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Abstract-The fmt unequivocal synthetic route to adenine 7-oxide (7) has been 

established. The route started with peroxycarboxylic acid oxidation of 3- 

benzyladenine (5). readily obtainable from adenine (2) by benzylation, and 

proceeded through noduct ive  debenzylation of the resulting 3-benzyladenine 7- 

oxide (6). 

Adenine (2) undergoes N-oxidation preferentially at the 1-position, when mated with 30% aqueous Hz02 in 

AcOH at room temperature.l This regioselectivity appears to reflect the generalizationZ that on N-oxidation 

pyrimidine compounds form only mono-N-oxides, whereas imidazoles are resistant to N-oxidation. On the 

other hand, Rhaese3 claimed that adenine 7-oxide (7) was obtained from 2 in 5% yield by treating it with 0.1 M 

H202 in 0.01 M phosphate buffer (pH 7.0) at 37'C for 5 days and that 7 was among the products from X-ray 
irradiation of 2 in 0.05 M phosphate buffer (pH 7.0). These results were reportedly reproduced by Yamamoto? 
However, the chemical and spectroscopic evidence adduced by both authors appeared too incomplete to assign 

the N(7)-oxide saucture to their samples which they thought to be 7, and we completely failed to obtain any N- 

oxides from 2 M repetition of the HzOdbuffer oxidation procedure3 of Rhaese. This led us to devise a three- 

step route for the synthesis of adenine 7-oxide (7) from adenine (2) in the present work. 

The d k c t  alkylation of 2 at the 3-position in the absence of added base presents the most convenient method of 

securing 3-alkyladenines (type 5),5 and the second stage of alkylation of the 3-substituted adenines (type 5) 

provides a ready access to 3.7-disubstituted adenines (type l).5.6 If there would bc a parallelism between N- 
alkylation and N-oxidation in regioselectivity at the second stage and if a similar two-step reaction sequence 

involving N-oxidation would be coupled with removal of the 3-substituent, it should conclude a synthesis of 

adenine 7-oxide (7). This has now been realized by the use of the benzyl group at the 3-position (Scheme 1). 

Treatment of 3-benzyladenine (5). obtainable from 2 in 53% yield according to the literature procedure> with 

magnesium monopemxyphthalate hexahydrate (MMPP.6Hfl)I in MeOH at 30°C for 20 h furnished the N(7)- 

oxide (6) in the form of the monohydrate (6.H2O) [mp 262-265'C (decomp.)]8.9in 40% yield, together with 

51% recovery of 5. Replacement of MMPP6H20 by m-chloroperoxybenzoic acid (MCPBA) [in MeOH-1 M 
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acetate buffer (pH 5.0) (1 : 1, vlv), 30°C. 25 hl or by 30% aqueous HzO~/IMCQ/M~CN'O [in MeOH. 2S°C, 
22 h] in this oxidation also gave 6.HzO in 24% (with 29% recovery of 5) or 12% (with 28% recovery of 5) 
yield, respectively. However, the use of 30% aqueous Hz02 in AcOH at room temperature or MCPBA in 
AcOH at 3 P C  as the oxidizing agent was found to be ineffective. On debenzylation with conc. H2S04 at 35'C 
for 5 h in the presence of toluene,6bJ1 6.H2O afforded the desired compound (7) (mp > 30O0C)1Z (7.HC1, mp 

> 300°C) in 55% yield. The correctness of the N(7)-oxide structure of 7 was supported by its uv spectrum12 
that was different from those of the t h e  known isomeric N-oxides (adenine 1-oxide,' adenine 3-oxide.13 and 
9-hydroxyadenine'4) and by the following chemical behavior. 

J 
MMPP or 
MCPBA - 
MeOH 

Scheme 1 
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On catalytic reduction (Raney N i i ,  H20.1 am, 50°C, 4 h), 7 produced adenine (2) in 92% yield. Treatment 

of 7 with boiling AcOH for 5 h gave. after recrystallization of the product from 5% aqueous HzS04, 8- 

oxoadenine sulfate (3-1/2H2S04)15 in 69% yield. The apparent migration of the oxygen function from N(7) to 

C(8) under acidic conditions is analogous to that observed for guanine 7-oxide16 and hypoxanthine 7-oxide 
(S).lld Deamination of 7 with NaN02 in aqueous HCI at 90°C provided hypoxanthine 7-oxide (8)1ld and its 

N(7)-1C(8) 0-migration product (4)"" in 4% and 45% yields, respectively. 

In addition, methylation of 7 with Me1 in AcNMez at 2S°C for 20 h gave 3-methyladenine 7-oxide dihydrate 
(10.2Hz0) [mp 255-26S°C (decomp.)]17 in 25% yield and 7-methoxy-3-methyladenine (12). which was 

isolated in 17% yield in the fom of the perchlorate salt (12.HC104) [mp 251-253'C (de~omp.)l .~~ A similar 

methylation (25'C. 18 h) converted 10.2H20 into 12-HC104 in 89% yield. The uv spectrum of 12.HC104 was 

similar to those6* of 3.7-dialkyladenine salts. On catalytic reduction (Raney N i 2 ,  HzO, 1 am, 4D°C, 4 h), 

10.2Hz0 and l2.HClO4 separately produced 3-methyladenine (11) in 90% and 73% yields, respectively. On 
the other hand, treatment of 7 with dimethyl sulfate in 1 N aqueous NaOH at room temperature for 1 h gave 
10-2H20 and 7-methoxyadenine (9) (mp > 300°C)'9 in 23% and 22% yields, respectively. Catalytic 

hydrogenation (Raney N a ,  HzO, 1 am, 4D°C, 4 h) of 9 provided adenine (2) in 81% yield. 

In summary, the above results have established a three-step synthetic route to adenine 7-oxide (7) from adenine 

(2) via 3-benzyladenine (5) and 3-benyladenine 7-oxide (6). The use oftbe readily removable benzyl p u p  at 
the 3-position of 2 as a directing group for alteration of regioselectivity in N-oxidation has furnished a fm basis 

for the present successful synthesis of 7. The location of the oxygen function in 6 and 7 has also been 

confmed by preliminary X-ray crystallographic analysis.20 Since the chemical, chromatographic. and spec- 

troscopic data obtained with our synthetic 7 do not accord with the literatu1e.3.~ it is hoped that this com- 

munication will serve as the first and valid report dealing with the synthesis and characterization of adenine 7- 

oxide. 
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