3, 154.2, 163.8, 189.5, 190.5.

<u>12</u>I: Yield 93%, pale yellow crystals, mp 55-56°C (CH₂Cl₂/hexanes), ir (KBr) 1699, 1589, 1505, 1444, 1383, 1294 cm⁻¹; ¹H nmr (CDCl₃) δ 3.78 (3H, s); 3.85 (3H, s); 5.38 and 5.57 (2H, 2s, 0.6:1.4); 6.80-7.50 (12H, m); 7.95 (2H, d, J= 8.0 Hz), ¹³C nmr (CDCl₃) δ 55.2, 55.3, 62.3, 113.9 to 130.3 (CH), 135.7, 154.4, 159.1, 164.1, 189.9, 190.8.

<u>12m</u>: Yield 95%, white crystals, mp 138°C (ether/hexanes), ir (CH₂Cl₂) 3055, 2987, 1686, 1596, 1487, 1445, 1420, 1260, 1171 cm⁻¹, ¹H nmr (CDCl₃) δ 3.80 (3H, s), 5.60 and 5.40 (2H, 2s, 1.6:0.4), 6.90-7.40 (14H, m), 7.60 (2H, d, J= 8.7 Hz), 8.00 (2H, d, J= 8.7 Hz), ¹³C nmr (CDCl₃) δ 55.3, 62.1, 113.8, 118.5, 119.3, 119.4, 122.2, 123.7, 125.7, 127.8, 128.9, 129.7, 130.1, 137.4, 154.0, 156.1, 156.8, 163.7, 189.4, 190.4.

12n: Yield 99%, white crystals, mp 64-65°C (ether/hexanes), ir (CH₂Cl₂) 1687, 1598, 1493, 1451, 1384, 1348, 1262, 1230, 1173, 1026 cm⁻¹, ¹H nmr (CDCl₃) δ 2.30 (3H, s), 2.40 (3H, s), 3.90 (3H, s), 4.90 (1H, d, J= 17.1 Hz), 6.10 (1H, d, J= 17.1 Hz), 7.00 (2H, d, J= 9.0 Hz), 7.00-7.50 (8H, m), 8.00 (2H, d, J= 9.0 Hz), ¹³C nmr (CDCl₃) δ 17.7, 21.0, 55.5, 61.3, 113.90, 122.5, 125.8, 127.0, 127.7, 128.2, 129.0, 130.2, 131.6, 133.9, 138.3, 139.3, 154.1, 163.8, 189.6, 190.3.

120: Yield96 %, yellow crystals, mp 111°C (ether/hexanes), ir (CH₂Cl₂) 3050, 2923, 1703, 1590, 1487, 1440, 1382, 1349, 1294, 1262, 1203, 1090 cm⁻¹, ¹H nmr (CDCl₃) δ 5.60 and 5.40 (2H, 2s, 1.4:0.6), 7.10-7.60 (12H, m), 7.90 (2H, m), ¹³C nmr (CDCl₃) δ 62.2, 122.3, 125.9, 126.5, 127.6, 128.1, 128.8, 129.1, 129.3, 132.0, 133.7, 142.6, 154.0, 189.3, 191.2.

<u>12p</u>: Yield 96%, white crystals, mp 69°C (ether/hexanes), ir (CH₂Cl₂) 1703, 1585, 1507, 1487, 1445, 1383, 1204, 1069 cm⁻¹, ¹H nmr (CDCl₃) δ 2.30 (3H, s), 5.50 and 5.30 (2H, 2s, 1.5:0.5), 7.10 (2H, m), 7.20 (3H, m), 7.30-7.40 (4H, m), 7.60 (2H, d, J= 8.5 Hz), 7.90 (2H, d, J= 8.6 Hz), ¹³C nmr (CDCl₃) δ 21.1, 62.4, 122.4, 125.9, 126.3, 129.1, 129.4, 129.98, 132.1, 133.9, 138.06, 140.13, 154.2, 189.5, 191.4.

