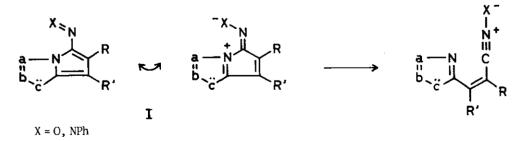
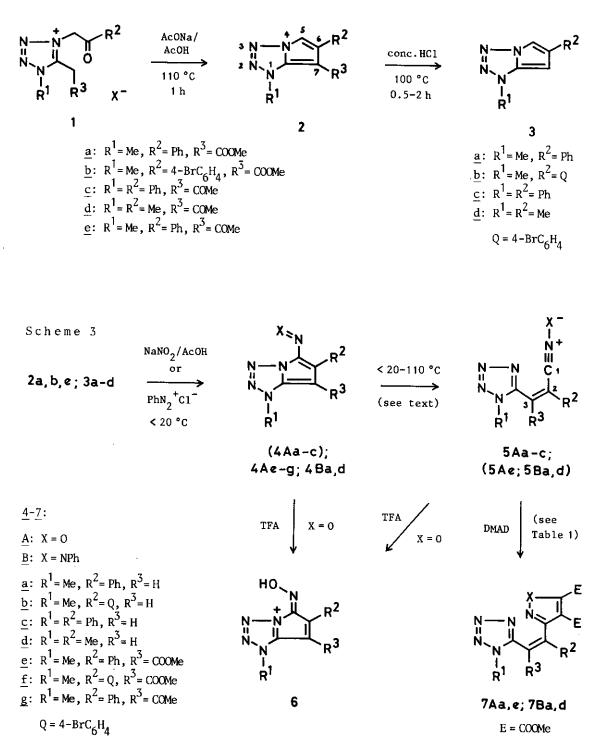
PYRROLE RING OPENING IN 5-NITROSO- AND 5-PHENYLAZO-1H-PYRROLOTETRAZOLES — AN UNEXPECTED VALENCE ISOMERISM #


Dietrich Moderhack * and Dirk Decker

Institut für Pharmazeutische Chemie der Technischen Universität, D-38106 Braunschweig, Germany

<u>Abstract</u> — 1,6-Disubstituted 5-nitroso-1<u>H</u>-pyrrolotetrazoles ring open below 20 °C to give the isomeric acrylonitrile oxides. The 5phenylazo analogs as well as 5-nitroso derivatives having in addition an acceptor group at C-7 are stable at 20 °C, but heating with the dipolarophile DMAD leads to pyrazoles and isoxazoles.


We wish to report a new valence isomerism as generalized by Scheme 1. The process shown — comparable to the nitrile-forming ring opening of five-membered heteroarenes having a nitrene function in a position α to ring oxygen, sulfur or pyrrole-like nitrogen ¹ — has been encountered unexpectedly during a study on the electrophilic substitution of 1<u>H</u>-pyrrolotetrazoles such as $\underline{3}$:

```
Scheme 1
```


 $^{^{\#}}$ Dedicated to Professor A.R.Katritzky on the occasion of his 65th birthday.

Scheme 2

When the derivatives $(\underline{3}\underline{a}-\underline{c})$ — novel aromatic azapentalenes, made according to Scheme 2 2 — were submitted to nitrosation, we isolated products that, instead of the anticipated ³ nitroso compounds ($4\underline{Aa}-\underline{c}$), turned out to be the (stable) nitrile oxides (5Aa-c).⁴ The evidence is as follows (given for <u>5Aa</u>): In the ir spectrum (KBr) strong absorptions at 2295 and 1385 cm⁻¹ occurred; the 13 C nmr spectrum (DMSO-d₆) of SA2 having a 15 N-labeled CNO moiety showed a high-field shifted doublet at δ 34.7, with a coupling constant ${}^{1}J_{13}_{C_{1}}$ = 81.0 Hz. These data, including a ${}^{15}N$ resonance at δ -171.0 [relative to external MeNO₂ / Cr(acac)₃], are diagnostic for a nitrile oxide function.⁵ The \underline{Z} configuration of the olefinic chain formed follows from ${}^{3}J_{C-1, 3-H} = 17.5 \text{ Hz}$. Chemical characterization of $S_{AB} = 0$ consists in (i) deoxygenation with triethyl phosphite to give the corresponding acrylonitrile,⁶ and (ii) [3+2] cycloaddition with DMAD to afford the isoxazole (7Aa). Recyclization of the linear isomers (5A) is feasible with strong acids, e.g. The species formed are the cations ($\underline{6}$). This is inferred from the TFA. uv spectra which fully match those of the below mentioned isolable nitroso compounds taken in the same acidic solvent (for a comparison, see note 7).

