JAVACARBOLINE, A NEW β -CARBOLINE ALKALOID FROM THE STEM OF *PICRASMA JAVANICA* IN JAVA

Kazuo Koike,^a Taichi Ohmoto,^{a*} Akira Uchida,^b and Isao Oonishi^b

Department of Pharmacognosy, School of Pharmaceutical Science, Toho University, Miyama, Funabashi, Chiba 274, Japan^a and Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274, Japan^b

Abstract ---- Javacarboline, a new β -carboline alkaloid was isolated from the stem of *Picrasma javanica* (Simaroubaceae). Its structure was elucidated at the extensive ¹H and ¹³C nmr studies involving ¹H-¹H COSY, HSQC and HMBC experiments and X-ray diffraction analysis.

During the alkaloidal investigation of Simaroubaceae plants,¹ Picrasma javanica BL. was studied. *P. javanica* is a medium-sized tree found in the New Guineas, Southeast Asia, and India. The decoctions of its bark are used in folk medicine as febrifuge and as a substitute for quinine.² From the chemical studies of the constituents of *P. javanica*, a number of quassinoids and alkaloids have been identified.^{3,4} This paper describes the isolation and structural elucidation of a new β -carboline alkaloid, javacarboline (1) from the stem of *P. javanica*, which was collected in Java Island, Indonesia.

Compound (1) was obtained as pale-yellow prisms. The molecular formula, C₂₀H₂₀N₂O₂, was determined from its positive ion FAB-ms spectrum (m/z 321[M+H]⁺) and from its ¹³C nmr spectrum, 12 degrees of unsaturation was inferred. The ¹³C and DEPT nmr spectra suggested the presence of three CH3, two CH2, one sp³-CH, five sp²-CH and nine sp²-quaternary carbons. The HSQC⁵ experiment allowed us to assign and correlate all the protons to corresponding carbons. The ir spectrum showed strong absorption due to the imino group (3422 cm⁻¹) and carboxylate ion group (1627, 1236 and 752 cm⁻¹). The uv absorbances (λ_{max} 235, 308, 380 nm) and ¹H nmr signals in the δ 7.2-7.7 region showed the presence of an indole system and

an additional chromophore. The ¹H and ¹³C nmr chemical shifts for the C-3 methine proton at δ 5.89 (1H, dd, J=6.1, 1.2 Hz) and the C-4 methylene protons at 8 3.55 (1H, dd, J=16.8, 6.1 Hz) and 3.84 (1H, dd, J=16.8, 1.2 Hz) indicated that the indole system partly consists of a trihydro- β -carboline moiety. The ¹H nmr spectrum identified seven separate spin systems; the protons on C-5 to C-8 were part of an indolic benzene ring and two three-proton singlets at δ 2.47 and 2.84 were assigned to aromatic methyl groups and methylene H-20 (§ 2.96, 2H, q, J=7.6 Hz) to methyl H-21 (§ 1.21, 3H, t, J=7.6 Hz) protons comprised an ethyl appendage. In addition, the ¹H and ¹³C nmr spectra of 1 displayed signals for an isolated aromatic methine at C-17 ($\delta_{\rm H}$ 8.84, $\delta_{\rm C}$ 143.34) with a large ${}^{I}J_{\rm CH}$ coupling constant (184 Hz), indicating a nitrogen atom adjacent to C-17. The signal for a D₂O-exchangeable proton was observed at δ 11.75 (1H, s, indolic NH). Furthermore, an HMBC⁶ experiment (Table I) showed that the protonated aromatic carbon C-17 was correlated with H-3 and H-22, and the carboxylate ion group was attached to the C-3 position, whereas two methyls and the ethyl group were connected to quaternary carbons at C-14, C-16, and C-15, respectively. Difference nOe experiments provided further evidence for the structure of 1 shown in Figure 1. All these data indicate that compound (1) has the indolo[2,3-a]quinolizine system characteristic of plant alkaloids like flavopereirine⁷ and sempervirine.⁸ However, the positive ion FAB-ms of 1 (m/z 641 [2M+H]⁺ and 321 [M+H]⁺) suggested that it contained one molecule of dimeric β-carbolines. The ¹³C nmr spectrum provided evidence for the presence of a symmetry element in the molecule, since only a limited number of signals, assigned as indicated in Table I, could be observed. To confirm this situation for compound (1), a single crystal X-ray diffraction study was carried out and compound (1) was clearly shown to have the racemic form. Figure 2 shows an ORTEP drawing of a 3S-molecule (1a). The peak clearly observed near N1 on a

