SYNTHESIS OF DIETHYL 1,2,3-TRIAZOLEALKYL-PHOSPHONATES THROUGH 1,3-DIPOLAR CYCLOADDITION OF AZIDES WITH ACETYLENES

Francisco Palacios*, Ana Mª Ochoa de Retana, and Jaione Pagalday

Departamento de Química Orgánica, Facultad de Farmacia, Universidad del País

Vasco, Apto. 450, 01007 Vitoria, Spain

<u>Abstract</u> - 4,5-Disubstituted 1-(diethoxyphosphorylmethyl)-1,2,3-triazoles were prepared through thermal 1,3-dipolar cycloaddition of diethyl azidoalkylphosphonates with alkynes.

1,2,3-Triazoles have received much attention because of their range of applications, not only for their theoretical interest and synthetic value¹ but also for their utility in agriculture² as fungicides,^{3,4} herbicides,⁴ and industry as light stabilizers,⁵ fluorescent whiteners,⁶ optical brightening agents and corrosion retardants.⁷⁻⁹ Moreover, 1,2,3-triazole derivatives show significant antimicrobial,¹⁰ cytostatic,¹¹⁻¹⁴ virostatic,¹⁵ and antiinflamatory¹⁶ activity.

In addition, the biological activity^{17,18} of α -aminophosphonic acid analogues of the naturally occurring amino acids and their derivatives has resulted in a considerable research effort directed towards developing suitable synthetic methodologies for their preparation. In recent years, we have been involved in the chemistry of phosphazenes ¹⁹ obtained from azides and phosphines as well as their utility in the preparation of acyclic²⁰ and heterocyclic²¹ compounds. Therefore, it was considered worth exploring the synthesis of functionalized 1,2,3-triazoles derived from α -aminophosphonates.

1,3-Dipolar cycloadditions are an excellent tool in the construction of five membered heterocycles,^{22,23} and one of the most versatile synthetic routes to triazoles involves the ring formation through thermal 1,3-dipolar cycloaddition of azides and alkynes.²³ However, it was felt that certain variations in the azides might permit easier refunctionalization of the resultant cycloadducts. In this context, it is worth noting that very few reports have been published of the cycloaddition reactions of phosphorus functionalized 1,3-dipoles as well as some synthetic applications of their cycloadducts.²⁴ Therefore, we report here what is, an example of an intermolecular cycloaddition reaction of phosphorus functionalized azides and alkynes leading to substituted triazoles derived from phosphonates.

When diethyl azidomethylphosphonate²⁵ (1) was allowed to react with an equimolecular amount of dimethyl acetylenedicarboxylate (2, $R^2 = R^3 = CO_2CH_3$) and dibenzoylacetylene (2, $R^2 = R^3 = COC_6H_5$) in refluxing toluene, 1-phosphonomethyl-1,2,3-triazoles (3a) and (3b) were respectively obtained in good yields. Similarly, other azidomethylphosphonates (1) reacted with electron-withdrawing substituted alkynes, such as carboxylic acid esters (methyl propiolate, methyl butynoate, ethyl phenylpropiolate) and phosphorus containing acetylenes (phosphine oxide and phosphonates) in toluene at reflux to give 1-(diethoxyphosphorylalkyl)-1,2,3-triazole (3c-o) and (3'c-o). Regioisomeric cycloadducts (3) and (3') were isolated by means of short flash column chromatography with *n*-hexane/ether as cluent. Yields and regioisomers ratio are given in Table 1.

The structure of compounds (3) and (3') is supported by the spectroscopic data. Thus, the ^{31}P -nmr spectrum of the crude reaction mixture (3), (3'g) showed absorptions in an approximate regioisomer ratio of 50 : 50 as indicated by the relative peak areas for each compound. Further examination of the ^{1}H and ^{13}C -nmr spectra was consistent with the structure of both isomers. Then, in the ^{1}H -nmr spectrum of compound (3g) methylene protons resonate at δ_H 5.00 as well-resolved doublets with coupling constants of ($^{2}J_{PH}$ = 13.6 Hz) and the methyl group gives a singlet at δ_H 2.26, while the 13 C-nmr spectrum shows an absorption at δ_C 45.42 ($^{1}J_{PC}$ = 153 Hz) assignable to the carbon bound to phosphorus. In addition, selective irradiation at the frequency of the methyl signal resulted in an NOE. enhancement of the doublet at δ_H 5.00. This result supports the proposed structure for regioisomer (3g). Conversely, compound (3'g) showed clearly different absorption, namely a doublet at δ_H 4.68 ($^{2}J_{PH}$ = 12.7 Hz) for the methylene protons as well as a high-field signal for the methyl group at δ_H 2.59, while in the ^{13}C -nmr spectrum the absorption of the methylene carbon was shifted to higher field δ_C 44.10, with a higher value of the phosphorus-carbon coupling constant ($^{1}J_{PC}$ = 155 Hz) relative to the other regioisomer, which supports the proposed structure of triazole (3'g).

Table 1: 1,2,3-Triazole derivatives obtained.

