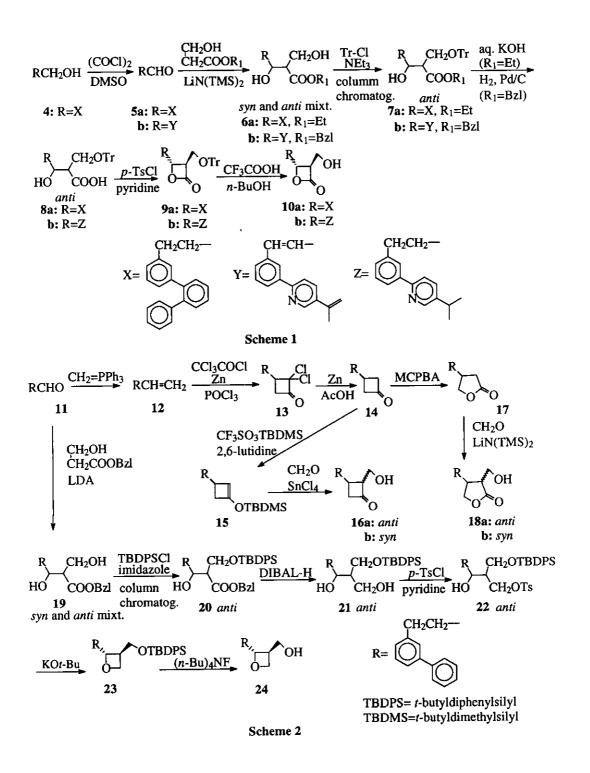

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF NEW HMG-COA SYNTHASE INHIBITORS: 2-OXETANONES WITH A SIDE CHAIN CONTAINING BIPHENYL, TERPHENYL OR PHENYLPYRIDINE

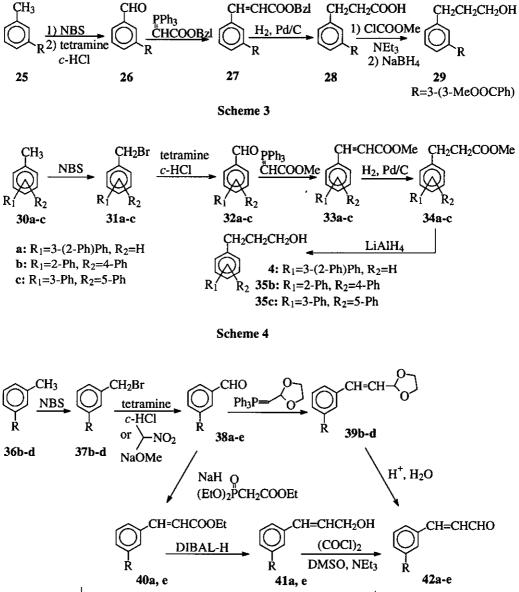
Hirokazu Hashizume,^{*} Hajime Ito, Naoaki Kanaya,⁺ Hajime Nagashima,⁺ Hiroyuki Usui,⁺ Reiko Oshima,⁺ Munefumi Kanao,⁺ Hiroshi Tomoda,⁺⁺ Toshiaki Sunazuka,⁺⁺ Tohru Nagamitsu,⁺⁺ Hidetoshi Kumagai,⁺⁺ and Satoshi Õmura⁺⁺

Fuji Chemical Industries, Ltd., 530 Chokeiji, Takaoka, Toyama 933, Japan +Daiichi Pharmaceutical Co., Ltd., 16-13, Kitakasai 1-Chome, Edogawa-ku, Tokyo 134, Japan ++Research Center for Biological Function, The Kitasato Institute, 9-1, Shirokane 5-Chome, Minato-ku, Tokyo 108, Japan

Abstract - A series of 1233A analogs containing biphenylyl, terphenylyl or phenylpyridyl groups in their side chain were synthesized and tested for the inhibitory activities against 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase and inhibition for the cholesterol biosynthesis in the mouse liver. The compounds with an oxetane, cyclobutanone or γ -butyrolactone ring as isosters of a 2-oxetanone ring were entirely inactive. Among sythetic analogs, *anti*-4-[3-[2-(5-isopropyl-2-pyridyl)-ethyl]-phenyl]ethyl]-3hydroxymethyl-2-oxetanone (**10b**) was most active *in vitro*. The structureactivity relationships on the transformations of 2-oxetanone and its side chain were obtained. We reported¹ 2-oxetanones with a side chain mimicking the folded structure of 1233A (1) as potent 3hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase inhibitors. Among the compounds, compound (2) showed higher inhibitory activity than that of 1233A (1). However, it increased the triglyceride level in serum. On the way of our investigation, we found that compound (3) showed high activity *in vivo* with small triglyceride level increment. Standing on the above results, we started the investigation on the analogs of 3.

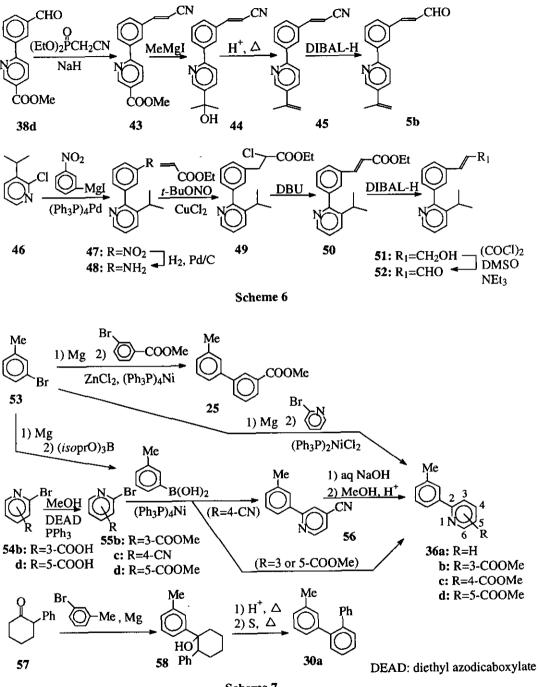
Figure 1


A benzene ring was introduced to the ring A or B of 3, since activity enhancement *in vitro* was observed for a number of analogs with a higher lipophilic and bulky side chain.¹ On the other hand, these analogs tended to increase triglyceride level.¹ Thus, in some analogs, B-ring of 3 was replaced by a pyridine ring to suppress the triglyceride increment.