difference Fourier map was assigned to the hydrogen atom. The bond lengths of C18-O1=1.248(9) Å and C18-O2=1.231(8) Å indicated a zwitterionic structure of the molecule with a protonated indolic NH group and deprotonated carboxyl group. The asymmetric unit contained two molecules which form a dimeric system by means of two hydrogen bonds involving a hydrogen atom at N-1 of one molecule and the carboxylate ion oxygen atom at O-2 of the second molecule [distance N1-H…O2=2.864(8) Å] (Figure 3).

Racemization in this compound is clearly the result of $1a \rightarrow 1b$ tautomerization (Scheme I), wherein the natural product (1a) is compromised by the biosynthetic pathway from *L*-tryptophan, and the enantiomer of 1a can, therefore, be formed by the extraction procedure.

The new compound was tested for *in vitro* cytotoxicity in human tumor PC-6 cells and a murine lymphocytic leukemia P-388 cells and it was found cytotoxicity at GI₅₀ 35.9 μ g/ml and 32.5 μ g/ml, respectively.

Figure 2. ORTEP drawing of 3S-molecule (1a).

Figure 3. The dimer formed by the association of the two molecules of javacarboline (1), in the asymmetric unit. The dotted lines denote the hydrogen bonds.

	THOLD II	1	,		
C#	13 _C a	^I J _{CH} (Hz) ^b	¹ H (ppm, <i>J</i> ,	Hz) ^C	HMBC ^c (C to H)
1	139.55		<u> </u>		H3, H17, H19
3	67.17	146	5.89 dd (6	5.1, 1.2)	H4b, H17
- 4a	21.67	130	3.84 dd (1	16.8, 1.2)	,
4b			3.55 dd (1	16.8, 6.1)	
5	119.70	160	7.74 br d (8.0)	H7
6	120.61	160	7.17 ddd (8	8.0, 7.1, 0.9)	H8
7	125.30	158	7.34 ddd (8	8.2, 7.1, 0.7)	H5
8	112.86	163	7.64 dt (8	8.2, 0.9)	H6
9(NH)			11.75*	. ,	
10	125.07				H4a, H9
11	115.71				
12	123.85				H5, H6, H9
13	139.10				H5, H7
14	130.52				H19, H20
15	162.03				H16, H17, H19, H20, H21, H22
16	131.91				H17, H20, H22
17	143.34	184	8.84 s		H3, H22
18	168.46				H3, H4a, H4b
19	15.52	128	2.84 s		
20	23.08	130	2.96 q (7.6)	H21
21	11.37	135	1.21 t (7.6)	
22	15.98	132	2.47 s		H17

Table I. ¹H and ¹³C nmr data for 1 recorded in DMSO-d6 at 353°K

^a(125 MHz); ^b(100 MHz); ^c(500 MHz); *(disappeared with D₂O).

General experimental procedures. Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. Ir spectrum was recorded on a JASCO 7300 FT-ir spectrometer. EI-ms and FAB-ms were measured using JEOL D-300 and DX-303 mass spectrometers, respectively. ¹H, ¹³C and 2D nmr spectra were recorded using a JEOL A-500 (500 MHz for ¹H nmr and 125 MHz for ¹³C nmr) spectrometer in dimethylsulfoxide-*d*₆, with TMS as the internal standard.