Compound	<u>R</u> 1	R ²	R ³	Yield (%)	Ratio (3:3')a
3a	Н	CO ₂ CH ₃	CO ₂ CH ₃	92	
3 b	Н	COC ₆ H ₅	COC6H5	85	
3/3'c	Н	Н	CO ₂ CH ₃	86	25:75
3/3'd	Н	CH ₃	CO ₂ CH ₃	85	44 : 56
3/3'e	Н	C6H5	CO ₂ C ₂ H ₅	83	50 : 50
3/3'f	Н	CH3	PO(C6H5)2	80	40:60
3/3'g	Н	CH3	PO(OC ₂ H ₅) ₂	82	50 : 50
3/3'h	СН3	Н	CO ₂ CH ₃	90	20:80
3/3'i	CH3	СН3	CO ₂ CH ₃	89	50 : 50
3/3¹j	СН3	C6H5	CO ₂ C ₂ H ₅	86	35:65
3/3'k	СН3	СН3	PO(OC ₂ H ₅) ₂	85	49 : 51
3/3'1	C6H5	Н	CO ₂ CH ₃	95	18:82
3/3'm	C6H5	CH3	CO ₂ CH ₃	83	45:55
3/3'n	C6H5	C ₆ H ₅	CO ₂ C ₂ H ₅	85	46 : 54
3/3'o	C6H5	CH ₃	PO(OC ₂ H ₅) ₂	90	52:48

^a Determined by ³¹P-nmr from crude reaction mixtures.

In conclusion, an example of intermolecular [3+2] cycloaddition reaction of azidoalkylphosphonates is reported. This reaction leads to a convenient method for the synthesis of polysubstituted 1,2,3-triazoles derived from phosphonates (3).

ACKNOWLEDGMENT

The present work has been supported by Dirección General de Investigación Científica y Técnica (DGICYT, PB 90-0649) and, in part, by Gobierno Vasco (PGV-92-36). J. Pagalday thanks the Conserjería de Educación del Gobierno Vasco for a Predoctoral fellowship.

EXPERIMENTAL

Column chromatography was carried out on silica gel (Merck, 70-230 mesh) with a mixture of hexane-ether as eluent. Melting points were determined with a Buchi SMP-20 apparatus and are uncorrected. Infrared spectra were taken on a Beckman IR 42-40 spectrophotometer, and band frecuencies are reported in cm⁻¹. ¹H and ¹³C-nmr and N O E. experiment were recorded on a Bruker 250 MHz spectrometer in CDCl₃ as solvent. Chemical shifts were reported downfield from TMS as an internal reference for ¹H-nmr spectra and CDCl₃ for ¹³C-nmr spectra (abbreviations used: s singlet; d doublet; t triplet; q quartet; qu quintet; m multiplet; dd doublet of doublets). ³¹P-nmr spectra were obtained on a Varian VXR 300 MHz spectrometer using phosphoric acid 85 % as an internal reference. Mass spectra were obtained on a Hewlett Packard 5890 espectrometer. Microanalyses were performed in a Perkin Elmer model 240 instrument.

Preparation of 1,2,3-Triazoles (3a) and (3b).

To a solution of dimethyl acetylenedicarboxylate or dibenzoylacetylene (2) (3 mmol) in toluene (10 ml) was added dropwise with stirring a solution of diethyl 1-azidoalkylphosphonate²⁵ (1) (3 mmol) in toluene (20 ml), the reaction mixture was heated at reflux for 30-40 h, cooled and evaporated. Crude residue was purified by flash column cromatography with n-hexane/ether (1:1) as eluent to give product (3).

1-(Diethoxyphosphorylmethyl)-4,5-bis(methoxycarbonyl)-1,2,3-triazole (3a): Obtained as white solid. Recrystallized from a mixture of CH₂Cl₂/hexane; mp 83-84 $^{\circ}$ C; 1 H-nmr, δ_{H} : 1.20 (t, 3 J_{HH} = 7.1 Hz, 6H), 3.88 (s, 3H), 3.92 (s, 3H), 4.03 (m, 4H), 5.04 (d, 2 J_{PH} = 13.2 Hz, 2H) ppm; 13 C-nmr, δ_{H} : 15.9, 45.3 (d, 1 J_{PC} = 153.2 Hz), 52.4, 53.2, 63.3, 130.4, 139.6, 158.5, 159.9 ppm; 31 P-nmr, δ_{P} : 15.56 ppm; ms, m/z: 307 (M⁺ - N₂, 36%); ir, v: 1737, 1731, 1460, 1247, 1053 cm⁻¹; Anal. Calcd for C₁₁H₁₈N₃O₇P: C, 39.39; H, 5.41; N, 12.54. Found: C, 39.42; H, 5.49; N, 12.60.

4,5-Dibenzoyl(diethoxyphosphorylmethyl)-1,2,3-triazole (3b): Obtained as syrup; R_f (ethyl acetate): 0.58; ¹H-nmr, δ_H : 1.11 (t, ³J_{HH} = 7.1 Hz, 6H), 3.99 (m, 4H), 5.05 (d, ²J_{PH} = 12.9 Hz, 2H), 7.25-8.15 (m, 10H) ppm; ¹³C-nmr, δ_C : 15.9, 44.4 (d, ¹J_{PC} = 151.7 Hz), 63.2, 128.3-136.1, 137.1, 147.1, 184.9, 185.8 ppm; ³¹P-nmr, δ_P : 15.86 ppm; ms, m/z: 427 (M⁺, 5%); ir, υ : 1664, 1500, 1250, 1240, 1060, 1020 cm⁻¹; Anal. Calcd for C₂₁H₂₂N₃O₅P: C, 58.99; H, 5.19; N, 9.83. Found: C, 59.22; H, 5.29; N, 9.90.

Preparation of Substituted 1,2,3-Triazoles (3/3' c-0).