12q: Yield 98%, white crystals, mp 119-120°C (ether/hexanes), ir (CH₂Cl₂) 1700, 1584, 1505, 1444, 1293, 1260, 1205, 1183, 1069 cm⁻¹, ¹H nmr (CDCl₃) δ 3.80 (3H, s), 5.60 and 5.40 (2H, 2s, 1.4:0.6), 7.00 (2H, d, J= 9.0 Hz), 7.10 (2H, d, J= 7.5 Hz), 7.30 (1H, m), 7.40 (2H, d, J= 7.8 Hz), 7.70 (2H, d, J= 8.6 Hz), 7.90 (2H, d, J= 8.6 Hz), ¹³C nmr (CDCl₃) δ 55.4, 62.5, 114.6, 122.5, 126.1, 127.8, 129.3, 129.6, 132.3, 132.4, 134.1, 135.6, 154.4, 159.3, 189.8, 191.8.

<u>12r</u>: Yield 89%, white crystals, mp 175 °C (ether/hexanes), ir (CH₂Cl₂) 3031, 1689, 1577, 1487, 1430, 1300, 1199 cm⁻¹, ¹H nmr (CDCl₃) δ 5.60 and 5.40 (2H, 2s, 1.6:0.4), 7.00-7.30 (8H, m), 7.30-7.50 (8H, m), 7.90 (2H, d, J= 8.8 Hz), ¹³C nmr (CDCl₃) δ 62.4, 118.7, 119.5, 122.3, 123.9, 126.0, 127.9, 129.1, 129.2, 129.3, 129.8, 133.3, 137.2, 140.1, 154.1, 156.1, 157.1, 189.6, 191.1.

<u>12s</u>: Yield 96%, orange crystals, mp 98°C (ether/hexanes), ir (CH₂Cl₂) 1703, 1589, 1488, 1442, 1383, 1294, 1202, 1090 cm⁻¹, ¹H nmr (CDCl₃) δ 5.50 and 5.30 (2H, 2s, 1.4:0.6), 7.00-7.45 (10H, m), 7.50 (2H, d, J= 8.7 Hz), 8.00 (2H, d, J= 8.7 Hz), ¹³C nmr (CDCl₃) δ 62.2, 122.2, 125.9, 126.5, 128.0, 129.0, 129.2, 129.3, 129.5, 133.3, 140.0, 142.5, 154.0, 189.3, 190.9.

<u>12t</u>: Yield 94%, white crystals, mp 125°C (ether/hexanes), ir (CH₂Cl₂) 3050, 1700, 1589, 1439, 1251, 1224, 1202, 1089 cm⁻¹, ¹H nmr (CDCl₃) δ 2.40 (3H, s), 5.60 and 5.40 (2H, 2s, 1.5:0.5), 7.00-7.50 (11H, m), 7.90

(2H, m), ¹³C nmr (CDCl₃) & 21.0, 62.3, 122.3, 122.6, 125.9, 126.2, 129.1, 129.3, 129.9, 133.4, 135.4, 138.0, 140.1, 154.1, 189.4, 191.1.

<u>12u</u>: Yield 97%, white crystals, mp 96-97°C (ether/hexanes), ir (CH₂Cl₂) 1685, 1598, 1505, 1444, 1384, 1296, 1204, 1171, 1029 cm⁻¹, ¹H nmr (CDCl₃) δ 3.80 (3H, s), 5.60 and 5.40 (2H, 2s, 1.4:0.6), 7.00 (2H, d, J= 9.0 Hz), 7.10-7.40 (5H, m), 7.50 (4H, d, J= 9.2 Hz), 8.00 (2H, d, J= 8.7 Hz), ¹³C nmr (CDCl₃) δ 55.4, 62.5, 114.6, 122.5, 126.1, 127.8, 129.3, 129.4, 129.5, 133.6, 135.57, 140.3, 154.4, 159.3, 189.8, 191.5.