While the nitroso compounds $(\underline{4}\underline{A}\underline{a}\underline{-}\underline{c})$ isomerize spontaneously even at 0 °C, analogs that bear an electron-withdrawing substituent at C-7 such as $\underline{4}\underline{A}\underline{e}\underline{-}\underline{g}$ are stable under ordinary conditions. Yet, at elevated temperatures they were found to react smoothly with DMAD. For example, heating of $\underline{4}\underline{A}\underline{e}$ with the alkyne at 110 °C gave rise to the isoxazole ($\underline{7}\underline{A}\underline{e}$), an intermediate ($\underline{5}\underline{A}\underline{e}$) remaining undetected.

Quite different from the elusive nitroso derivatives $(\underline{4}\underline{A}\underline{a}-\underline{c})$, 7-unsubstituted azo compounds such as $\underline{4}\underline{B}\underline{a},\underline{d}$ (prepared from $\underline{3}\underline{a},\underline{d}$) are isolable materials. None the less, we suspected ring opening under forcing conditions. Indeed, upon prolonged heating these compounds with DMAD at 110 °C, fair yields of the pyrazoles ($\underline{7}\underline{B}\underline{a},\underline{d}$) were obtained. Again, an electron-withdrawing group at C-7 reduces the propensity for pyrrole ring cleavage appreciably; but here,

compound	yield (%)	mp (°C)	recrystallized from	compound	yield (%)	mp (°C)	recrystallized from
<u>2a</u>	82	128-129	CHC1 ₃ / Et ₂ 0	$\underline{4}\underline{A}\underline{g}^{f}$	71	141-143 ^e	CHC1 ₃ / Et ₂ 0
<u>2</u> b	64	114-116	CHC13 / Et20	<u>4₿a</u> ^g	81	168-170 ^e	CHC13 / Et20
<u>2</u> ⊆	30	95-96	CHC1 ₃ /Q ^C	<u>4</u> ₿₫ ^g	71	128-131	CHC13 / Et20
<u>2</u> ₫	80	152-154	CHC1 ₃ / Et ₂ 0	<u>4</u> ₿e ^g	63	240-242 ^e	CHC1 ₃ / Et ₂ 0
<u>2</u> €	56	92-94	CH ₂ C1 ₂ / Q ^C	<u>5</u> Aa_	49	138-139 ^e	MeOH / Et ₂ O
<u>3a</u>	71 ^d	140-142	CHC1 ₃	<u>5</u> Ab	34	154-155 ^e	MeOH/Et ₂ O
<u>3</u> b	58	201-203 ^e	DMF / H ₂ O	<u>5Ac</u>	67	144-146 ^e	MeOH
<u>3</u> ⊆	70	127-129	CHC13	<u>7</u> Aa	92 ^h	161-162	MeOH
₫₫	66	oil		<u>74e</u>	46 ⁱ	129-131	CHC13 / Et20
<u>4</u> Ae ^f	78	138-140	CHC13	<u>7Ba</u>	76 ^k	174-176	$CHCl_3 / Et_20$
<u>4Af</u> f	62	128-130 ^e	CHC1 ₃ / Et ₂ 0	<u>7</u> <u>B</u> d	36 ^k	139-141	CHC1 ₃ / Et ₂ 0

Table 1. Experimental Data of Compounds (2-5) and $(7)^{a,b}$

^a Data of <u>1</u> will appear in the full paper on <u>1H</u>-pyrrolotetrazoles (D.Moderhack and D.Decker, in preparation). ^b Satisfactory analytical figures (C,H,N) were obtained for all compounds listed. ^c Q = light petroleum. ^d From <u>2a</u>. ^e Decompt. ^f Green solid. ^g Yellow to orange solid. ^h From <u>5Aa</u> / DMAD; MeOH, 65 °C; 0.5 h. ⁱ From <u>4Ae</u> / DMAD; toluene, 110 °C; 2 h. ^k From <u>4Ba</u> or <u>4Ba</u> / DMAD; toluene, 110 °C; 24 h.

because of the lower reactivity of the $4\underline{B}$ series in general, no reaction was observed in the case of $4\underline{B}\underline{e}$ / DMAD (as opposed to $4\underline{A}\underline{e}$).