To a solution of alkyne (2) (3 mmol) in toluene (10 ml) was added dropwise with stirring a solution of diethyl 1-azidoalkylphosphonate²⁵ (1) (3 mmol) in toluene (20 ml), the reaction mixture was heated at reflux for 30-40 h. Concentration in vacuum gave the mixture of the two regioisomeric cycloadducts (3) and (3') isolated by flash column chromatography (silica gel; eluent: n-hexane-ether).

1-(Diethoxyphosphorylmethyl)-4-methoxycarbonyl-1,2,3-triazole (3c): Obtained as syrup; R_f (ethyl acetate): 0.35; ${}^{1}H$ -nmr, δ_H : 1.29 (t, ${}^{3}J_{HH} \approx 7.1$ Hz, 6H), 3.93 (s, 3H), 4.13 (m, 4H), 5.24 (d, ${}^{2}J_{PH} = 13.5$ Hz, 2H), 8.11 (s, 1H) ppm; ${}^{13}C$ -nmr, δ_C : 16.2, 45.4 (d, ${}^{1}J_{PC} = 153.4$ Hz), 52.6, 63.2, 128.3, 137.5, 158.8 ppm; ${}^{3}I_{P}$ -nmr, δ_P : 16.15 ppm; ms, m/z: 278 (M⁺+ 1, 12%); Anal. Calcd for $C_9H_1_6N_3O_5P$: C, 38.97; H, 5.82; N, 15.16. Found: C, 39.17; H, 5.69; N, 15.08.

1-(Diethoxyphosphorylmethyl)-5-methoxycarbonyl-1,2,3-triazole (3°c): Obtained as white solid. Recrystallized from a mixture of CH₂Cl₂/hexane; mp 85-86°C; R_f (ethyl acetate): 0.27; 1 H-nmr, δ_{H} : 1.26 (t, 3 J_{HH} = 7.0 Hz, 6H), 3.90 (s, 3H), 4.10 (m, 4H), 4.79 (d, 2 J_{PH} = 13.2 Hz, 2H), 8.28 (s, 1H) ppm; 13 C-nmr, δ_{C} : 16.1, 45.9 (d, 1 J_{PC} = 155.1 Hz), 52.1, 63.6, 128.5, 140.1, 160.7 ppm; 31 P-nmr, δ_{P} : 15.79 ppm; ms, m/z: 249 (M⁺ - N₂, 17%); ir, υ : 1731, 1460, 1255, 1210, 1040, 1015 cm⁻¹, Anal. Calcd for C9H₁₆N₃O₅P: C, 38.97; H, 5.82; N, 15.16. Found: C, 39.14; H, 5.73; N, 15.07.

1-(Diethoxyphosphorylmethyl)-5-methyl-4-methoxycarbonyl-1,2,3-triazole (3d): Obtained as syrup; R_f (ethyl acetate): 0.36; 1 H-nmr, δ_H : 1.26 (t, 3 J $_{HH}$ = 7.0 Hz, 6H), 2.51 (s, 3H), 4.02 (s, 3H), 4.10 (m, 4H), 5.18 (d, 2 J $_{PH}$ = 13.4 Hz, 2H) ppm; 13 C-nmr, δ_C : 11.3, 16.3, 45.7 (d, 1 J $_{PC}$ = 153.4 Hz), 52.4, 63.2, 130.4, 137.5, 162.9 ppm; 31 P-nmr, δ_P : 16.82 ppm; ms, m/z: 291 (M⁺, 5%); Anal. Calcd for $C_{10}H_{18}N_{3}O_{5}P$: C, 41.22; H, 6.23; N, 14.43. Found: C, 41.35; H, 6.35; N, 14.55. 1-(Diethoxyphosphorylmethyl)-4-methyl-5-methoxycarbonyl-1,2,3-triazole (3'd): Obtained as syrup; R_f (ethyl acetate): 0.27; 1 H-nmr, δ_H : 1.28 (t, 3 J $_{HH}$ = 7.0 Hz, 6H), 2.63 (s, 3H), 3.92 (s, 3H), 4.10 (m, 4H), 4.68 (d, 2 J $_{PH}$ = 12.6 Hz, 2H) ppm; 13 C-nmr, δ_C : 9.1, 16.2, 44.0 (d, 1 J $_{PC}$ = 156.6 Hz), 51.9, 63.6, 131.7, 139.8, 159.5 ppm; 31 P-nmr, δ_P : 16.50 ppm; ms, m/z: 291 (M⁺, 62%); ir, υ : 1723, 1450, 1243, 1016 cm⁻¹; Anal. Calcd for $C_{10}H_{18}N_{3}O_{5}P$: C, 41.22; H, 6.23; N, 14.43. Found: C, 41.35; H, 6.35; N, 14.55.