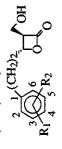

The low *in vivo* activities of reported 1233A analogs¹ could be attributed to the instability of 2-oxetanone ring to hydrolytic enzymes such as an esterase and lipase in blood. In some analogs, the 2-oxetanone ring was replaced with cyclobutanone, oxetane or r-butyrolactone to avoid the anticipated unfavorable hydrolysis. In this report, we describe the structure-activity relationships on 1233A analogs concerning with the side chain and isosteric transformation of the 2-oxetanone ring.

CHEMISTRY

The compounds tested in this study were racemic and prepared by the typical procedure¹ outlined in Schemes 1 and 2 from the corresponding substituted phenyl propanols, propenals or propanal (e.g. 4, 5b or 11), which were prepared as shown in Schemes 3-7. All 2-oxetanones were *anti*-form and their physical data were shown in Table I. In the preparation of 10b shown in Scheme 1, the hydrogenation of two double bonds and hydrogenolysis of benzyl ester were accomplished by one step $(7b \rightarrow 8b)$.


Scheme 2 shows the preparations of cyclobutanones, γ -butyrolactones and oxetanes. Cyclobutanone (14) was prepared via the [2+2] cycloaddition of olefin (12) with dichlorodiketene prepared² in situ and the dehalogenation. The aldol condensation³ of 14 with formaldehyde was performed via the Lewis acid-catalyzed reaction of silyl enol ether (15) to obtain *anti*-cyclobutanone (16a) and *syn*-one (16b) in the ratio of 2:1. The Baeyer-Villiger oxidation of 14 followed by aldol condensation provided *anti*- γ -butyrolactone (18a)

$$R = \begin{bmatrix} 1 & 2 \\ N & 3 \\ 6 & 5 \\ 8 \\ 1 \end{bmatrix}^{3} = \begin{bmatrix} 1 & 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1$$


Scheme 5

Scheme 7

1555

Table I. Physical Data for 4-Substituted-3-Hydroxymethyl-2-Oxetanones

					<u>Elementary Analysis</u> cacld. C. H. N	Ă	High ms calcd	
Compd. R ₁	R _l	ਲ,	R2 mp t	formula	(found C, H, N)	(M ⁺)		¹ H-Nmr (CDCl ₃) ^{§ a}
59 3-(3-)	59 3-(3-MeOOC-phenyl) H syrup	nyl) H	11	C20H2005		340	340 340.1311	2.02-2.46 (2H, m), 2.73-3.02 (2H, m), 3.34-3.54 (1H, m),
						0	(340.1283)	3.70-4.22 (2H, m), 3.95 (3H, s), 4.65 (1H, dt, <i>J</i> =4.0, 6.8 Hz),
		:		;				6.05 (1H, br s), 7.10-8.37 (8H, m)
60 3-(3-1	ou 3-(3-HOOC-phenyl) H	yl) H	4	-143 C19H18O5	69.93, 5.56			1.97-2.43 (2H, m), 2.53-3.10 (2H, m), 3.33-3.53 (1H, m),
					(69.91, 5.83)			3.66-4.13 (2H, m), 4.67 (1H, dt, <i>J</i> =4.0, 6.8 Hz), 6.05 (2H hr e) 7 10.8 37 (8H m)
61 2-Phenyl	'nyl	4-Pheny	l syrup	4-Phenyl syrup C ₂₄ H ₂₂ O ₃		358	358,1569	1.55-2.25 (2H. m). 2.40-2.95 (3H. m). 3.00-3 14 (1H. m)
		•	•				(358.1594)	3.35-4.00 (2H, m), 4.42 (1H, dt, <i>J</i> =4.0, 6.8 Hz),
								7.20-7.70(13H, m)
62 3-Phenyl	inyl	5-Pheny	1 118.8-	5-Phenyl 118.8- C24H22O3	80.42, 6.19	358		1.70 (1H, br t), 2.15-2.43 (2H, m), 2.80-3.03 (2H, m),
			120.5		(80.34, 6.04)			3.30-3.55 (1Н, m), 3.70-4.20 (2Н, m),
								4.70 (IH, dt, <i>J=</i> 4.0, 6.8 Hz), 7.40-7.80 (13H, m)
10a 3-(2-1	10a 3-(2-Biphenylyl)	Η		75-77 C ₂₄ H ₂₂ O ₃		358	358.1569	1.50-2.20 (2Н, m), 1.95-2.25 (1Н, m), 2.30-2.75 (2Н, m),
					(80.26, 6.12)		(358.1597)	3.05-3.35 (1Н, m), 3.50-4.15 (2Н, m),
-								4.41 (1H, dt, <i>J</i> =4.2, 6.6 Hz), 6.70-7.65 (13H, m)
63 3-(2-Pyridyl)	Pyridyl)	H	syrup	C ₁₇ H ₁₇ NO ₃		283	283.1208	2.12-2.22 (1H, m), 2.28-2.38 (1H, m), 2.82-2.95 (2H, m),
							(283.1226)	3,35(1H, q, <i>J</i> =4.4 Hz), 3.74 (1H, dd, <i>J</i> =4.4, 12.2 Hz)
								3.96 (1H, dd, <i>J</i> =4.9, 12.2 Hz), 4.60-4.62 (1H, m),
								7.26-7.32 (2H, m) 7.43 (1H, t, <i>J=</i> 7.6 Hz),
								7.72-7.77 (2H, m),7.82 (1H, dt, <i>J</i> =2.0, 8.5 Hz),
								7.85 (1H, s), 8.68 (1H, dd, <i>J</i> =1.0, 4.9 Hz) ^b
64 3-(3-Pyridyl)	Pyridyl)	H	syrup	C ₁₇ H ₁₇ NO ₃		283		2.15-2.30 (2H, m), 2.78-2.95 (2H, m), 3.39-3.43 (1H, m),
								3./0 (IH, dd, J=3.9, 11./ Hz),
								3.92 (1H, dd, <i>J=</i> 4.9, 11.7 Hz), 4.64-4.70 (1H, m), 7.26-7.29
								(1H, m), 7.40-7.46 (4H, m), 7.92 (1H, dt, J=2.0, 7.8 Hz),
								8.29 (1H, dd, J=1.2, 4.9 Hz), 8.83 (1H, d, J=1.5 Hz) ⁰