<u>16</u>: Yield 95%, white crystals, mp 155°C (ether/hexanes), ir (CH₂Cl₂) 3050, 2978, 1676, 1583, 1479, 1440, 1394, 1287, 1198, 1173, 1112, 1065, 1018 cm⁻¹, ¹H nmr (CDCl₃) δ 1.30 (3H, d, J= 7.4 Hz), 6.80 (1H, q, J= 7.8 Hz), 7.00 (2H, d, J= 7.8 Hz), 7.10-7.60 (10H, m), 8.30 (2H, m), ¹³C nmr (CDCl₃) δ 16.0, 62.7, 122.3, 125.8, 128.4, 128.5, 129.0, 129.0, 129.1, 133.4, 135.7, 138.8, 154.0, 189.2, 197.9.

General Procedure for the Preparation of Thiohydroxamic Acids (13a-u):

To a solution of compounds (**12a-u**) (10 mmol) in ethanol (15 ml) were added pyridine (3.25 ml, 40 mmol) and hydroxylamine hydrochloride (0.77 g, 11 mmol). The reaction mixture was refluxed for 8 h and the solvent was then evaporated. The residue was dissolved in dichloromethane and washed with water and brine. The solution was dried over MgSO₄, filtered and evaporated. The thiohydroxamic acids (**13a-u**) was obtained pure by crystallization in the appropriate system of solvents.

13a: Yield 80%, white crystals, mp 163°C (EtOH) (decomp.), ir (CH₂Cl₂) 2972, 1545, 1497, 1382, 1362, 1132, 1111 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 7.00 (1H, s), 7.40 (6H, m), 7.70 (4H, m), 11.40 (1H, br), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 110.6, 125.1, 126.1, 126.5, 127.7, 128, 128.1, 128.5, 137.4, 158.2. Anal. Calcd for C₁₅H₁₂N₂OS: C, 67.13; H, 4.51; N, 10.44; S, 11.95. Found: C, 67.10; H, 4.53; N, 10.41; S, 11.87.

13b: Yield 49%, white crystals, mp 154-155 °C (CH₂Cl₂/hexanes), ir (KBr) 2611, 1347 cm⁻¹, ¹H nmr (CDCl₃) δ 2.39 (3H, s), 6.90 (1H, s), 7.28 (2H, d, J= 8.6 Hz), 7.40 (5H, m), 7.67 (2H, d, J= 8.6 Hz), 10.25 (1H, br), ¹³C nmr (CDCl₃) δ 21.1, 111.0, 125.1, 126, 126.8, 128.9, 129.9, 134.8, 138.7. Anal. Calcd for C₁₆H₁₄N₂OS: C, 68.05; H, 4.99; N, 9.92; S, 11.35. Found: C, 67.90; H, 5.03; N, 9.96; S,11.43.

13c: Yield 46%, white crystals, mp 168°C (decomp.) (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 2800, 1756, 1510, 1383, 1361, 1241, 1133 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.82 (3H, s), 6.50 (2H, d, J= 8.9 Hz), 7.15 (1H, s), 7.40 (3H, m), 7.54 (2H, d, J= 8.8 Hz), 7.71 (2H, d, J= 8.1 Hz), 11.85 (1H, br), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 54.0, 110.6, 112.6 125.6, 125.7, 127.0, 127.2, 129.5, 157.6. Anal. Calcd for C₁₆H₁₄N₂O₂S: C, 64.40; H, 4.73; N, 9.39; S, 10.74. Found: C, 64.48; H, 4.74; N, 9.43; S, 10.68.

13d: Yield 51%, white crystals, mp 157°C (decomp.) (CH₂Cl₂/hexanes), ir (KBr) 3120, 1461, 1218 cm⁻¹, ¹H nmr (CDCl₃) δ 6.90 (1H, s), 6.94 (2H, d, J= 8.9 Hz), 7.00-7.20 (5H, m), 7.30-7.50 (5H, m), 7.60 (2H, d, J= 8.9 Hz), 10.00 (1H, br), ¹³C nmr (CDCl₃) δ 110.9, 119.7, 124.2, 125.1, 126.7, 127.9, 128.9, 129, 129.9, 132, 156, 157.7. Anal. Calcd for C₂₁H₁₆N₂O₂S: C, 69.97; H, 4.47; N, 7.77. Found: C, 69.77; H, 4.50; N, 7.70.