1-(Diethoxyphosphorylmethyl)-4-ethoxycarbonyl-5-phenyl-1,2,3-triazole (3e): Obtained as syrup; R_f (ethyl acetate): 0.37; 1 H-nmr, δ_H : 1.24 (m, 9H), 4.10 (m, 4H), 4.31 (m, 2H), 5.21 (d, 2 J $_{PH}$ = 13.2 Hz, 2H), 7.35 (m, 5H) ppm; 13 C-nmr, δ_C : 13.7, 16.1, 45.9 (d, 1 J $_{PC}$ = 153.4 Hz, 2H), 62.1, 63.4, 127.9-129.3, 125.0, 149.8, 159.1 ppm; 3 1P-nmr, δ_P : 16.88 ppm; ms, m/z: 367 (M⁺, 7%); Anal. Calcd for C_{16} H₂₂N₃O₅P: C, 52.29; H, 6.04; N, 11.44. Found: C, 52.17; H, 6.01; N, 11.37. 1-(Diethoxyphosphorylmethyl)-5-ethoxycarbonyl-4-phenyl-1,2,3-triazole (3'e): Obtained as syrup; R_f (ethyl acetate): 0.30; 1 H-nmr, δ_H : 1.11 (m, 9H), 3.94 (m, 4H), 4.15 (m, 2H), 4.50 (d, 2 J $_{PH}$ = 13.2 Hz, 2H), 7.36 (m, 5H) ppm; 1 C-nmr, δ_C : 13.9, 16.1, 43.7 (d, 1 J $_{PC}$ = 155.1 Hz, 2H), 60.8, 63.3, 125.3, 141.8, 160.5 ppm; 3 1P-nmr, δ_P : 16.33 ppm; ms, m/z: 367 (M⁺, 7%); ir, v: 1721, 1480, 1250, 1210, 1020 cm⁻¹; Anal. Calcd for C_{16} H₂₂N₃O₅P: C, 52.29; H, 6.04; N, 11.44. Found: C, 52.33; H, 6.11; N, 11.47.

1-(Diethoxyphosphorylmethyl)-4-diphenylphosphoryl-5-methyl-1,2,3-triazole (3f): Obtained as syrup; R_f (ethyl acetate): 0.13; 1 H-nmr, δ_H: 1.20 (m, 6H), 1.77 (s, 3H), 4.06 (m, 4H), 5.40 (d, 2 J_{PH} = 13.6 Hz, 2H), 7.48-7.66 (m, 10H); 13 C-nmr, δ_C 12.2, 16.2, 45.6 (d, 1 J_{PC} = 152.3 Hz), 63.1, 124.5 (d, 1 J_{PC} = 113.7 Hz), 128.8-133.2, 130.7, 148.6 (d, 2 J_{PC} = 15.7 Hz); 31 P-nmr, δ_P: 20.81, 17.57 ppm; ms, m/z: 404 (M⁺ - N₂, 6%); Anal. Calcd for C₂₀H₂₅N₃O₄P₂: C, 55.41; H, 5.82; N, 9.70. Found: C, 55.52; H, 5.87; N, 9.62. 1-(Diethoxyphosphorylmethyl)-5-diphenylphosphoryl-4-methyl-1,2,3-triazole (3'f): Obtained as syrup; R_f (ethyl acetate): 0.10; 1 H-nmr, δ_H: 1.05 (m, 6H), 2.40 (s, 3H), 3.87 (m, 4H), 4.52 (d, 2 J_{PH} = 12.7 Hz, 2H), 7.18-7.65 (m, 10H); 13 C-nmr, δ_C: 8.6, 16.2, 43.5 (d, 1 J_{PC} = 155.5 Hz), 63.2, 128.2-131.9, 133.6 (d, 1 J_{PC} = 268 Hz), 142.2 (d, 2 J_{PC} = 25.1 Hz); 31 P-nmr, δ_P: 20.77, 17.60 ppm; ms, m/z: 404 (M⁺, 2%); ir, v: 1440, 1250, 1190, 1020 cm⁻¹; Anal. Calcd for C₂₀H₂₅N₃O₄P₂: C, 55.41; H, 5.82; N, 9.70. Found: C, 55.49; H, 5.89; N, 9.75.

4-Diethoxyphosphoryl-1-(1-diethoxyphosphoryl-1-methylmethyl)-5-methyl-1,2,3-triazole (3g): Obtained as syrup; R_f (ethyl acetate): 0.20; ¹H-nmr, δ_H : 1.15 (m, 12H), 2.26 (s, 3H), 4.00 (m, 8H), 5.00 (d, ²J_{PH} = 13.6 Hz, 2H); ¹³C-nmr, δ_C : 11.4, 16.2, 45.4 (d, ¹J_{PC} = 154.0), 63.2, 122.5 (d, ¹J_{PC} = 219.6 Hz), 150.0 (d, ²J_{PC} = 20.6 Hz); ³¹P-nmr, δ_P : 17.35, 5.12 ppm; ms, m/z: 369 (M⁺, 10%); Anal. Calcd for C₁₂H₂₅N₃O₄P₂: C, 39.01; H, 6.83; N, 11.38. Found: C, 39.11; H, 6.86; N,

11.29. 5-Diethoxyphosphoryl-1-(diethoxyphosphoryl-1-methylmethyl)-4-methyl-1,2,3-triazole (3'g): Obtained as syrup; R_f (ethyl acetate): 0.12; 1 H-nmr, δ_{H} : 1.32 (m, 12H), 2.59 (s, 3H), 4.17 (m, 8H), 4.68 (d, 2 J $_{PH}$ = 12.7 Hz, 2H); 13 C-nmr, δ_{C} : 8.7, 16.1, 44.1 (d, 1 J $_{PC}$ = 155.5 Hz), 63.3, 132.1 (d, 1 J $_{PC}$ = 238 Hz), 142.0 (d, 2 J $_{PC}$ = 26 Hz); 31 P-nmr, δ_{P} : 16.12, 7.93 ppm; ms, m/z: 369 (M⁺, 9%); ir, v: 1440, 1245, 1015 cm⁻¹; Anal. Calcd for C₁₂H₂₅N₃O₄P₂: C, 39.01; H, 6.83; N, 11.38. Found: C, 39.09; H, 6.89; N, 11.42.