Com	ıpd.	R1	R ₂	mрт	formula	Elementary Analysis cacid. C, H, N (found C, H, N)	Ms (M ⁺	High ms calcd) (found)	¹ H-Nmr (CDCl ₃) δ^{a}
65	•	Isopropyl- oyridyl)	Н	syrup	C ₂₀ H ₂₃ NO	73.82, 7.12, 4.30 (73.85, 7.24, 4.33)	325		1.19 (6H, d, <i>J</i> =6.8 Hz), 2.05-2.17 (2H, m), 2.29-2.38 (1H, m), 2.77-2.94 (2H, m), 3.10-3.19 (2H, m), 3.41 (1H, dd, <i>J</i> =3.9, 11.7 Hz), 3.76 (1H, dd, <i>J</i> =4.4, 11.7 Hz), 4.54-4.60 (1H, m), 7.25-7.32 (4H, m), 7.38 (1H, t, <i>J</i> =7.3 Hz), 7.76 (1H, dd, <i>J</i> =1.4, 7.8 Hz), 8.44 (1H, dd, <i>J</i> =1.4, 4.4 Hz) ^b
10b		-Isopropyl- 2-pyridyl)	н	92-94	C ₂₀ H ₂₃ NO ₃	73.82, 7.12, 4.30 (73.96, 6.93, 4.53)	325		1.31 (6H, d, J =6.8 Hz), 2.08-2.20 (2H, m), 2.27-2.37 (1H, m), 2.81-2.93 (2H, m), 2.95-3.05 (1H, m), 3.31-3.36 (1H, m), 3.78 (1H dd, J =3.9, 12.2 Hz), 3.95 (1H, dd, J =4.9, 12.2 Hz), 4.59-4.65 (1H, m), 7.25 (1H, d, J =5.4 Hz), 7.41 (1H, t, J =7.5 Hz), 7.66-7.7 (3H, m), 7.81 (1H, s), 8.53 (1H, s) ¹
66		MeOOC- Pyridyl)	н	syrup	C ₁₉ H ₁₉ NO ₅	i			2.08-2.18 (1H, m), 2.30-2.40 (1H, m), 2.78-2.87 (1H, m), 2.87-2.96(1H, m), 3.24 (1H, q, $J=4.4$ Hz), 3.61 (1H, dd, $J=4.4$, 11.7 Hz), 3.74 (3H, s), 3.86 (1H, dd, $J=4.4$, 11.7 Hz), 4.54-4.60 (1H, m), 7.27-7.41 (5H, m 8.15 (1H, dd, $J=4.4$, 11.7 Hz), 8.75 (1H, dd, $J=1.5$, 4.9 Hz) ^b
67	•	MeOOC- !-Pyridyl)	Н	119- 120	C ₁₉ H ₁₉ NO	5 66.85, 5.61, 4.10 (66.76, 5.57, 4.29)	341		2.11-2.22 (1H, m), 2.25-2.35 (1H, m), 2.80-2.95 (2H, m), 3.24 (1H, br s), 3.37-3.42 (1H, m), 3.80 (1H, dd, J=3.9, 11.2 Hz), 3.99 (3H, s), 3.96 (1H, dd, J=4.4, 11.7 Hz), 4.59-4.66 (1H, m), 7.30 (1H, d, J=7.3 Hz), 7.43 (1H, t, J=7.8 Hz), 7.79 (1H, d, J=7.8 Hz), 7.83 (1H, d, J=7.3 Hz), 7.88 (1H, s), 8.28 (1H, s), 8.80 (1H, d, J=5.4 Hz) ^b
68	•	MeOOC- 2-Pyridyl)	Н	133- 135	C ₁₉ H ₁₉ NO	5 66.85, 5.61, 4.10 (66.72, 5.56, 3.92)	341		2.12-2.22 (2H, m), 2.27-2.38 (1H, m), 2.82-2.98 (2H, m), 3.37-3.42 (1H, m), 3.84 (1H, dd, J=3.9, 11.7 Hz), 3.98 (3H, s), 4.00 (1H, dd, J=4.9, 11.7 Hz), 4.62 (1H, dt, J=4.4, 6.8 Hz), 7.33 (1H, d, J=7.8 Hz), 7.45 (1H, t, J=7.8 Hz), 7.80-7.86 (2H, m), 7.93 (1H, s), 8.37 (1H, dd, J=2.4, 8.3 Hz), 9.26 (1H, d, J=1.5 Hz) ^b

^a measured in 90 MHz unless noted otherwise ^b measured in 400 MHz on a JEOL-JNM-EX400.

Compd.	R1	R ₂	mpτ	Formula	Ms (M+)		¹ H-Nmr (90 MHz, CDCl ₃) ð
29 3-(3-	-MeOOC-Pheny	l) H	syrup	С ₁₇ Н ₁₈ О3	270	• •	br s), 1.73-2.16 (2H, m), 2.60-2.97 (2H, m),
4 3-(2-	-Biphenylyl)	Н	syrup	C ₂₁ H ₂₀ O	288	1.15-1.40	t, J=6.8 Hz), 3.96 (3H, s), 7.10-8.30 (8H, m) (1H, br s), 1.45-1.85 (2H, m), 2.40-2.65 (2H, m), (2H, m), 6.80-7.65 (13H, m),
35b 2-Ph	henyl	4-Phenyl	syrup	С ₂₁ Н ₂₀ О	288	1.30 (1H,	s), 1.55-1.90 (2H, m), 2.61-2.85 (2H, m), t, <i>J</i> =6.8 Hz), 7.20-7.70 (13H, m)
35c 3-Ph	henyl	5-Phenyl	94-95	C ₂₁ H ₂₀ O	288	• •	br s), 1.75-2.20 (2H, m), 2.65-3.00 (2H, m),
						3.65-4.03	(2H, m), 7.30-7.95 (13H, m)
Table	III. Physical Da	ata for Sus	tituted P		3-R-Phenyl-CH Elementary Ana cacld. C, H, N	I=CHCHO Ilysis	(2H, m), 7.30-7.95 (13H, m)
	III. Physical Da	ata for Sus mp			Elementary Ana	I=CHCHO Ilysis Ms	(2H, m), 7.30-7.95 (13H, m) ¹ H-Nmr (90 MHz, CDCl ₃) δ
Compd.	-		r	Ē	Elementary Ana cacld. C, H, N	I=CHCHO Ilysis Ms	

Table II. Physical Data for Substituted Phenylpropanols R₁,R₂-Phenyl-CH₂CH₂CH₂OH

٠.