13e: Yield 71%, white crystals, mp 153-155°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3405, 3050, 2984, 1420, 1225, 1128, 1020 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.10 (3H, s), 2.30 (3H, s), 6.70 (1H, s), 7.00-7.20 (3H, m), 7.30-7.40 (3H, m), 7.70 (2H, d, J= 7.7 Hz), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 17.4, 20.6,

111.1, 126.2, 126.4, 127.0, 127.1, 128.1, 128.2, 131.2, 133.7, 134.9, 138.9, 157.9. Anal. Calcd for $C_{17}H_{16}N_2OS$: C, 68.89; H, 5.44; N, 9.45; S, 10.82. Found: C, 68.95; H, 5.43; N, 9.49; S, 10.74.

13f: Yield 37%, white crystals, m p 167°C (decomp.) (CH₂Cl₂/hexanes) ir (KBr) 2657, 1372 cm⁻¹, ¹H nmr (CDCl₃) δ 2.41 (3H, s), 7.06 (1H, s), 7.24 (2H, d, J= 8.1 Hz), 7.53 (3H, m), 7.67 (4H, m), 11.60 (1H, br), ¹³C nmr (CDCl₃) δ 20.8, 110.4, 123.4, 125.3, 126.6, 127.6, 128.5, 128.7, 137.6, 138.0, 158.4. Anal. Calcd for C₁₆H₁₄N₂OS: C, 68.05; H, 4.99; N, 9.92; S, 11.35. Found: C, 68.01; H, 5.05; N, 9.95; S, 11.41.

13g: Yield 71%, white crystals, mp 151-153°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3431, 3051, 2984, 1420, 1259, 1194, 1155 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.27 (3H, s), 2.30 (3H, s), 6.80 (1H, s), 7.10-7.20 (4H, m), 7.40-7.50 (4H, m), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 20.8, 20.1, 110.4, 124.3, 125.1, 125.4, 126.6, 129.1, 129.4, 138.0, 138.3, 135.1. Anal. Calcd for C₁₇H₁₆N₂OS: C, 68.89; H, 5.44; N, 9.45; S, 10.82. Found: C, 69.05; H, 5.49; N, 9.51; S, 10.78.

13h: Yield 69%, white crystals, mp 165-166°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3408, 3054, 2987, 1603, 1508, 1421, 1360, 1258, 1028 cm⁻¹; ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.30 (3H, s), 3.70 (3H, s), 6.90 (2H, d, J= 8.9 Hz), 7.10 (2H, d, J= 8.1 Hz), 7.40 (2H, d, J= 8.8 Hz), 7.50 (2H, d, J= 8.1 Hz), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 21.0, 55.2, 110.6, 113.9, 123.4, 126.6, 126.7, 129.1, 130.5, 138.3, 158.9 Anal. Calcd for C₁₇H₁₆N₂O₂S: C, 65.36; H, 5.16; N, 8.97; S, 10.26. Found: C, 65.47; H, 5.13; N, 8.95; S, 10.34. **13i**: Yield 66%, white crystals, mp 160-161°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3419, 3050, 2985, 1484, 1421, 1260, 1128, 1011 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.40 (3H, s), 7.00-7.10 (4H, m), 7.15-7.30 (4H, m), 7.30-7.45 (2H, m), 7.50-7.70 (4H, m), 12.00 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 21.3, 110.6, 118.5, 119.6, 119.7, 124.2, 126.8, 129.5, 129.9, 139.0, 156.1, 157.5. Anal. Calcd for C₂₂H₁₈N₂O₂S: C, 70.56; H, 4.84; N, 7.48; S, 8.56. Found: C, 70.66; H, 4.89; N, 7.43; S, 8.65.