1-(1-Diethoxyphosphoryl-1-methylmethyl)-4-methoxycarbonyl-1,2,3-triazole (3h): Obtained as syrup; R_f (ethyl acetate): 0.27; 1 H-nmr, δ_H : 1.25 (m, 6 H), 1.91 (dd, 3 J $_{HH}$ = 7.3 Hz, 3 J $_{PH}$ = 16.0 Hz, 3H), 3.91 (s, 3H), 4.11 (m, 4H), 5.90 (m, 1H), 8.11 (s, 1H); 13 C-nmr, δ_C : 15.5, 16.3, 52.2 (d, 1 J $_{PC}$ = 155.2, Hz), 52.5, 63.5, 129.9, 137.6, 159.8; 31 P-nmr, δ_P : 19.41 ppm; ms, m/z: 263 (M $^{+}$ - N₂, 13%); Anal. Calcd for C_{10} H₁₈N₃O₅P: C, 41.22; H, 6.23; N, 14.43. Found: C, 41.20; H, 6.12; N, 14.45. 1-(1-Diethoxyphosphoryl-1-methylmethyl)-5-methoxycarbonyl-1,2,3-triazole (3'h): Obtained as syrup; R_f (ethyl acetate): 0.20; 1 H-nmr, δ_H : 1.19 (m, 6H), 1.74 (dd, 3 J $_{HH}$ = 7.4 Hz, 3 J $_{PH}$ = 16.0 Hz, 3H), 3.81 (s, 3H), 4.04 (m, 4H), 5.05 (m, 1H), 8.23 (s, 1H); 13 C-nmr, δ_C : 15.8, 16.1, 52.1, 53.3 (d, 1 J $_{PC}$ = 155.8 Hz), 63.5, 127.0, 140.0, 160.8; 31 P-nmr, δ_P : 19.55 ppm; ms, m/z: 291 (M $^{+}$, 11%); ir, v: 1733, 1440, 1258, 1202, 1110, 1020 cm $^{-1}$; Anal. Calcd for C_{10} H₁₈N₃O₅P: C, 41.22; H, 6.23; N, 14.43. Found: C, 41.27; H, 6.30; N, 14.49.

1-(1-Diethoxyphosphoryl-1-methylmethyl)-5-methyl-4-methoxycarbonyl-1,2,3-triazole (3i): Obtained as syrup; R_f (ethyl acetate): 0.29; 1 H-nmr, δ_H : 1.05 (t, 3 J $_{HH}$ = 7.3 Hz, 6H), 1.68 (dd, 3 J $_{HH}$ = 7.2 Hz, 3 J $_{PH}$ = 15.9 Hz, 3H), 2.29 (s, 3H), 3.72 (s, 3H), 3.87 (m, 4H), 5.66 (m, 1H); 13 C-nmr, δ_C : 8.9, 15.3, 6.1, 52.2, 53.4 (d, 1 J $_{PC}$ = 155.2 Hz), 63.2, 125.8, 147.6, 159.7; 31 P-nmr, δ_P : 19.99 ppm; ms, m/z: 305 (M $^{+}$, 2%); Anal. Calcd for C_{11} H20N3O5P: C, 43.26; H, 6.61; N, 13.77. Found: C, 43.31; H, 6.59; N, 13.80. 1-(1-Dimetoxyphosphoryl-1-methylmethyl)-4-methyl-5-methoxycarbonyl-1,2,3-triazole (3'i): Obtained as syrup; R_f (ethyl acetate): 0.22; 1 H-nmr, δ_H : 12.07 (t, 3 J $_{HH}$ = 7.4 Hz, 6H), 1.70 (dd, 3 J $_{HH}$ = 7.4 Hz, 3 J $_{PH}$ = 16.1 Hz, 3H), 2.43 (s, 3H), 3.70 (s, 3H), 3.90 (m, 4H), 4.57 (m, 1H); 13 C-nmr, δ_C : 12.3, 14.9, 16.1, 51.6, 52.6 (d, 1 J $_{PC}$ = 157.4 Hz), 63.6, 135.9, 139.2, 161.8; 31 P-nmr, δ_P : 19.33 ppm; ms, m/z: 305 (M $^{+}$, 21%); ir, v: 1725, 1460, 1230, 1020 cm $^{-1}$; Anal. Calcd for C_{11} H20N3O5P: C, 43.26; H, 6.61; N, 13.77. Found: C, 43.35; H, 6.68; N, 13.83.