Comp	d. R	mp t	formula	cacld. C, H, N (found C, H, N)	Ms (M+)	¹ H-Nmr (90 MHz, CDCl ₃) δ
42a	2-Pyridyl	syrup	C ₁₄ H ₁₁ NO		209	6.80 (1H, dd, J=7.4, 16.2 Hz), 7.26-7.31 (1H, m), 7.42-7.90 (5H, m), 8.04 (1H, dt, J=1.8, 6.6 Hz), 8.23 (1H, s), 8.67-8.73 (1H, m), 9.73 (1H, d, J=7.4 Hz)
42b	3-MeOOC-2-Pyridyl	syrup	C ₁₆ H ₁₃ NO ₃		267	3.73 (3H, s), 6.76 (1H, dd, <i>J</i> =7.4, 15.8 Hz), 7.32-7.69 (5H, m), 7.79 (1H, s), 8.18 (1H, dd, <i>J</i> =1.8, 7.9 Hz), 8.80 (1H, dd, <i>J</i> =1.8, 4.8 Hz), 9,73 (1H, d, <i>J</i> =7.4 Hz)
42c	4-MeOOC-2-Pyridyl	95-97	C ₁₆ H ₁₃ NO ₃	71.90, 4.90, 5.24 (71.62, 4.51, 5.10)	267	3.99 (3H, s), 6.83 (1H, dd, J=7.4, 15.8 Hz), 7.50-7.68 (3H, m), 7.84 (1H, dd, J=0.9, 8.3 Hz), 8.11 (1H, dd, J=2.0, 7.0 Hz), 8.31 (2H, br s), 8.86(1H, d, J=5.3 Hz), 9.75 (1H, d, J=7.4 Hz)
42d	5-MeOOC-2-Pyridyl	151-153	C ₁₆ H ₁₃ NO .1/4H ₂ O	70.71, 5.01, 5.15 (70.81, 5.00, 5.06)	267	3.99 (3H, s), 6.82 (1H, dd, J=7.4, 15.8 Hz), 7.50-7.74 (3H, m), 7.85 (1H, dd, J=0.9, 8.3 Hz), 8.11 (1H, ddd, J=1.8, 2.2, 7.0 Hz), 8.29-8.45 (2H, m), 9.30-9.32 (1H, m), 9.75 (1H, d, J=7.4 Hz)
42e	3-Pyridyl	syrup	C ₁₄ H ₁₁ NO		209	6.79 (1H, dd, J=7.4, 16.2 Hz), 7.35-7.75 (5H, m), 7.76 (1H, s), 7.91 (1H, dt, J=1.8, 7.9 Hz), 8.66 (1H, dd, J=1.8, 4.8 Hz), 8.87 (1H, d, J=1.8 Hz), 9.76 (1H, d, J=7.4 Hz)
5b 5	-Isopropenyl-2-pyridyl	73-75	С ₁₇ Н ₁₅ NO	81.90, 6.06, 5.62 (82.05, 6.09, 5.80)	249	2.21 (3H, s), 5.22 (1H, t, <i>J</i> =1.3 Hz), 5.50 (1H, s), 6.81 (1H, dd, <i>J</i> =7.4 Hz, 16.2 Hz), 7.40-8.10 (6H, m), 8.24 (1H, s), 8.8-8.90 (1H, m), 9.74 (1H, d, <i>J</i> =7.9 Hz)
52 3	-Isopropyl-2-pyridyl	syrup	C ₁₇ H ₁₇ NO		251	1.21 (6H, d, J=7.2 Hz), 3.12 (1H, septet, J=7.0 Hz), 6.75 (1H, dd, J=7.4, 15.8 Hz), 7.22-7.80 (7H, m), 8.52 (1H, dd, J=1.8, 4.8 Hz), 9.75 (1H, d, J=7.4 Hz)

Compd	R	mpτ	Formu	a	Ms (M+)	¹ H-Nmr (90 MHz, CDCl ₃) δ
25 3-M	eOOC-Phenyl	syrup	С ₁₅ Н	4 ⁰ 2	226	2.43 (3H, s), 3.94 (3H, s), 7.10-8.35 (8H, m)
36a 2-Py	ridyl	syrup	C ₁₂ H	1N	169	2.43 (3H, s), 7.10-7.50 (3H, m), 7.60-7.90 (4H, m),
						8.68 (1H, ddd, J=4.6, 1.5, 1.3 Hz)
36b 3-M	eOOC-2-Pyridyl	symp	C ₁₄ H ₁	3NC	2 227	2.40 (3H, s), 3.69 (3H, s), 7.23-7.41 (5H, m),
				2	-	8.07 (1H, dd, J=2.0, 7.8 Hz), 8.76 (1H, dd, J=2.0, 4.8 H
36c 4-M	eOOC-2-Pyridyl	syrup	C14H1	3NC	2 227	2.44 (3H, s), 3.97(3H, s), 7.25-7.46(2H, m),
				•	-	7.70-7.88 (3H, m), 8.28 (1H, s), 8.81 (1H, d, J=5.0 Hz)
36d 5-M	eOOC-2-Pyridyl	91-93	C ₁₄ H ₁	3NO	227	2.44 (3H, s), 3.97 (3H, s), 7.20-7.50 (2H, m),
				5	-	7.70-8.00 (3H, m), 8.34 (1H, dd, J=1.8, 8.8 Hz),
						9.27 (1H, dd, <i>J</i> =0.9, 2.4 Hz)
30a 2-Bi	phenylyl	syrup	C ₁₉ H ₁	6	244	2.24 (3H, s), 6.80-7.65 (13H, m)

Table IV. Physical Data for Substituted Toluenes 3-R-C₆H₆Me

Table V In vitro and In vivo Assays (mice, n=6)

	In vitro test		In vivo test	
Compd.	Inhibition of HMG-CoA synthase IC ₅₀ (µM)	Dose mg/kg p.o.	Inhibition of sterol synthesis in liver %	Increase of serum triglyceride level ×fold ^a
3	0.85	500	76.1 (++) ^b	1.27
59	0.73	200	41.7 (-)	1.01
60	2.30	200	22.5 (-)	1.04
61	0.19	450	-127.0 (-)	9.78* ^c
62	2.50		n.d.d	n.d.
10a	0.23	350	35.7 (-)	1.55**
63	0.64	500	33.0 (-)	1.36*
64	15.60	450	9.7 (-)	1.03
65	3.04	150	67.8 (+)	1.16
10b	0.16	500	63.6 (+)	1.25*
66	25.1		n.d.	n.d.
67	0.70	200	39.0 (-)	0.92
68	0.92	450	-77.0(-)	1.07
14	>190		n.d.	n.d.
16a	>180		n.d.	n.d.
16b	>170		n.d.	n.d.
17	>190		n.d.	n.d.
18a	>190		n.d.	n.d.
18b	>170		n.d.	n.d.
24	>170		n.d.	n.d.
1	0.20	500	83.0 (-)	1.03

^a The triglyceride level of control groups was assigned a value of 1.00. ^b +, significant inhibition (<70%); ++, significant inhibition (<70%); -, not significant. ^c *, p<0.05; **, p<0.01 vs. control. ^d not determined

and syn-one (18b) in the ratio of 3:1. Compound (20) prepared similarly to the manner described in Scheme 1 was reduced and cyclized to give *anti*-oxetane (24). The stereochemical assignment of 16, 18 and 24 was secured by ¹H-nmr study of NOE.