Isolation of javacarboline (1). The dried stem (3.7 kg) of *Picrasma javanica* was collected in Indonesia in July 1986. A voucher specimen has been deposited in the Department of Pharmacognosy, School of Pharmaceutical Sciences, Toho University. The stems were extracted with MeOH (49 l) at 60°C for 3 h. The extract was concentrated under reduced pressure to give a residue (922 g) and then an equal volume of H₂O was added. The aqueous solution was extracted with CHCl₃ (12 l) followed by *n*-BuOH (3.6 l). The CHCl₃-soluble fraction (73 g) gave javanicins N (30 mg),⁴f U (29 mg),⁴g V (28 mg),⁴g W (100 mg),⁴g neoquassin (10 mg),⁴h picrasin A (28 mg),⁴h and the *n*-BuOH fraction (70 g) gave javanicinosides E (3 mg),⁴h G (4 mg),⁴h I (60 mg),⁴i J (11 mg),⁴i K (4 mg),⁴i and L (2 mg)⁴i as reported in the previous papers. The remaining *n*-BuOH-soluble fraction was subjected to repeated column chromatography on silica gel (Merck) with CHCl₃-MeOH solvent gradient (5-100 % MeOH) and Diaion HP-20 (Mitsubishi Kasei) with H₂O-MeOH solvent gradient (20-100 % MeOH) and further purified by preparative medium-pressure liquid chromatography [column LiChroprep Rp-18 Merck, 20 mm i.d. x 300 mm, solvent system MeOH-H₂O (3:2), flow rate 0.6 ml/min, uv detector 254 nm and silica gel CQ-3 Fuji Gel, 10 mm i.d.x300 mm, solvent system CHCl₃-MeOH-H₂O (50:10:1), flow rate 0.4 ml/min, detector uv 254 nm] to afford javacarboline (1, 8 mg).

Javacarboline (1). Pale-yellow prisms (recrystallized from MeOH-H₂O), mp 220-222°. FT-ir v_{max} (KBr) cm⁻¹: 3422, 2922, 1627, 1559, 1456, 1364, 1343, 1236, 1032, 752. Uv λ_{max} (MeOH) (log ε): 235 (4.14), 265 (sh, 3.87), 308 (3.94), 380 (4.02). Uv λ_{max} (MeOH+NaOH) (log ε): 235 (4.14), 265 (sh, 3.87), 308 (3.94), 380 (4.02). Uv λ_{max} (MeOH+HCl) (log ε): 235 (4.15), 250 (sh, 3.98), 308 (3.94), 380 (4.02). EI-ms *m*/z (rel. int.): 275 ([M-CO₂H]⁺, 100), 261 (23), 246 (9), 218 (3). Positive ion FAB-ms *m*/z: 641 [2M+H]⁺, 321 [M+H]⁺, 275.

Crystal Data of 1. Crystallized from MeOH-H₂O (7:3) and belonging to triclinic space group P₁. Lattice constants and intensity data were measured on a Rigaku AFC-5R diffractometer equipped with a device for graphite-monochromated CuK α radiation. Crystal data: C₂₀H₂₀N₂O₂·4H₂O, a= 10.859 (1) Å, b=13.470 (2) Å, c=7.9947 (9) Å, α =99.69(1)^o, β =101.386 (10)^o, γ =109.229 (10)^o, V=1047.5(3) Å³, Z=2, D_{calc}=1.244g/cm³, μ (CuK α)=7.63 cm⁻¹. A total of 1188 independent reflections with I>3 σ (Io) was used for structure analysis. Structure was resolved by a direct method (SIR88)⁹ and expanded using Fourier techniques.¹⁰ The structure was then refined by full-matrix least squares with anisotropic temperature factors for non-hydrogen and isotopic atoms for hydrogen atoms to an *R* factor of 0.068 (R_w =0.091), (Δ/σ)max=0.03, $\Delta\rho$ max=0.43, $\Delta\rho$ =-0.16 eÅ⁻³.

Atom	x	у	Z	Beq(A ²)				
O(1)	-0.0438(6)	0.1648(5)	0.0135(7)	7.2(2)				
O(2)	-0.1793(5)	0.0383(4)	0.1133(7)	5.6(1)				
N(1)	-0.5727(5)	0.0169(4)	-0.2146(7)	4.4(2)				
N(2)	-0.3083(6)	-0.0976(5)	-0.2052(7)	4.7(2)				
C(1)	-0.4377(7)	-0.1043(6)	-0.2085(8)	4.1(2)				
C(3)	-0.1991(7)	0.0063(6)	-0.197(1)	5.2(2)				
C(4)	-0.2508(8)	0.0652(6)	-0.3173(10)	5.5(2)				
C(5)	-0.3987(9)	0.2497(7)	-0.3514(10)	6.2(2)				
C(6)	-0.490(1)	0.3035(6)	-0.358(1)	6.8(3)				
C(7)	-0.610(1)	0.2616(8)	-0.317(1)	7.0(3)				
C(8)	-0.6487(8)	0.1659(7)	-0.2642(10)	5.8(2)				
C(10)	-0.4612(6)	-0.0082(5)	-0.2324(8)	3.9(2)				
C (11)	-0.3756(7)	0.0739(6)	-0.2852(9)	4.5(2)				
C(12)	-0.4374(8)	0.1506(6)	-0.3027(9)	4.7(2)				
C(13)	-0.5596(8)	0.1120(6)	-0.2574(8)	4.4(2)				
C(14)	-0.5311(7)	-0.2018(6)	-0.1974(8)	4.5(2)				
C(15)	-0.4876(8)	-0.2884(5)	-0.1732(10)	5.3(2)				
C(16)	-0.3561(8)	-0.2781(6)	-0.1720(9)	5.2(2)				
C(17)	-0.2732(7)	-0.1831(7)	-0.1890(10)	5.6(2)				
C(18)	-0.1357(8)	0.0757(7)	-0.003(1)	5.1(2)				
C(19)	-0.6734(7)	-0.2133(6)	-0.210(1)	5.7(2)				
C(20)	-0.5872(9)	-0.3897(7)	-0.149(1)	6.9(3)				
C(21)	-0.6690(9)	-0.4716(7)	-0.319(1)	8.0(3)				
C(22)	-0.3045(9)	-0.3678(7)	-0.151(1)	84(3)				