1-(1-Diethoxyphosphoryl-1-methylmethyl)-4-ethoxycarbonyl-5-fenyl-1,2,3-triazole (3j): Obtained as syrup; R_f (ethyl acetate): 0.60; 1 H-nmr, δ_H : 1.25 (m, 9H), 1.92 (dd, 3 J $_{HH}$ = 7.5 Hz, 3 J $_{PH}$ = 16.1 Hz, 3H), 4.14 (m, 4H), 4.27 (m, 2H), 5.84 (m, 1H), 7.34-7.68 (m, 5H); 13 C-nmr, δ_C : 13.5, 15.3, 16.2, 53.0 (d, 1 J $_{PC}$ = 155.3 Hz), 61.8, 63.3, 124.8, 129.3-130.1, 149.5, 159.3; 31 P-nmr, δ_P : 19.96 ppm; ms, m/z: 381 (M+, 14%); Anal. Calcd for C_{17} H24N3O5P: C, 53.52; H, 6.35; N, 11.02. Found: C, 53.47; H, 6.39; N, 11.09. 1-(1-Diethoxyphosphoryl-1-methylmethyl)-5-ethoxycarbonyl-4-fenyl-1,2,3-triazole (3'j): Obtained as syrup; R_f (ethyl acetate): 0.40; 1 H-nmr, δ_H : 1.29 (m, 9H), 1.80 (dd, 3 J $_{HH}$ = 7.3 Hz, 3 J $_{PH}$ = 15.8 Hz, 3H), 4.12 (m, 4H), 4.30 (m, 2H), 4.57 (m, 1H), 7.48 (m, 5H); 13 C-nmr, δ_C : 14.1, 16.4, 16.6, 51.8 (d, 1 J $_{PC}$ = 157.0 Hz), 61.0, 64.0, 128.7, 130.1-133.3, 139.5, 162.5; 31 P-nmr, δ_P : 19.37 ppm; ms, m/z: 381 (M+, 3%); ir, v: 1723, 1450, 1240, 1212, 1016 cm⁻¹; Anal. Calcd for C_{17} H24N3O5P: C, 53.52; H, 6.35; N, 11.02. Found: C, 53.58; H, 6.40; N, 11.07.

4-Diethoxyphosphoryl-1-(1-diethoxyphosphoryl-1-methylmethyl)-5-methyl-1,2,3-triazole (3k): Obtained as syrup; R_f (ethyl acetate): 0.23; ¹H-nmr, δ_H : 1.29 (m, 12H), 1.79 (dd, ³J_{HH} = 7.2.Hz, ³J_{PH} = 15.9 Hz, 3H), 2.42 (s, 3H), 4.12 (m, 8H), 5.69 (m, 1H); ¹³C-nmr, δ_C : 1.2, 16.1, 16.3, 52.3 (d, ¹J_{PC} = 155.7 Hz), 62.9, 122.6 (d, ¹J_{PC} = 217.6 Hz), 149.6 (d, ²J_{PC} = 20.3 Hz); ³¹P-nmr, δ_P : 20.26, 5.43 ppm; ms, m/z: 383 (M⁺, 7%); Anal. Calcd for C₁₃H₂₇N₃O₆P₂: C, 40.72; H, 7.10; N, 10.96.

Found: C, 40.80; H, 7.20; N, 11.03. 5-Diethoxyphosphoryl-1-(diethoxyphosphoryl-1-methylmethyl)-4-methyl-1,2,3-triazole (3'k): Obtained as syrup; R_f (ethyl acetate): 0.17; 1 H-nmr, δ_H : 1.22 (m, 12H), 1.86 (dd, 3 J $_{HH}$ = 7.4 Hz, 3 J $_{PH}$ = 16.1 Hz), 2.52 (s, 3H), 4.10 (m, 8H), 4.66 (m, 1H); 13 C- nmr, δ_C : 8.5, 15.1, 16.0, 51.2 (d, 1 J $_{PC}$ = 157.5 Hz), 62.6, 63.4, 131.9 (d, 1 J $_{PC}$ = 238.7 Hz), 141.2 (d, 2 J $_{PC}$ = 34,8 Hz); 31 P-nmr, δ_P : 19.48, 8.26 ppm; ms, m/z: 383 (M⁺, 11%); ir, v: 1450, 1258, 1020 cm⁻¹; Anal. Calcd for C₁3H₂7N₃O₆P₂: C, 40.72; H, 7.10; N, 10.96. Found: C, 40.68; H, 7.22; N, 11.01.

1-(1-Diethoxyphosphoryl-1-phenylmethyl)-4-methoxycarbonyl-1,2,3-triazole (3l): Obtained as syrup; R_f (ethyl acetate): 0.38; 1 H-nmr, δ_H : 1.18 (m, 6H), 3.80 (s, 3H), 4.08 (m, 4H), 6.96 (d, 2 J $_{PH}$ = 22.0 Hz, 1H), 7.50 (m, 5H), 8.12 (s, 1H); 13 C-nmr, δ_C : 15.9, 52.3, 61.4 (d, 1 J $_{PC}$ = 153.3 Hz), 63.6, 128.4-130.0, 132.0, 137.3, 158.5; 13 P-nmr, δ_P : 15.68 ppm; ms, m/z: 325 (M $^{+}$ -N₂, 15%); Anal. Calcd for C_{15} H20N3O5P: C, 50.97; H, 5.71; N, 11.90. Found: C, 50.89; H, 5.78; N, 11.86. 1-(1-Diethoxyphosphoryl-1-phenylmethyl)-5-methoxycarbonyl-1,2,3-triazole (3'l): Obtained as syrup; R_f (ethyl acetate): 0.33; 1 H-nmr, δ_H : 1.15 (m, 6H), 3.87 (s, 3H), 4.05 (m, 4H), 6.36 (d, 2 J $_{PH}$ = 21.3 Hz, 1H), 7.34 (m, 5H), 8.74 (s, 1H). 13 C-nmr, δ_C : 15.8, 51.6, 60.7 (d, 1 J $_{PC}$ = 155.0 Hz), 63.7, 128.7-129.8, 131.71, 139.54, 160.50; 31 P-nmr, δ_P : 15.91 ppm; ms, m/z: 353 (M $^{+}$, 2%); ir, v: 1732, 1450, 1380, 1310, 1257, 1035 cm $^{-1}$; Anal. Calcd for C_{15} H20N3O5P: C, 50.97; H, 5.71; N, 11.90. Found: C, 51.01; H, 5.80; N, 11.97.