Schemes 3 and 4 show the procedures for the preparation of propanols. Propenals were prepared in the manner shown in Scheme 5. These were modified procedures from that reported¹. The preparation of two propenals (**5b** and **52**) were outlined in Scheme 6. The propanols and propenals were listed in Tables II and III, respectively.

Preparation of some toluene derivatives, from which corresponding propanols and propenals were derived, is shown in Scheme 7. Toluene derivatives (25 and 36a-d) were prepared by transition metal mediated cross-coupling reactions. Methylterphenyl (30a) was prepared by the Grignard reaction of 57 followed by dehydration and aromatization. Physical data of these toluenes were listed in Table IV.

INHIBITION AGAINST HMG-COA SYNTHASE AND CHOLESTEROL BIOSYNTHESIS IN MOUSE LIVER.

The 2-oxetanones listed in Table I were tested for the inhibitory activities against HMG-CoA synthase in cell free system, inhibition of the cholesterol biosynthesis in mouse liver¹ and serum triglyceride increments. The results are summarized in Table V.

As seen on 2-oxetanone (59), introduction of a methoxycarbonyl group on B-ring of 3 did not modulate inhibitory activity, and that of a carboxy group caused loss of the activity (60). The relationship that methyl ester (59) was more active than its free acid (60), was consistent with that between 2 and its free acid.¹ Whereas, the relationship was inconsistent with that 1233A (1) and its methyl ester were equally active.⁴ In 2-oxetanones with a terphenylyl group (61, 62 or 10a), depending on the structure of terphenylyl group, their inhibitory activities *in vitro* varied significantly. Thus, 61 and 10a showed comparable activities to 1233A (1), however, 62 showed lower activity. The results indicate that a shape of lipophilic group in the side chain was correlated to the activity of 2-oxetanones analog. Unexpectedly, all of these compounds showed only low activities compared to 1233A (1) *in vivo*.

Pyridine analogs (10b and 63-68) showed wide range of activities by orientation and substituent of pyridine ring. Thus, 10b with an isopropyl group at the position 5 showed the highest inhibition *in vitro*, which was comparable to that of 1233A. Some analogs (63, 67 and 68) were similarly active to the corresponding benzene analogs (3 and 59), and others (64-66) were less active. Among the positions on the pyridine ring, the

positions 4 and 5 were preferred to be substituted (10b, 67 and 68). As for *in vivo* activities, only analogs (65 and 10b) were active.

In spite of their structural similarities to 2-oxetanone ring, derivatives of cyclobutanones (13, 14 and 16a-b), γ -butyrolactones (17 and 18a-b) and 2-oxetane (24) were entirely inactive regardless of their stereochemistries. Our group,⁵ Greenspan *et al.*⁶ and Mayer *et al.*⁷ proposed that the mechanism of inhibition with 1233A against HMG-CoA synthase was irreversible. Above results would support the inhibitory mechanism, *i.e.*, acylation of the enzyme by the ring-opening of 2-oxetanone.

In spite of our expectation, pyridine analogs of 3 (e.g. 63 and 64) did not differ from 3 in terms of serum triglyceride level increment. Analog 10b which showed the highest inhibitory activity also increased the triglyceride level. Among 2-oxetanones with a terphenyl, only 61 with a benzene ring at position 6 on A-ring of 3 showed the extreme increment of triglyceride level. We reported¹ that the distance between the 2-oxetanone and aromatic rings in the side chain has a great concern to the triglyceride increment. A benzene ring at *ortho* position on the A-ring is closer to the 2-oxetanone ring than that at other positions. Hence, the result also supports our hypothesis. In contrast with the effect of lipophilic group, It is notable that the analogs with a polar substituent in the side chain did not increase the serum triglyceride level (3 vs. 59 and 60, 10b vs. 68).

EXPERIMENTAL

Melting points were measured on a Yanagimoto hot stage apparatus and were uncorrected. In work up, extracted solutions were dried over anhydrous MgSO₄, and concentrated under reduced pressure (rotary evaporator). ¹H Nmr spectra were measured on a JEOL FX-90 unless noted otherwise and are reported in parts per million relative to tetramethylsilane as the internal standard. Ir spectra were measured on a Hitachi 270-30 infrared spectrophotometer. Mass spectra were measured on a JEOL-HX110, JEOL JMS-AX505W, or JEOL JMS-D300 spectrometer. Physical data of 2-oxetanones were listed in Table I. Physical data of substituted propanols, propenals and toluenes were listed in Tables II, III and IV, respectively. All starting materials were commercially available unless indicated otherwise.

Methyl 3-(3-Methylphenyl)benzoate (25). A solution of 3-bromotoluene (53) (34.2 g, 200 mmol) in THF (170 ml) was added dropwise to Mg turnings (5.84 g, 240 mmol). The mixture was refluxed for 1 h and the resultant mixture was added to a solution of ZnCl₂ (30.0 g, 240 mmol) in THF (350 ml) under N₂ atmosphere

1561

at -10°C. After stirring for 3 h, a solution of $(Ph_3P)_4Ni^8$ in THF prepared from $(Ph_3P)_2NiCl_2$ (3.14 g, 4.80 mmol), PPh₃ (2.64 g, 10.1 mmol) and DIBAL-H (1 mol/l in THF, 9.60 ml) were added and then methyl 3-bromobenzoate (25.1 g, 116.3 mmol) was added. The mixture was stirred overnight and poured into water (1 l). The resultant mixture was acidified with *c*-HCl and extracted with Et₂O. The extract was washed with saturated aqueous NaHCO₃, dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (20:1) gave **25** (25.7 g, 97.8%) as an oil.

3-(2-Pyridyl)toluene (36a). The compound was prepared by the method of Pridgen *et al.*⁹ A solution of Grignard reagent prepared from 3-bromotoluene (**53**) (17.4 g, 0.10 mmol) and Mg (2.31 g, 95.0 mmol) in Et_2O (90 ml), was added dropwise for 40 min to a solution of 2-bromopyridine (11.1 g, 70 mmol) and (Ph₃P)₂NiCl₂ (0.48 g, 0.74 mmol) in Et_2O (50 ml) under N₂ atmosphere in ice bath. The mixture was stirred for 25.5 h and poured into 2*N*-HCl (200 ml). The separated aqueous layer was made basic with aqueous NaOH and extracted with Et_2O . The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (20:1) gave **36a** (9.57 g, 81.0 %) as an oil.