 Table II. Atomic coordinates and isotropically equivalent thermal parameters with their standard deviation in parentheses for non-hydrogen atoms of javacarboline (1a)

Bond		Length	Bond	Length	Bond	Length	
O(1) -	C(18)	1.248(9)	C(3) - C(4)	1.48(1)	C(11) - C(12)	1.416(9)	
O(2) -	C(18)	1.231(8)	C(3) - C(18)	1.557(10)	C(12) - C(13)	1.400(9)	
N(1) -	C(10)	1.386(8)	C(4) - C(11)	1.466(10)	C(14) - C(15)	1.422(9)	
N(1) -	C(13)	1.351(8)	C(5) - C(6)	1.40(1)	C(14) - C(19)	1.483(9)	
N(2) -	C(1)	1.372(8)	C(5) - C(12)	1.408(10)	C(15)- C(16)	1.387(9)	
N(2) -	C(3)	1.488(8)	C(6) - C(7)	1.37(1)	C(15) - C(20)	1.51(1)	
N(2) -	C(17)	1.346(9)	C(7) - C(8)	1.38(1)	C(16) - C(17)	1.346(10)	
C(1) -	C(10)	1.435(9)	C(8) - C(13)	1.386(9)	C(16)- C(22)	1.51(1)	
C(1) -	C(14)	1.400(9)	C(10)- C(11)	1.378(9)	C(20) - C(21)	1.50(1)	

Table III. Bond length (Å) with their standard deviations in parentheses for javacarboline (1a)

Table IV. Bond angles (degree) with their standard deviation in parentheses for javacarboline (1a)

	Bond		Angle		Bond		Angle		Bond		Angle
N(2) -	C(1) -	C(10)	113.6(6)	C(4) -	C(11)-	C(10)	119.0(7)	C(16)-	C(15)-	C(20)	121.6(7)
N(2) -	C(1) -	C(14)	118.5(6)	C(4) -	C(11)-	C(12)	133.8(7)	C(15)-	C(16)-	C(17)	117.3(7)
C(10)-	C(1) -	C(14)	127.8(6)	C(10)-	C(11)-	C(12)	107.1(6)	C(15)-	C(16)-	C(22)	122.5(7)
N(2) -	C(3) -	C(4)	110.7(6)	C(5) -	C(12)-	C(11)	133.2(8)	C(17)-	C(16)-	C(22)	120.1(8)
N(2) -	C(3) -	C(18)	110.0(6)	C(5) -	C(12)-	C(13)	119.9(7)	N(2) -	C(17)-	C(16)	124.8(7)
C(4) -	C(3) -	C(18)	112.8(6)	C(11)-	C(12)-	C(13)	106.9(6)	O(1) -	C(18)-	O(2)	128.1(7)
C(3) -	C(4) -	C(11)	109.9(6)	N(1) -	C(13)-	C(8)	128.9(7)	O(1) -	C(18)-	C(3)	113.5(8)
C(6) -	C(5) -	C(12)	116.9(8)	N(1) -	C(13)-	C(12)	108.5(6)	O(2) -	C(18)-	C(3)	118.4(7)
C(5) -	C(6) -	C(7)	121.3(8)	C(8) -	C(13)-	C(12)	122.6(8)	C(15)-	C(20)-	C(21)	112.9(7)
C(6) -	C(7) -	C(8)	122.8(8)	C(1) -	C(14)-	C(15)	119.3(6)	C(10)-	N(1) -	C(13)	109.0(5)
C(7) -	C(8) -	C(13)	116.4(8)	C(1) -	C(14)-	C(19)	119.7(7)	$C(1)^{-}$	N(2) -	C(3)	121.9(6)
N(1) -	C(10)-	C(1)	127.3(6)	C(15)-	C(14)-	C(19)	120.9(7)	C(1) -	N(2) -	C(17)	120.0(6)
N(1) -	C(10)-	C(11)	108.4(6)	C(14)-	C(15)-	C(16)	119.9(6)	C(3) -	N(2) -	C(17)	117.7(6)
C (1) -	C(10)-	C(11)	124.2(6)	C(14)-	C(15)-	C(20)	118.5(7)	. ,	. /	. /	()