1-(1-Diethoxyphosphoryl-1-phenylmethyl)-5-methyl-4-methoxycarbonyl-1,2,3-triazole (3m): Obtained as syrup; R_f (ethyl acetate): 0.32; 1 H-nmr, δ_{H} : 1.20 (m, 6H), 2.43 (s, 3H), 3.90 (s, 3H), 4.21 (m, 4H), 6.88 (d, 2 J $_{PH}$ = 22.2 Hz, 1H), 7.28-7.48 (m, 5H); 13 C-nmr, δ_{C} : 12.5, 16.2, 51.8, 60.3 (d, 1 J $_{PC}$ = 155.3 Hz), 64.1, 124.4, 148.0, 159.6; 31 P-nmr, δ_{P} : 16.04 ppm; ms, m/z: 339 (M+- N₂, 17%); Anal. Calcd for C₁₆H₂₂N₃O₅P: C, 52.30; H, 6.04; N, 11.44. Found: C, 52.32; H, 5.99; N, 11.52. 1-(1-Diethoxyphosphoryl-1-phenylmethyl)-4-methyl-5-methoxycarbonyl-1,2,3-triazole (3'm): Obtained as syrup; R_f (ethyl acetate): 0.26; 1 H-nmr, δ_{H} : 1.15 (m, 6H), 2.49 (s, 3H), 3.84 (s,3 H), 4.02 (m, 4H), 5.45 (d, 2 J $_{PH}$ = 23.1 Hz, 1H), 7.26-742 (m, 5H); 13 C-nmr, δ_{C} : 8.9, 16.1, 52.2, 59.7 (d, 1 J $_{PC}$ = 156.0 Hz), 63.8, 131.8, 139.2, 161.8; 31 P-nmr, δ_{P} : 15.18 ppm; ms, m/z: 367 (M+, 10%); ir, υ : 1720, 1460, 1235, 1018 cm⁻¹; Anal. Calcd for C₁₆H₂₂N₃O₅P: C, 52.30; H, 6.04; N, 11.44. Found: C, 52.38; H, 6.08; N, 11.50.

1-(1-Diethoxyphosphoryl-1-phenylmethyl)-4-methoxycarbonyl-5-phenyl-1,2,3-triazole (3n): Obtained as syrup; R_f (ethyl acetate): 0.69; 1 H-nmr, δ_{H} : 1.15 (m, 9H), 4.07 (m, 2H), 4.24 (m, 4H), 6.88 (d, 2 J $_{PH}$ = 22.1 Hz, 1H), 7.25-7.68 (m, 10H); 13 C-nmr, δ_{C} : 13.63, 16.2, 61.2 (d, 1 J $_{PC}$ = 154.7 Hz), 61.9, 63.5, 124.3, 129.5-132.7, 149.9, 159.0; 31 P-nmr, δ_{P} : 15.88 ppm; ms, m/z: 414 (M+, 47%); Anal. Calcd for C₂₂H₂₆N₃O₅P: C, 59.57; H, 5.91; N, 9.48. Found: C, 59.68; H, 5.97; N, 9.52. 1-(1-Diethoxyphosphoryl-1-phenylmethyl)-5-methoxycarbonil-4-phenyl-1,2,3-triazole (3'n): Obtained as syrup; Rf (ethyl acetate): 0.54; 1 H-nmr, δ_{H} : 1.13 (m, 9H), 3.97 (m, 2H), 4.24 (m, 4H), 5.52 (d, 2 J $_{PH}$ = 22.8 Hz, 1H), 7.33 (m, 10H); 13 C-nmr, δ_{C} : 13.9, 16.1, 60.14 (d, 1 J $_{PC}$ = 155.4 Hz), 60.9, 63.9, 125.4, 128.4-130.6, 141.9, 160.6; 31 P-nmr, δ_{P} : 15.21 ppm; ms, m/z: 414 (M+, 37%); ir, v: 1737, 1450, 1420, 1390, 1263, 1215, 1198 cm⁻¹; Anal. Calcd for C₂₂H₂₆N₃O₅P: C, 59.57; H, 5.91; N, 9.48. Found: C, 59.65; H, 6.02: N, 9.54;

4-Diethoxyphosphoryl-1-(1-diethoxyphosphoryl-1-phenylmethyl)-5-methyl-1,2,3-triazole (30): Obtained as syrup; R_f (ethyl acetate): 0.27; 1H -nmr, δ_H : 1.03 (m, 12H), 2.29 (s, 3H), 3.92 (m, 4H), 4.04 (m, 4H), 6.59 (d, ${}^2J_{PH}$ = 22.6 Hz, 1H), 7.38 (m, 5H); ${}^{13}C$ -nmr, δ_C : 11.2, 15.8, 60.8 (d, ${}^1J_{PC}$ = 155.0 Hz), 62.8, 63.7, 122.2 (d, ${}^1J_{PC}$ = 216.8 Hz), 128.1-132.9, 150.0 (d, ${}^2J_{PC}$ = 20 Hz); ${}^{31}P$ -nmr, δ_P : 16.05, 5.04 ppm; ms, m/z: 445 (M⁺- N₂, 20%); Anal. Calcd for $C_{18}H_{29}N_{3}O_{6}P_{2}$: C,