Methyl 6-Bromonicotinate (55d). A solution of PPh₃ (2.62 g, 10 mmol) in Et₂O (10 ml) was added dropwise to a solution of diethyl azodicarboxylate (1.74 g, 10 mmol), 6-bromonicotinic acid¹⁰ (54d) (2.00 g, 9.90 mmol) and MeOH (0.48 g, 15 mmol) in Et₂O (10 ml) at room temperature. After stirring for 70 min, the mixture was filtered. The filtrate was concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (50:1) gave 55d (1.70 g, 79.0%) as a pale yellow crystal. mp 106-108°C. ¹H Nmr (CDCl₃) δ : 3.96 (3H, s), 7.59 (1H, d, *J*=8.3 Hz), 8.13 (1H, dd, *J*=2.4, 8.3 Hz), 8.96 (1H, d, *J*=2.4 Hz). EI-ms (m/z): 215, 217 (M⁺), 184, 186.

Methyl 6-(3-Methylphenyl)nicotinate (36d). Compound (36d) was prepared by the method of Thompson *et* $al.^{11}$ To a solution of 55d (2.55 g, 11.8 mmol) and (Ph₃P)₄Pd (0.40 g, 0.35 mmol) in toluene (25 ml), a solution of 3-tolylboronic acid (1.92 g, 14.1 mmol) prepared from 3-tolylmagnesium bromide and triisopropyl borate¹⁰ in MeOH (7.5 ml) and 2*M* aqueous Na₂CO₃ (50 ml) were added. After stirring for 2.5 h under Ar atmosphere at 80°C, the mixture was poured into a mixture of CHCl₃ (100 ml), 2*M*-aqueous Na₂CO₃ (50 ml) and c-NH₄Cl (5 ml). The separated organic layer was washed with water, dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (25:1) gave 36d (2.12 g, 79.0%) as a colorless crystal. mp 91-93°C.

Compounds (56 and 36b) were prepared in a similar manner to the preparation of 36d.

Methyl 2-(3-Tolyl)isonicotinate (36c). Compound (56) (8.35 g, 43 mmol) was hydrolyzed with NaOH (7.5 g, 188 mmol) in 70% EtOH (200 ml) and acidified to give the corresponding acid (8.42 g, 92%). This product was added to a mixture of c-H₂SO₄ (5.7 g) and MeOH (110 ml). The mixture was refluxed for 22 h. After concentration, the resultant mixture was made basic with NaHCO₃ and extracted with AcOEt. The extract was dried and concentrated to give **36c** (8.5 g, 88% based on **56**) as an oil.

3-Methyl-[1,1':2',1'']-terphenyl (30a). A solution of the Grignard reagent obtained from 3-bromotoluene (53) (16.3 g, 95.2 mmol) and Mg (2.11 g, 86.6 mmol) in Et₂O (82 ml) was added dropwise to a solution of 2-phenylcyclohexanone (57) (10.0 g, 57.5 mmol) in Et₂O (50 ml). The mixture was refluxed for 1 h and poured into saturated aqueous NH₄Cl. The resultant mixture was extracted with Et₂O. The extract was dried, and concentrated. The residue was recrystallized from hexane to give 58 (12.5 g, 81.3%) as a syrup. To a solution of the product in toluene (63 ml), *p*-TsOH·H₂O (0.89 g, 4.69 mmol) was added. The mixture was refluxed for 2 h with Dean-Stark apparatus. The reaction mixture was washed with saturated aqueous NaHCO₃, dried and concentrated to give a syrup (11.2 g). This syrup with S (1.44 g, 45.0 mmol) was stirred for 30 min at 210-220°C. The mixture was chromatographed on silica gel column and the elution with hexane-AcOEt (20:1) gave **30a** (5.60 g, 48.9% based on **58**) as a syrup.

Methyl 3-[3-(3-Hydroxypropyl)phenyl]benzoate (29). Compound (25) was treated as reported¹ to give 29 as a syrup.

3-([1,1':2',1'']-3-Terphenylyl)propanol (4). Compound (30a) was treated as reported¹ to give 4 as a syrup. Compunds (35b,c) were also prepared from 30b,c¹² similarly

3-[3-(3-Pyridyl)phenyl]propenal (42e). A solution of Grignard reagent prepared from

2-(3-bromophenyl)-1,3-dioxolane (25.0 g, 109 mmol) and Mg (2.53 g, 104 mmol) was added to a solution of 3-bromopyridine (12.0 g, 75.9 mmol) and (Ph₃P)₂NiCl₂ (0.52 g, 0.79 mmol) in Et₂O (100 ml). The mixture was stirred for 3 days, then poured into 1*N*-HCl (300 ml). The resultant mixture was stirred for 10 min. The separated aqueous layer was made basic with 2*M* aqueous K₂CO₃ and extracted with Et₂O. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with CHCl₃acetone (50:1) gave **38e** (2.88 g, 21.0%) as a pale yellow syrup. ¹H Nmr (CDCl₃) δ : 7.30-8.00 (5H, m), 8.10 (1H, s), 8.65 (1H, dd, *J*=1.3, 4.8 Hz), 8.90 (1H, d, *J*=2.2 Hz), 10.11 (1H, s). EI-ms (m/z): 183 (M⁺). To a suspension of NaH (0.68 g, 60% net, 17 mmol) in THF (15 ml), a solution of diethyl ethoxycarbonylmethylphosphonate (3.81 g, 17 mmol) in THF (5 ml) was added and then **38e** in THF (15 ml) was added. The mixture was stirred for 30 min at room temperature. After concentration, the mixture was poured into water and extracted with CHCl₃. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with CHCl₃-MeOH (100:1) gave **40e** (3.60 g, 90%) as a pale yellow crystal. A solution of **40e** (3.38 g, 13.3 mmol) in THF (30 ml) was cooled to -70°C. DIBAL-H (1 mol/l, in hexane, 30 ml) was added dropwise over 20 min. The mixture was stirred at -20°C for 1 h. After Na₂SO₄ · 10H₂O (20 g) was added, the mixture was filtered. The filtrate was concentrated. The residue was chromatographed on silica gel column and the elution with CHCl₃-MeOH (50:1) gave **41e** (2.19 g, 78%) as a syrup. This product was oxidized by Swern method to give **42e** (94% based on **41e**) as a syrup. Compounds (**42a**) was prepared in a similar manner to the preparation of **42e**.