13: Yield 79%, white crystals, mp 176°C (decomp.) (CH₂Cl₂/hexanes), ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.83 (3H, s), 6.98 (3H, m), 7.50 (3H, m), 7.66 (4H, m), 11.59 (1H, s), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 54.9, 110.1, 113.7, 118.7, 125.3, 127.6, 128.2, 128.5, 137.7, 159.3. Anal. Calcd for C₁₆H₁₄N₂O₂S: C, 64.40; H, 4.73; N, 9.39; S, 10.74. Found: C, 64.14; H, 4.77; N, 9.27; S, 10.62.

13k: Yield 51%, white crystals, mp 153°C (decomp.) (CH₂Cl₂/hexanes) ir (KBr): 2594-1353-1247 cm⁻¹, ¹H nmr (CDCl₃) δ 2.39 (3H, s), 3.82 (3H, s), 6.80 (1H, s), 6.94 (2H, d, J= 8.8 Hz), 7.27 (2H, d, J= 8.3 Hz), 7.50 (2H, d, J= 8.8 Hz), 7.60 (2H, d, J= 8.8 Hz), 10.10 (1H, br), ¹³C nmr (CDCl₃) δ 21.1, 55.3, 110.0, 114.3, 125.1, 128.4, 129.8, 138.6, 160. Anal. Calcd for C₁₇H₁₆N₂O₂S: C, 65.36; H, 5.16; N, 8.96; S, 10.26. Found: C, 65.48; H, 5.22; N, 8.98; S, 10.28.

131: Yield 69%, white crystals, mp 159-160°C (decomp.) (CH₂Cl₂/hexanes) ir (KBr) 2590, 1496, 1453, 1357, 1293, 1242, 1172, 1126, 1011 cm⁻¹; ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.41 (3H, s), 3.47 (3H, s), 6.90 (5H, m), 7.55 (2H, d, J= 8.8 Hz), 7.65 (2H, d, J= 8.8 Hz), 11.40 (1H, br), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 24.5, 54.7, 109.8, 113.3, 118.4, 126.3, 127.8, 130.2, 158.3, 158.9. Anal. Calcd for C₁₇H₁₆N₂O₃S: C, 62.17; H, 4.91; N, 8.53. Found: C, 62.42; H, 4.89; N, 8.57.

13m: Yield 69%, white crystals, mp 178 °C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3409, 3050, 2984, 1421, 1225, 1128, 1019 cm⁻¹. ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.80 (3H, s), 7.00-7.10 (4H, m), 7.10-7.30 (4H, m), 7.30-7.40

(2H, m), 7.50-7.70 (4H, m), 11.5 (1H, bs), 13 C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 55.3, 110.4, 118.6, 119.2, 119.8, 124.1, 126.6, 129.4, 129.9, 139.0, 156.0, 157.3. Anal. Calcd for C₂₂H₁₈N₂O₃S: C, 67.67; H, 4.65; N, 7.18; S, 8.21. Found: C, 67.40; H, 4.66; N, 7.06; S, 8.12.

13n: Yield 76%, white crystals, mp 155-157°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3405, 3050, 2984, 1421, 1220, 1126, 1020 cm⁻¹; ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.30 (3H, s), 2.40 (3H, s), 3.80 (3H, s), 6.70 (1H, s), 6.90 (2H, d, J= 9.0 Hz), 7.10 (3H, m), 7.60 (2H, d, J= 9.0 Hz), 10.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 17.9, 21.1, 55.3, 110.7, 114.2, 118.6, 127.4, 127.6, 128.5, 131.8, 133.8, 135.4, 139.7, 159.9 Anal. Calcd for C₁₈H₁₈N₂O₂S: C, 66.23; H, 5.56; N, 8.58; S, 9.82. Found: C, 66.58; H, 5.42; N, 8.40; S, 9.64.