48.52; H, 6.56; N, 9.44. Found: C, 48.47; H, 6.52; N, 9.39. 5-Diethoxyphosphoryt-1-(1-diethoxyphosphoryt-1-phenylmethyl)-4-methyl-1,2,3-triazole (3'o): Obtained as syrup; R_f (ethyl acetate): 0.11; 1 H-nmr, δ_{H} : 1.22 (m, 12H), 2.40 (s, 3H), 4.21 (m, 8H), 5.68 (d, 2 J_{PH} = 23.1 Hz), 7.33 (m, 5H); 13 C-nmr, δ_{C} : 8.5, 16.0, 60.1 (d, 1 J_{PC} = 155.4 Hz), 62.7, 63.7, 128.4-131.8, 134.0 (d, 1 J_{PC} = 238.6 Hz), 141.2 (d, 2 J_{PC} = 28.6 Hz); 31 P-nmr, δ_{P} : 15.87, 8.00 ppm; ms, m/z: 445 (M⁺, 9%); ir, v: 1480, 1294, 1260 cm⁻¹; Anal. Calcd for C₁₈H₂₉N₃O₆P₂: C, 48.52; H, 6.56; N, 9.44. Found: C, 48.55; H, 6.59; N, 9.50.

REFERENCES

- 1. A. R. Katritzky, J. Jiang, and J. V. Greenhill, J. Org. Chem., 1993, 58, 1987 and references therein cited.
- 2. K. H. Büchel, "Pflanzenschutz und Schädlingsbekämpfung", Thieme, Stuttgart, 1977.
- 3. A. G. Bayer, Ger. Pat. 2407 305, 1975 (Chem. Abstr., 1975, 83, 206290).
- A. G. Schering, Ger. Pat. 2834879, 1980 (Chem. Abstr., 1980, 93, 71758).
- 5. D. Philips, "Photochemistry", Chemical Society, London, 1971, Vol. 2, p. 795.
- 6. "Kirk-Othmer Encyclopedia of Chemical Technology", Wiley-Interscience, New York, 2nd. edn. 1964, p. 737.
- 7. P. G. Fox, G. Lewis, and P. J. Boden, Corrosion Sci., 1979, 19, 457 (Chem. Abstr., 1980, 92, 30906).
- Nippon Kasei Kogyo K.K. Jpn. Kokai Tokkyo Koho, 81 108 882, 1981 (Chem. Abstr., 1982, 96, 56 298).
- 9. Tatsuta Electric Wire and Cable Co., Ltd., Jpn Kokai Tokkyo Koho, 81 122884, 1981 (Chem. Abstr., 1982, 96, 56656).
- 10. L. W. Hartzel and F. R. Benson, J. Am. Chem. Soc., 1954, 76, 667.
- 11. L. Y. Ezerskya and N. A. Petrusha, Onkologiya, 1971, 2, 45.
- 12. N. A. Petrusha, Onkologiya, 1971, 2, 10.
- 13. V. P. Chernetskii, N. A. Petrusha, and J. V. Alekseeve, Fiziol. Aktiv. Veshchestra, 1973, 5, 121.
- 14. F. G. de las Heras, R. Alonso, and G. Alonso, J. Med. Chem., 1979, 22, 496.
- 15. O. Makabe, H. Suzuki, and S. Umezawa, Bull. Chem. Soc. Jpn., 1977, 50, 2689.
- 16. A. Krentzberger and J. Stratmann, J. Heterocycl. Chem., 1980, 17, 1505.
- 17. For reviews see B. Dhawar and D. Redmore," Phosphorus & Sulfur", 1987, 32, 119; P. Kafarski and B. Lejezak, "Phosphorus & Sulfur", 1991, 63, 193.
- R. B. Baudy, L. P. Greenblatt, I. L. Jirkowsky, M. Conklin, R. J. Russo, D. R. Bramlett, T. A. Emrey, J. T. Simmonds,
 D. M. Kowal, R. P. Stein, and R. P. Tasse, J. Med. Chem., 1993, 36, 331,
- 19. For a review see, J. Barluenga and F. Palacios, Org. Prep. Proc. Int., 1991, 23, 1.
- J. Barluenga, I. Merino, and F. Palacios, Tetrahedron Lett., 1989, 30, 5493; F. Palacios, I. Perez de Heredia, and G. Rubiales, Tetrahedron Lett., 1993, 34, 4377.
- J. Barluenga, F. Lopez, and F. Palacios, J. Chem. Soc., Chem. Commun., 1986, 1574; J. Barluenga, F. Lopez, and F. Palacios, Tetrahedron Lett., 1987, 28, 4327.
- 22. R. Huisgen, Angew. Chem., 1963, 75, 604; R. Huisgen and F. Palacios, Tetrahedron Lett., 1982, 23, 55.
- 23. For review, W. Lwowski, "1,3-Dipolar Cycloaddition Chemistry", ed., A. Padwa, Wiley-Interscience, New York, 1984, Vol. 1, p. 559.
- G. Nkugi and R. Neidlein, J. Prakt. Chem., 1992, 334, 218; O. Tsuge, S. Kanemasa, and H. Suga, Bull. Chem. Soc. Jpn., 1988, 61, 2133; S. F. Martin and T. H. Cheaveus, Tetrahedron Lett., 1989, 30, 7017.
- 25. T. Gajda and M. Matusiak, Synthesis, 1992, 367.