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SYNTHESES OF THE N(1)- AND N(3)-OXIDES OF 7-BENZYL-
ADENINE
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Abstract——Oxidation of 7-benzyladenine (9) with m-chloroperoxy-
benzeic acid in MeOH hag been found to yield 7-benzyladenine 1-oxide
(11) as the main product. Alternatively, the same N-oxide (11) has
been synthesized in 81% yield from 1-benzyl-4-(ethoxymethyleneami-
no)imidazole-5-carbonitrile (12) and hydroxylamine. Treatment of 1-
benzyl-4-(hydroxyamino)imidazole-5-carbonitrile (17), prepared in
63% yield from the corresponding 4-nitro derivative (13) by catalytic
reduction (Pt/Hg), with formamidine acetate in boiling EtOH gave 7-
benzyladenine 3-oxide (16) in 83% yield.

In the N*-monosubstituted adenine series, there is only a partial parallelism in regio-
selectivity between N”-alkylation and N?-oxidation. 9-Substituted adenines allow both N-
alkylation! and N-oxidation2 to occur preferentially at the 1l-position. For example, meth-
ylation of 9-benzyladenine (1) with Mel in AcNMeg at 50°C for 2 h gives 9-benzyl-1-
methyladenine hydriodide (38) in 84% yield.}dJ Oxidation of 1 with 30% aqueous H203 in
AcOH at 30°C for 5 days affords 9-benzyladenine 1-oxide (4) in 69% yield;?d oxidation of 9-ben-
zyladenine-2-d (2) with m-chloroperoxybenzoic acid (MCPBA) in MeCOH at room temperature
for 4 h furnishes the corresponding 1-oxide (5) in 71% yield.?f In the case of N6-substituted
adenines, alkylation under neutral conditions occurs mainly at the 3-position.? Whereas

benzylation of N6-benzyladenine (8) with PhCH2Br in AcNMeg* or HCONMeb is no exception
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(i. e., 8 > T), oxidation of 6 with MCPBA in MeOH at 30°C for 20 h yields the N{1)-oxide (8) as
the main product.’ Benzylation of 7-benzyladenine (9) with PhCH2Br in AcNMe; at 65°C for
16 h to form 3,7-dibenzyladenine hydrobromide (10) in 81% yield4 is representative of a
general 3-alkylation procedure in the 7-substituted adenine series.lf,?7 Thus, it would be
interesting to see whether direct N-oxidation of 9 could occur at the 3-position. In the present
work, we investigated the MCPBA oxidation of 9 in MeQH.

Oxidation of 972.4.8 with MCPBA in MeOH at 23°C for 7 h produced an N-oxide [mp 237-242°C
(decomp.)]?:1¢ and its m-chlorobenzoate salt (mp 193~194°C)!! in 40% and 36% yields, re-
spectively. On neutralization in 50% (v/v) agueous MeOH with conc. aqueous NHj, the salt
gave the N-oxide (in the free base form) in 85% yield. The N(1)-oxide structure (11) was
assignable to this N-oxide on the basis of the following chemical evidence (Scheme 1).
Treatment of 1-benzyl-4-(ethoxymethyleneamino)imidazole-5-carbonitrile (12), obtainable
from the corresponding 4-nitro derivative (18) according to the literature procedure,’ with
hydroxylamine in EtOH at room temperature for 1 h furnished 7-benzyladenine 1-oxide (11)
[mp 235-240°C (decomp.)] in 81% yield. This cyclization was analogous to what Yamazaki et
al.1? adopted for the synthesis of 2',3-O-isopropylideneadenosine 1l-oxide from B5-
(ethoxymethyleneaming)-1-(2,3-0-isopropylidene-B-D-ribofuranosyl)imidazole-4-carbonitrile.
On the other hand, catalytic hydrogenation (Pt/He, EtOH, 1 atm, room temp., 10 min} of 13
gave the 4-hydroxyamino derivative (17) [mp 162-170°C (decomp.)]13 in 83% yield. Treatment
of 17 with formamidine acetate in boiling EtOH for 3 h provided 7~benzy1;'1denine 3-oxide
monohydrate (16*H20) [mp 225-232°C (decomp.)]4 in 78% yield. This two-step synthesis of
the N(3)-oxide (18) from 13 was an application of the method of Taylor and Loeffler,15 who
obtained 7-methyladenine 3-oxide from 1-methyl-4-nitroimidazole-5-carbhonitrile through the
corresponding 4-hydroxyamino derivative.

Interestingly, the N-oxide cbtained from 9 by MCPBA oxidation was not identical with the
above N(3)-oxide (16}, but identical with a sample of the N(1)-oxide (11) synthesized from 13
through 12, In an attempt to remove the benzyl group, 11 was treated with conc. H2S0y at
35°C or 50°C for 3 h in the presence of toluene.®®81¢ However, no debenzylation took place. A

similar nonreductive debenzylation was also found to be ineffective for 16.
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In summary, the above results reveal that the main product from the MCPBA oxidation of 7-
benzyladenine (9) is the N(1)-oxide (11). This regioselectivity in N-oxidation is not in har-
mony with that34 in N-alkylation. Previously, Stevens and BrownZ2b reported that the per-
oxyacetic acid oxidation of 7-methyladenine did not yield an oxide. On the other hand, Scharf
and Friedrichl? reported the monoperoxyphthalic acid oxidations of adenine-cobamide
(pseudovitamin Bis) and 2-methyladenine-cobamide, 7-substituted adenines linked to cobalt
by coordination at the 9-position, in HCONMeg to form the corresponding N{1)-oxides in the
adenine moiety. However, the chemical and sgpectral evidence they adduced appears to be
somewhat insufficient. Thus, it is hoped that our present work will serve as the first valid

example of N(1)-oxidation in the 7-substituted adenine series.
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