130: Yield 51%, white crystals, mp 240-246°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3405, 3050, 2985, 1598, 1511, 1420, 1330, 1251, 1150, 1013 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 6.90 (1H, s), 7.20-7.50 (9H, m), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 111.0, 122.0, 125.1, 125.3, 125.6, 127.8, 128.0, 128.5, 128.6, 131.3, 131.5, 137.3. Anal. Calcd for C₁₅H₁₁N₂OBrS: C, 51.88; H, 3.19; N, 8.07; S, 9.23. Found: C, 51.73; H, 3.25; N, 7.96; S, 9.17.

13p: Yield 68%, white crystals, mp 154-156°C (CH₂Cl₂/hexanes), ir (KBr) 3406, 3078, 1471, 1364, 1286, 1262, 1123, 1063 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.40 (3H, s), 7.00 (1H, s), 7.30 (2H, d, J= 8.5 Hz), 7.40-7.60 (6H, m), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 20.7, 111.1, 122.1, 125.0, 127.3, 128.0, 129.3, 131.4, 134.8, 138.0, 158.2. Anal. Calcd for C₁₆H₁₃N₂OBrS: C, 53.19; H, 3.63; N, 7.77; S, 8.87. Found: C, 53.31; H, 3.69; N, 7.82; S, 8.83.

13q: Yield 62%, white crystals, mp 160-165°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3436, 2981, 1598, 1420, 1258, 1028 cm⁻¹; ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.80 (3H, s), 6.90-7.00 (3H, m), 7.40-7.60 (6H, m), 11.10 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 54.9, 111.2, 113.5, 113.6, 121.8, 126.4, 126.5, 126.6, 127.0, 131.2,158.6. Anal. Calcd for C₁₆H₁₃N₂O₂BrS: C, 50.94, H, 3.47; N, 7.43; S, 8.50. Found: C, 50.94; H, 3.47; N, 7.38; S, 8.57.

13r: Yield 71%, white crystals, mp 196-198°C (CH₂Cl₂/hexane), ir (CH₂Cl₂) 3429, 3053, 2986, 1485, 1420, 1260, 1158, 1011 cm⁻¹; ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 6.80-7.00 (6H, m), 7.00-7.40 (8H, m), 12.00 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 111.0, 117.8, 119.0, 123.5, 125.5, 126.2, 126.9, 127.9, 129.4, 131.3, 155.6, 156.7. Anal. Calcd for C₂₁H₁₅N₂O₂BrS: C, 57.41; H, 3.44; N, 6.38; S, 7.30. Found: C, 57.19; H, 3.51; N, 6.44; S, 7.42.

13s: Yield 62%, white crystals, mp 230-240°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3405, 3049, 2985, 1598, 1512, 1421, 1338, 1258, 1150, 1013 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 7.00 (1H, s), 7.30-7.50 (5H, m), 7.60-7.70 (4H, m), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 114.8, 125.7, 125.7, 126.2, 128.1, 128.4, 128.8, 129.0, 133.4, 137.6. Anal. Calcd for C₁₅H₁₁N₂OClS: C, 59.50; H, 3.66; N, 9.25; S, 10.59. Found: C, 59.29; H, 3.59; N, 9.17; S, 10.69.

13t: Yield 69%, white crystals, mp 155°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3406, 3084, 2904, 1475, 1364, 1263, 1082 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 2.40 (3H, s), 7.00 (1H, s), 7.30 (2H, d, J= 8.3 Hz), 7.40 (2H, d, J= 8.8 Hz), 7.50 (2H, d, J= 8.3 Hz), 7.70 (2H, d, J= 8.8 Hz), 11.50 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ

20.6, 111.0, 124.8, 125.0, 127.3, 127.7, 128.4, 129.1, 133.7, 134.8, 137.8, 158.5. Anal. Calcd for $C_{16}H_{13}CIN_2OS$: C, 60.66; H, 4.13; N, 8.84. Found: C, 60.61; H, 4.08; N, 8.86.