Methyl 6-(3-Formylphenyl)nicotinate (38d). Compound (36d) was treated as reported¹ to give 38d as a pale yellow crystal. mp 114-117°C. ¹H Nmr (CDCl₃) δ : 3.39 (3H, s), 7.58-8.04 (3H, m), 8.30-8.56(3H, m), 9.28-9.31 (1H, m), 10.12 (1H, s). EI-ms (m/z): 241 (M⁺). Anal. Calcd for C₁₄H₁₁NO₃: C, 69.70; H, 4.60; N, 5.81. Found: C, 69.42; H, 4.45; N, 6.04.

Methyl 6-[3-(2-Formylethenyl)phenyl]nicotinate (42d). Compound (38d) was treated with 2-(1,3-dioxolanyl)methyltriphenylphosphonium bromide¹³ and LiOMe followed by hydrolysis as reported previously¹ to give 42d as a crystal. mp 151-153 \circ C.

Propenals (42b,c) were prepared in a similar manner to the preparation of 42d.

Methyl 6-[3-(2-Cyanoethenyl)phenyl]nicotinate (43). A solution of diethyl cyanomethylphosphonate (5.49 g, 31 mmol) in THF (10 ml) was added dropwise to a suspension of NaH (1.24 g, 60% net, 31 mmol) in THF (50 ml) in ice bath. The mixture was stirred for 10 min. A solution of **38d** (7.37 g, 30.5 mmol) in THF (80 ml) was added dropwise. The mixture was stirred for 30 min, concentrated and poured into water. The precipitate was filtered to give a mixture of *syn* and *anti*-43 (6.90 g, 86 %) as a pale yellow crystal. mp 143-155°C. ¹H Nmr (CDCl₃) δ : 3.99 (3H, s), 5.56 (1/9H, d, *J*=14 Hz), 6.02 (8/9H, d, *J*=16.6 Hz), 7.51 (1H, d, *J*=16.4 Hz), 7.55 (2H, d, *J*=5.3 Hz), 7.82 (1H, dd, *J*=0.9, 8.3 Hz), 8.04-8.14 (1H, m), 8.21 (1H, s), 8.39 (1H, dd, *J*=2.2, 8.3 Hz), 9.29 (1H, d, *J*=1.5 Hz), ir (KBr) cm⁻¹: 2216, 1726, 1622, 1602. EI-ms (m/z): 264(M⁺), 263. Anal. Calcd for C₁₆H₁₂N₂O₂: C, 72.72; H, 4.57; N, 10.60. Found: C, 72.58; H, 4.87; N, 10.32.

3-[2-[5-(2-Hydroxyisopropyl)pyridyl]]cinnamonitrile (44). A solution of methylmagnesium bromide in Et₂O (3 mol/l, 22 ml) was added dropwise over 20 min to a solution of 43 (6.90 g, 26.1 mmol) in THF (60 ml) at $-10 \sim -20$ °C. After stirring for 40 min, the mixture was poured into saturated aqueous NH₄Cl (500 ml)

1565

and extracted with AcOEt. The extract was dried and concentrated. The residue was chromatographed on silica get column and the elution with CHCl₃-MeOH (100:1) gave 44 (4.97 g, 72.0%) as a pale yellow crystal. mp 131-133°C. ¹H Nmr (CDCl₃) δ : 1.63 (6H, s), 5.52 (1/8H, d, *J*=14 Hz), 5.98 (7/8H, d, *J*=16.8 Hz), 7.37-8.10 (7H, m), 8.80 (1H, d, *J*=2.0 Hz), ir (KBr) cm⁻¹: 2216. EI-ms (m/z): 264(M⁺), 249.

anti-3-[2-(5-Isopropenylpyridyl)]cinnamaldehyde (5b). To a solution of 44 (4.96 g, 18.8 mmol) in toluene (80 ml), p-TsOH·H₂O (0.16 g, 0.84 mmol) and p-hydroquinone (0.08 g) were added. The mixture was refluxed for a day with Dean-Stark apparatus. The cooled reaction mixture was washed with saturated aqueous NaHCO₃, dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (4:1) gave 45 (2.39 g, 52%) as a crystal. This product was treated in a similar manner to the preparation of 41e to give 5b (1.39 g, 47%) as a crystal. mp 73-75°C.

2-Chloro-3-isopropylpyridine (46). Methyl 2-chloronicotinate was treated by a similar manner to the preparations of 44 and 45 followed by the catalytic reduction with Pt/C to give 46 as a syrup. ¹H Nmr (CDCl₃) δ : 1.26 (6H, d, J=7.0 Hz), 3.35 (1H, septet, J=7.0 Hz), 7.20 (1H, dd, J=4.8, 7.7 Hz), 7.62 (1H, dd, J=2.0, 7.7 Hz), 8.22 (1H, dd, J=2.0, 4.6 Hz).

3-[2-(3-Isopropylpridyl)]aniline (48). 3-(2-Propyl)-2-(3-nitrophenyl)pyridine was prepared from **46** and 3bromonitorbenzene in the presence of (Ph₃P)₄Pd as a catalyst in a similar manner to the preparation of **25**. To a solution of this compound (8.50 g, 35.1 mmol), 10% Pd/C (50% wet, 0.7 g) was added. The mixture was stirred for 17 h under H₂ atmosphere at room temperature and filtered. The filtrate was concentrated. The residue was recrystallized from hexane-AcOEt to give **48** (6.32 g, 85%) as a colorless crystal. mp 101-102°C. ¹H Nmr (CDCl₃) δ : 1.17 (6H, d, *J*=6.8 Hz), 3.20 (1H, septet, *J*=7.0 Hz), 3.59 (2H, br s), 6.67-6.83 (3H, m), 7.15-7.30 (2H, m), 7.69 (1H, dd, *J*=1.5, 8.1 Hz), 8.47 (1H, dd, *J*=1.5, 4.6 Hz). EI ms (m/z): 212 (M⁺), 211. Anal. Calcd for C₁₄H₁₆N₂: C, 79.21; H, 7.60; N, 13.19. Found: C, 79.19; H, 7.66; N, 12.89. Ethyl **2-Chloro-3-[3-[2-(3-isopropylpyridyl)]phenyl]propanoate (49)**. Compound (**49**) was prepared by the method of Doyle *et al.*¹⁴ A solution of **48** (6.32 g, 29.8 mmol) was added dropwise over 40 min to a mixture of cupric chloride (4.84 g, 36.0 mmol), *t*-butyl nitrite (4.61 g, 45.0 mmol) and ethyl acrylate (60 ml, 563 mmol) in MeCN (60 ml) at room temperature. After stirring for 17 h, the mixture was poured into 10% HCl (600 ml) and extracted with Et₂O. NaHCO₃ was added to the separated aqueous layer and the resultant mixture was extracted with CH₂Cl₂. The extract was washed with water, dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (10:1) gave **49** (5.46 g, 55%) as a pale yellow syrup. ¹H Nmr (CDCl₃) δ: 1.18 (6H, d, *J*=7.0 Hz), 1.22 (3H, t, *J*=7.2 Hz), 2.95-3.32 (2H, m), 3.46 (1H, dd, *J*=6.8, 14.0 Hz), 4.19 (2H, q, *J*=7 Hz), 4.47 (1H, t, *J*=7 Hz), 7.23-7.41 (5H, m), 7.71 (1H, dd, *J*=1.8, 7.9 Hz), 7.99 (1H, dd, *J*=1.8, 4.6 Hz)