ACKNOWLEDGMENT

The authors are grateful to Dr. M.Shiro (Rigaku Corporation) for conducting the X-ray analysis and providing helpful comments.

REFERENCES AND NOTES

 H.-Y., Li, K. Koike, and T. Ohmoto, *Chem. Pharm. Bull.*, 1993, 41, 1807 and references cited therein; T. Ohmoto and K. Koike, *Chem. Pharm. Bull.*, 1984, 32, 170 and references cited therein; K. Mitsunaga, K. Koike, T. Tanaka, Y. Ohkawa, Y. Kobayashi, T. Sawaguchi, and T. Ohmoto, *Phytochemistry*, 1994, 35, 799.

- T. C. White, "Tree Flora of Malaya", Longman, 1973, Vol.II, p. 351; N. H. Ridely, "The Flora of the Malay Peninsula", A. Sher, Amsterdam, 1976, Vol. I, p. 361.
- S. R. Johns, J. A. Lamberton, and A. A. Sioumis, Aust. J. Chem., 1970, 23, 629; T. Ohmoto, K. Koike, and K. Kagei, Shoyakugaku Zasshi, 1987, 41, 338.
- a) T. Ohmoto, K. Koike, K. Mitsunaga, H. Fukuda, K. Kagei, T. Kawai, and T. Sato, Chem. Pharm. Bull., 1989, 37, 993; b) T. Ohmoto, K. Koike, K. Mitsunaga, H. Fukuda, and K. Kagei, Chem. Pharm. Bull., 1989, 37, 2991; c) K. Koike and T. Ohmoto, Phytochemistry, 1990, 29, 2617; K. Koike, K. Mitsunaga, and T. Ohmoto, Chem. Pharm. Bull., 1990, 38, 2746; d) K. Koike, K. Ishii, K. Mitsunaga, and T. Ohmoto, Phytochemistry, 1991, 30, 933; e) K. Koike, K. Ishii, K. Mitsunaga, and T. Ohmoto, J. Nat. Prod., 1991, 54, 837; f) K. Koike, K. Ishii, K. Mitsunaga, and T. Ohmoto, Chem. Pharm. Bull., 1991, 39, 939; g) K. Koike, K. Ishii, K. Mitsunaga, and T. Ohmoto, Chem. Pharm. Bull., 1991, 39, 2021; h) K. Ishii, K. Koike, and T. Ohmoto, Phytochemistry, 1991, 30, 4099; i) K. Koike and T. Ohmoto, J. Nat. Prod., 1992, 55, 482; j) M. Yoshikawa, E. Harada (née) Uchida, S. Aoki, J. Yamahara, N. Murakami, H. Shibuya, and I. Kitagawa, Chem. Pharm. Bull., 1993, 41, 2101.
- 5. G. Otting and K. Wüthrich, J. Magn. Resonance, 1988, 76, 569.
- 6. A. Bax, J. Am. Chem. Soc. 1986, 108, 2093.
- 7. E. Bächli, C. Vamvacas, H. Schmid, and P. Karrer, Helv. Chim. Acta, 1957, 40, 1167.
- 8. V. Prelog, Helv. Chim. Acta, 1948, 31, 588.
- M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna, and D. Viterbo, J. Appl. Cryst., 1989, 22, 389.
- DIRDIF92: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R.
 O. Gould, J. M. M. Smits, and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1992.

Received, 10th February, 1994