13u: Yield 60%, white crystals, mp 141-144°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3408, 3018, 2983, 1421, 1259, 1023 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 3.80 (3H, s), 6.90 (1H, s), 7.00 (2H, d, J= 8.8 Hz), 7.40 (2H, d, J= 8.6 Hz), 7.50 (2H, d, J= 8.8 Hz), 7.70 (2H, d, J= 8.6 Hz), 11.10 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 54.9, 111.2, 113.6, 124.7, 126.5, 127.1, 127.6, 128.2, 130.1, 133.5, 158.5, 158.6. Anal. Calcd for C₁₆H₁₃N₂O₂ClS: C, 57.74; H, 3.94; N, 8.42; S, 9.63. Found: C, 57.69; H, 3.92; N, 8.38; S, 9.70.

Preparation of Compound (15):

To a solution of 2-bromopropiophenone (14) (1.52 ml, 10 mmol) in acetone (20 ml) were added aniline (2a) (0.95 ml, 10.5 mmol), K₂CO₃ (1.45 g, 10.5 mmol) and KI (3. 32 g, 20 mmol). The reaction mixture was stirred for 24 h at room temperature. The acetone was then evaporated and the residue diluted with dichloromethane and washed with water and brine. The solution was dried over MgSO₄, filtered and evaporated under reduced pressure. Crystallization from CH₂Cl₂/hexanes afforded the desired (15) (1.91 g, 85%). This formed yellow crystals, mp 100°C {lit., 12 101°C}, ir (CH₂Cl₂) 3391, 3043, 2870, 1672, 1589, 1488, 1440, 1418, 1336, 1307, 1279, 1215, 1150, 1070 cm⁻¹, 1 H nmr (CDCl₃) δ 1.50 (3H, d, J= 6.9 Hz), 4.70 (1H, bs), 5.20 (1H, q, J= 6.9 Hz), 6.60-6.80 (3H, m), 7.20-7.30 (2H, m), 7.40-7.60 (3H, m), 8.00 (2H, d, J= 7.8 Hz), 13 C nmr (CDCl₃) δ 19.5, 53.2, 113.4, 117.8, 128.4, 128.8, 129.3, 133.5, 134.5, 146.4, 200.5.

Preparation of Thiohydroxamic acid (17):

To a solution of (16) (3.60 g, 10 mmol) in ethanol (15 ml) were added pyridine (16 ml, 200 mmol) and hydroxylamine hydrochloride (6.95 g, 100 mmol). The reaction mixture was refluxed for 24 h and the solvent removed under reduced pressure. The residue was dissolved in dichloromethane and washed with water and brine. The solution was dried over MgSO₄, filtered and evaporated. The thiohydroxamic acid (17) (1.84 g, 65%) was obtained pure after recrystallization from CH₂Cl₂/hexanes. This formed white crystals, mp 126-129°C (CH₂Cl₂/hexanes), ir (CH₂Cl₂) 3405, 3050, 2984, 1420, 1229, 1120, 1028 cm⁻¹, ¹H nmr (CDCl₃:DMSO- d_6 , 1:1) δ 1.90 (3H, s), 7.20 (5H, m), 7.40 (5H, m), 11.00 (1H, bs), ¹³C nmr (CDCl₃:DMSO- d_6 , 1:1) δ 10.2, 109.4, 119.4, 124.6, 126.4, 127.9, 128.0, 128.6, 128.9, 129.0, 135.6, 157.2. Anal. Calcd for C₁₆H₁₄N₂OS: C, 68.06; H, 5.00; N, 9.92; S, 11.36. Found: C, 67.94; H, 5.03; N, 9.82; S, 11.43.

ACKNOWLEDGEMENTS

We thank the Olin Corporation for the support of this work.

REFERENCES

1. *Present Adress:* Amylin Pharmaceuticals, Inc., Department of Medicinal Chemistry, 9373 Towne Centre Drive, San Diego, California 92121.