Finally, we attempted ring opening of the $1\underline{H}$ -pyrrolo[2,1-<u>c</u>]-<u>s</u>-triazole analog of $\underline{4}\underline{A}\underline{a}$, <u>i.e</u>. <u>I</u> where a = CH, b = N, c = NMe, R = Ph, R' = H, X = O (Scheme 1). When this compound, which in contrast to $\underline{4}\underline{A}\underline{a}$ is an isolable nitroso derivative,⁸ was heated with DMAD at 110 °C for 6 h, a mere 9% yield of the $\underline{7}\underline{A}\underline{a}$ analogous isoxazole⁹ resulted besides much tar. This shows, beyond note,³ that outside the 1<u>H</u>-pyrrolotetrazole series the title process seems very little favored. Table 2. Spectral Data of Selected Compounds $(\underline{2}-\underline{5})$ and $(\underline{7})$

compd	ir (v , cm ⁻¹ ; KBr) // ¹ H / ¹³ C nmr (δ , ppm; CDCl ₃ or * ^o DMSO-d ₆) ^a						
<u>2</u> <u>a</u>	3140, 1705 // 3.69 (s, 3H), 4.40 (s, 3H), 7.17 (s, 1H), 7.25-7.50 (m, 5H) / 36.7 (q), 50.6 (q), 83.6 (s), 102.6 (d), 127.6 (d), 127.7 (d, 2C), 129.7 (d, 2C), 134.1 (s), 135.7 (s), 136.2 (s), 164.0 (s)						
<u>3a</u>	3140 // 3.97 (s, 3H), 5.78 (d, $\underline{J} = 1.4 \text{ Hz}$, 1H), 7.22-7.27 (m, 1H), 7.35-7.38 (m, 2H), 7.46 (d, $\underline{J} = 1.4 \text{ Hz}$, 1H), 7.56-7.58 (m, 2H) / 34.5 (q), 71.2 (d), 97.6 (d), 126.0 (d, 2C), 126.9 (d), 128.8 (d, 2C), 133.5 (s), 134.5 (s), 135.5 (s)						
<u>4Ae</u>	1725 // 3.78 (s, 3H), 4.52 (s, 3H), 7.45-7.55 (m, 3H), 7.79-7.81 (m, 2H) / 37.6 (q), 51.8 (q), 91.5 (s), 127.5 (d, 2C), 129.9 (d), 130.0 (s), 131.8 (d, 2C), 137.0 (s), 148.6 (s), 150.4 (s), 162.4 (s)						
<u>4₿a</u>	— // 4.02 (s, 3H), 6.01 (s, 1H), 7.25-7.45 (m, 6H), 7.85-7.95 (m, 4H) / 34.5 (q), 77.9 (d), 122.0 (d, 2C), 128.1 (s), 128.2 (d), 128.4 (d), 128.5 (d, 2C), 128.9 (d, 2C), 129.7 (d, 2C), 133.9 (s), 136.0 (s), 139.4 (s), 154.2 (s)						
<u>5Aa</u>	2295, 1385 // * 4.22 (s, 3H), 7.54-7.57 (m, 3H), 7.86-7.88 (m, 2H), 7.89 (s, 1H) / 33.9 (q), 118.3 (d), 120.4 (s), 126.8 (d, 2C), 129.2 (d, 2C), 130.7 (d), 133.8 (s), 150.7 (s) $^{\rm b}$						
<u>7</u> Aa	1755, 1715 // * 3.56 (s, 3H), 4.00 (s, 3H), 4.19 (s, 3H), 7.47-7.52 (m, 3H), 7.55-7.59 (m, 2H), 7.62 (s, 1H) / 33.8 (q), 52.6 (q), 53.8 (q), 113.1 (d), 115.9 (s), 127.1 (d, 2C), 128.9 (d, 2C), 130.0 (d), 136.0 (s), 136.5 (s), 150.8 (s), 156.3 (s), 159.4 (s), 160.4 (s), 160.5 (s)						
<u>78a</u>	1745, 1720 // **3.51 (s, 3H), 3.83 (s, 3H), 3.99 (s, 3H), 6.92 (s, 1H), 7.38-7.43 (m, 8H), 7.47-7.49 (m, 2H) / 33.6 (q), 51.6 (q), 53.5 (q), 111.5 (d), 114.0 (s), 123.5 (d, 2C), 127.1 (d, 2C), 128.6 (d, 2C), 129.2 (d), 129.3 (d), 129.6 (d, 2C), 136.9 (s), 138.0 (s), 138.3 (s), 141.1 (s), 149.6 (s), 151.4 (s), 160.5 (s), 161.0 (s)						

REFERENCES AND NOTES

- Overview: W.Dehaen and J.Becher, <u>Acta Chem.Scand.</u>, 1993, <u>47</u>, 244; <u>cf</u>. also J.A.Hickman and D.G.Wibberley, J.Chem.Soc., Perkin Trans.1, 1972, 2958.
- <u>Cf.</u> D.Moderhack and D.Decker, 14th International Congress of Heterocyclic Chemistry, Antwerpen, 1993, Abstracts of Papers, PO 3-211. — The direct approach from <u>1</u> where

 R^3 = H (Chichibabin method) is vitiated by tetrazole breakdown: D.Moderhack and A.Lembcke, Chem.Ztg., 1985, <u>109</u>, 432.

