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Abstract-6-Mercaptopurine 7-N-oxide (6) has been synthesized for 

the first time from 4,6-dichloro-5-nitropyrimidine (12) by following a 

"phenacylamine route" through the intermediates (8) and (9). Meth- 

ylation of 9 and removal of the p-methoxybenzyl group provided 6- 

methylthiopurine 7-N-oxide (7). 

6-Mercaptopurine (6-MP) (1) and its S-(l-methyl-4-nitro-lH-imidazol-5-y1) derivative, aza- 

thioprine (Imurana) (2), are antileukemic and immunosuppressive agents, respectively, of 

longstanding clinical usefulness.' The latter compound acts as  a pro-drug for 6-MP.la 

Among the four possible N-oxides2 of 6-MP, only the 3-oxide (3) is hitherto known: i t  has been 

synthesized from 6-chloropurine 3-oxide (4) and ammonium dithiocarbamate3 or from 7- 
aminothiazolo[5,4-dlpyrimidine 6-N-oxide (5) by r e a ~ ~ a n g e m e n t , ~  and a comparison of the N- 

oxide (3) with the parent 6-MP has been made in several biological systems.4 Our recent in- 

terest and success5 in the synthesis of purine 7-N-oxides led us to synthesize 6-mercap- 

topurine 7-N-oxide (6) and its S-methyl derivative ( I ) ,  a simple model for the 7-N-oxide of 

azathioprine (2), in the present study. 

In reaching the target N-oxides (6) and ( I ) ,  direct oxidations of 6-MP and its S-methyl 

derivative would provide the shortest synthetic routes. However, they require protection of 

the sulfur atom from oxidation, a favorable regioselectivity in oxidation, and selective depro- 

tection of the sulfur atom, which seem difficult to solve immediately. We therefore decided to 

adopt a dichloropyrimidine version of our favorite "phenacylamine route", which had worked 

well for the syntheses of the antitumor antibiotic guanine 7-oxide,Sa its 8-methyl derivative,Sc 

and hypoxanthine 7-N-oxide (14).5b Thus, condensation of N-(4-metboxybenzy1)phenacyla- 

mine, generated from its hydrochloride salt5* (2 molar equiv.), with 4,6-dichloro-5-nitro- 

pyrimidine (12) (CHC13, 0-5% 1 h) furnished the phenacylaminopyrimidine (8) (mp 107- 

109°C)6 in 75% yield (Scheme 1). Treatment of 8 with thiourea (boiling EtOH, 5 min), followed 
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toluene llO"C6h 

Scheme 1 
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successively by conc. aqueous NH3 and 2 N aqueous NaOH (O°C, 5 min) gave the N-oxide (9) 

[mp 161-163°C (decomp.) for 9.215H201 in 76% yield. Removal of the p-methoxybenzyl group 

from 9 was then effected in conc. HzS04 in the presence of toluene (23'C, 2 h),7 affording the 

target 6-mercaptopurine 7-N-oxide (6) [mp > 300°C (decomp.)18 in 75% yield. On treatment 

with sodium dithionite [boiling 50% (vlv) aqueous MeOH, 1.5 hl, 6 provided 6-MP (1) in 37% 

yield. 

In an alternative synthetic approach to 6 ,  hypoxanthine 7-N-oxide ( 1 4 P  was treated with 

PzS5 in boiling pyridine for 3 h. However, we were unable to obtain 6 but a compound (20% 

yield; mp > 300°C) inferred to be 8-mercaptohypoxanthine.9 

For the synthesis of the second target (7),9 was methylated with dimethyl sulfate (1 N aque- 

ous NaOWMeOH, room temp., 1 h) to give the 6-methylthio derivative (10) [mp 195-205'C 

(decomp.)] in 52% yield. Methylation of 9 with methyl iodide (K2CO&IeOH, room temp., 1 h) 

also produced 10 in 63% yield. For removal of the p-methoxybenzyl group, 1 0  was treated 

with conc. HzS04 (toluene, 25"C, 1 h)," furnishing the desired N-oxide (7) [mp 220-223°C 

(decomp.)llQ in 90% yield. On recrystallization from MeOH-Hz0 (3  : 1, vlv), 7 gave a mono- 

hydrate, which was shown to exist in the N(7)-OH form (17) in the solid state by preliminary 

X-ray crystallographic analysis." Methylation of 6 with methyl iodide or dimethyl sulfate in 

a mixture of MeOH and 1 N aqueous NaOH gave a complicated mixture of many products, 

from which we were unable to obtain the S-methyl derivative (7). 

Finally, with a view to converting 7 into adenine 7-oxide (15),5d aminatiou of 7 with saturated 

methanolic NH3 or conc. aqueous NH3 was examined under a variety of reaction conditions. 

However, all attempts resulted in the recovery of 7, suggesting the inertness of the C(6)-SMe 

group in the anionic species of 7. On the other hand, treatment of the N(9)-arylmethyl deriv- 

ative (10) with 16% methanolic NH3 (24"C, 4 h) afforded an unstable crude compound [mp 

154-155T (decomp.)] inferred to be the ring-opened product (111, which reverted to 10 on 

heating in EtOH. On heating in saturated ethanolic NH3 using an autoclave (llO°C, 6 h), 10 

gave the C(8)-amino derivative (13) (mp 180-181°C) in 18% yield. In either case, the desired 

adenine derivative (16) could not be obtained, and the observed reactivity of 10 a t  the C(8) atom 

toward nucleophiles is interpretable in terms of the N(7)-oxide structure. 

In conclusion, the above results have established a multi-step synthetic route to the hitherto 

unknown 7-N-oxide a t  the 6-MP level. They also exemplifies the usefulness of our "phenacyl- 

amine routen5 for the synthesis of purine 7-N-oxides. The problem of the tautomeric forms of 

6 and 7 will be discussed in a future full paper. Unfortunately, preliminary biological evalu- 

ation of 6 and 7 has revealed that both N-oxides have only very weak antileukemic activities 

against murine L5178Y cells.12 
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