- D. H. R. Barton, D. Crich, and W. B. Motherwell, *J. Chem. Soc., Chem. Commun.*, 1983, 939; D. H. R. Barton, D. Crich, and W. B. Motherwell, *Tetrahedron*, 1985, 41, 3901.
 For reviews see: D. H. R. Barton and S. Z. Zard, *Phil. Trans. R. Soc. Lond.*, 1985, B 311, 505; D. H. R. Barton and S. Z. Zard, *Pure Appl. Chem.*, 1986, 58, 675; D. H. R. Barton and S. Z. Zard, *Janssen Chimica Acta*, 1987, 4, 3; D. Crich, *Aldrichimica Acta*, 1987, 20, 35; D. H. R. Barton, *Aldrichimica Acta*, 1990, 23, 3; D. Crich and L. Quintero, *Chem. Rev.*, 1989, 89, 1413.
- M. Newcomb, S. U. Park, J. Kaplan, and D. J. Marquardt, *Tetrahedron Lett.*, 1985, 26, 5651; M. Newcomb and T. M.Deeb, *J. Am. Chem. Soc.*, 1987, 109, 3163; M. Newcomb and D. J. Marquardt, *Heterocycles*, 1989, 28, 129; M. Newcomb, T. M. Deeb, and D. J. Marquardt, *Tetrahedron*, 1990, 46, 2317; M. Newcomb, D. J. Marquardt, and T. M. Deeb, *ibid.*, 1990, 46, 2329; M. Newcomb, D. J. Marquardt, and M. U. Kumar, *ibid.*, 1990, 46, 2345; M. Newcomb and M. U. Kumar, *Tetrahedron Lett.*, 1990, 31, 1675; M. Newcomb and J. L. Esker, *ibid.*, 1991, 32, 1035.
- A. L. J. Beckwith and B. P. Hay, J. Am. Chem. Soc., 1988, 110, 4415; Idem, ibid., 1989, 111, 230; J. Boivin, E. Crépon, and S. Z. Zard, *Tetrahedron Lett.*, 1990, 31, 6869; M.Newcomb, M. U. Kumar, J. Boivin, E. Crépon, and S. Z. Zard, *ibid.*, 1991, 32, 45; A. L. J. Beckwith and I. G. E. Davidson, *ibid.*, 1991, 32, 49; D. H. R. Barton, J. Cs. Jaszberenyi, and A. I. Morrell, *ibid.*, 1991, 32, 311.
- 5. D. H. R. Barton, P. Blundell, and J. Cs. Jaszberenyi, J. Am. Chem. Soc., 1991, 113, 6937.
- 6. D. H. R. Barton and C. Tachdjian, Tetrahedron, 1992, 48, 7109.
- D. H. R. Barton and G. Kretzschmar, *Tetrahedron Lett.*, 1983, 24, 5889; D. H. R. Barton, D. Crich, and P. Potier, *Ibid.*, 1985, 26, 5943; D. H. R. Barton, D Crich, and G. Kretzschmar, *J. Chem. Soc.*, *Perkin Trans.1*, 1986, 39.
- 8. T. C. Sharma and A. Lal, Ind. J. Chem. Sect. B., 1976, 14B, 815.
- 9. J. L. Fourrey, J. Beauclaire, and C. Wei Yuan, J. Chem. Soc., Perkin. Trans. 1, 1987, 1841.
- 10. G. Buchmann and R. Lindow, Wiss. Z. Tech. Hasc. Chem. Leuma-Merseburg, 1963, 5, 125 (Chem. Abs., 1964, 60, 1682b).
- 11. M. I. Shevchuk and A. V. Dombrovskii, Zh. Obshch. Khim., 1963, 33, 1135 (Chem. Abs., 1963, 59, 9921g).
- 12. H. H. Muller, J. Schuart, G. Hamm, and D. Splender, J. Prakt. Chem., 1973, 315, 611.

Received, 6th September, 1993