- Nitroso compounds of this type have been isolated, for example, in the series of pyr-rolo[2,1-b]thiazole (a,b), 1<u>H</u>-pyrrolo[1,2-a]imidazole (c), and both 1<u>H</u>-pyrrolo[1,2-b]-(d) and 1<u>H</u>-pyrrolo[2,1-c]-<u>s</u>-triazole (e): (a) V.K.Kibirev and F.S.Babichev, <u>Ukr.Khim.</u> <u>Zh.</u>, 1964, <u>30</u>, 488; T.Pyl and K.-H.Wünsch, <u>Z.Chem.</u>, 1965, <u>5</u>, 361; (b) S.McKenzie, B.B. Molloy, and D.H.Reid, <u>J.Chem.Soc.C</u>, 1966, 1908; J.M.Tedder, K.H.Todd, and W.K.Gibson, <u>ibid.</u>, 1969, 1279; (c) A.A.Druzhinina, P.M.Kochergin, and L.M.Alekseeva, <u>Khim.Geterotsikl.Soedin.</u>, 1972, 405; (d) F.S.Babichev and V.A.Kovtunenko, <u>Ukr.Khim.Zh.</u>, 1975, <u>41</u>, 181; (e) this work (see later).
- 4. From the reaction mixture with $\underline{3d}$, no definite material could be isolated.
- 5. (a) C.Grundmann and P.Grünanger, 'The Nitrile Oxides,' Springer-Verlag, Berlin, 1971;
 (b) M.Christl, J.P.Warren, B.L.Hawkins, and J.D.Roberts, <u>J.Am.Chem.Soc</u>., 1973, <u>95</u>, 4392.
- 6. mp 225-228 °C (CHCl₃/Et₂O); ir (KBr): 2230 cm⁻¹; ¹H / ¹³C nmr (DMSO-d₆): δ 4.24 (s, 3H), 7.56-7.63 (m, 3H), 7.91-7.95 (m, 2H), 8.04 (s, 1H) / 34.1 (q), 115.7 (s), 119.0 (s), 121.2 (d), 126.9 (d, 2C), 129.4 (d, 2C), 131.0 (d), 132.3 (s), 150.1 (s).
- 7. $\underline{6a} / \underline{6e}$ (TFA): $\lambda_{max} (\log \epsilon)$: 258 (4.132) / 262 (3.992), 295 (3.858) / 310 (3.939), 401 (3.850) / 415 nm (3.818) [cf. <u>54a</u> (MeOH): 232 (3.964), 308 nm (4.247)]. For O-protonation of <u>4A</u>, cf. ref.^{3a,d}
- 8. Green solid, mp 203-210 °C (decompt.; DMF); ir (KBr): 3130 cm⁻¹; ¹H nmr (CDCl₃): **8** 3.99 (s, 3H), 6.40 (d, <u>J</u> = 0.4 Hz, 1H), 7.46-7.49 (m, 3H), 8.14-8.17 (m, 2H), 9.16 (br s, 1H); prepared by nitrosation of 1-methyl-6-phenyl-1<u>H</u>-pyrrolo[2,1-<u>c</u>]-1,2,4-triazole [mp 153-157 °C (CHCl₂/light petroleum)].
- 9. mp 126-129 °C (CHCl₃/Et₂O); ir (KBr): 1740, 1715 cm⁻¹; ¹H / ¹³C nmr (CDCl₃): δ 3.61 (s, 3H), 3.93 (s, 3H), 4.02 (s, 3H), 7.04 (s, 1H), 7.38-7.44 (m, 5H), 7.69 (s, 1H) / 35.5 (q), 52.3 (q), 53.4 (q), 115.8 (d), 116.5 (s), 127.0 (d, 2C), 128.9 (d, 2C), 129.5 (d), 135.3 (s), 137.6 (s), 150.2 (s), 150.9 (d), 156.8 (s), 160.0 (s), 160.5 (s), 161.1 (s).

Received, 20th September, 1993