Ethyl 3-[2-(3-Isopropylpridyl)]cinnamoate (50). To a solution of 49 (5.96 g, 18.0 mmol) in dioxane (80 ml), DBU (4.11 g, 27.5 mmol) was added. The mixture was stirred for 3.5 h at 120°C and the resultant mixture was filtered. The filtrate was concentrated. The residue was chromatographed on silica gel column and the elution with CH₂Cl₂-EtOH (100:1) gave 50 (5.34 g, 100%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.19 (6H, d, *J*=6.8 Hz), 1.32 (3H, t, *J*=7.2 Hz), 2.90-3.30 (1H, m), 4.26 (2H, q, *J*=7.2 Hz), 6.47 (1H, d, *J*=16.0 Hz), 7.28 (1H, dd, *J*=4.8, 7.2 Hz), 7.42-7.65 (4H, m), 7.73 (1H, dd, *J*=1.8, 7.9 Hz), 7.74 (1H, d, *J*=16.0 Hz), 8.51 (1H, dd, *J*=1.8, 4.8 Hz). FAB ms (m/z): 294 (M⁺+1), 198, 161.

3-[2-(3-Isopropylpyridyl)]cinnamaldehyde (52). Compound (50) was treated with DIBAL-H followed by the Swern oxidation to give 52 as a syrup.

3-([1,1':2',1'']-3-Terphenylyl)propanal (5a). Compound (**4**) was treated by Swern oxidation to give **5a** (Y=39.6%) as a syrup. ¹H Nmr (CDCl₃) δ: 2.35-2.60 (2H, m), 2.65-2.90 (2H,m), 6.80-7.60 (13H, m), 9.62 (1H, s). EI ms (m/z): 286 (M⁺).

Compounds (29 and 35b-c) were treated similarly to give the corresponding propanals.

Ethyl anti-3-Hydroxy-5-([1,1':2',1'']-3-terphenylyl)-2-trityloxymethylpentanoate (7a). Compound (5a) was condensed with benzyl 3-hydroxypropanoate¹⁵ treated with triphenylmethyl chloride and separated by column chromatography as reported¹ to give 7a as a syrup. ¹H Nmr (CDCl₃) δ : 1.27 (3H, t, J=7.2 Hz), 1.40-1.94 (2H, m), 2.30-3.18 (4H, m), 3.60-4.27(3H, m), 4.20 (2H, q, J=7.2 Hz), 6.85-7.64 (28H, m).

anti-4-[2-([1,1':2',1'']-3-Terphenylyl)ethyl]-3-trityloxymethyl-2-oxetanone (9a). Compound (7a) was hydrolyzed with aqueous KOH and lactonized with *p*-TsCl as reported¹ to give 9a (Y=70.1%) as a crystal. mp 164-166°C. ¹H Nmr (CDCl₃) &: 1.50-2.20 (2H, m), 2.35-2.70 (2H, m), 3.00-3.25 (2H, m), 3.35-3.65 (1H, m), 4.36 (1H, dt; *J*=3.7, 7.0 Hz), 6.70-7.65 (28H, m). FD ms (m/z): 600 (M⁺). Anal. Calcd for C₄₃H₃₆O₃: C, 85.97; H, 6.04. Found: C, 85.83; H, 6.03.

anti-3-Hydroxymethyl-4-[2-([1,1':2',1'']-3-terphenylyl)ethyl]-2-oxetanone (10a). Compound (9a) was treated with CF₃COOH as reported previously¹ to give 10a as a crystal. mp 75-77°C. Compounds (61 and 62) were prepared in a similar manner to the preparation of 10a.

1566

anti-3-Hydroxy-5-[3-[2-(5-isopropylpyridyl)]phenyl]-2-trityloxymethylpentanoic Acid (8b). Benzyl anti-5-[3-[5-(2-propenyl)-2-pyridyl]phenyl]-3-hydroxy-2-trityloxymethyl-4-pentenoate (7b) (0.75 g, 1.12 mmol) was prepared from 5b in a similar manner to that reported.¹ To a solution of this compound in EtOH (15 ml), 5% Pd/C (50% wet, 0.15 g) was added. The mixture was stirred for 24 h under H₂ atmosphere at room temperature and the resultant mixture was filtered. The filtrate was concentrated to give 8b (0.51 g, 78%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.23 (3H, s), 1.31 (3H, s), 1.50-1.80 (2H, m), 2.60-3.10 (3H, m), 3.47 (2H, d, J=5.7 Hz), 3.70-4.00 (1H, m), 6.52 (2H, br s), 7.14-7.70 (22H, m), 8.63 (1H, s).

anti-3-Hydroxymethyl-4-[2-[3-[2-(5-isopropylpyridyl)]phenyl]ethyl]-2-oxetanone (10b). Compound (8b) was treated as reported¹ to give 10b as a crystal. mp 92-94°C.

Compounds (59 and 63-68) were prepared in a similar manner to the preparation of 10b.

anti-4-[2-[3-(3-Carboxyphenyl)phenyl]ethyl]-3-hydroxymethyl-2-oxetanone (60). Compound (59) was treated with porcine liver esterase (PLE) as reported¹ to give 60 as a solid. mp 141-143°C.

4-(3-Biphenylyl)-1-butene (12). KOt-Bu (1.55 g, 13.8 mmol) was added to a solution of methyltriphenylphosphonium bromide (5.68 g, 15.9 mmol) in Et₂O (21.2 ml). The mixture was refluxed for 15 min. A solution of 11 (2.18 g, 10.4 mmol) in Et₂O (10.6 ml) was added. The mixture was refluxed for 15 min, poured into water and extracted with AcOEt. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (50:1) gave 12 (2.15 g, 99%) as a syrup. ¹H Nmr (CDCl₃) δ : 2.37-2.45 (2H, m), 2.50-2.78 (2H, m), 4.95 (1H, d, *J*=17 Hz), 5.15 (1H, d, *J*=11 Hz), 5.68-6.05 (1H, m), 7.34-7.61 (9H, m). EI ms (m/z): 208 (M⁺). High ms: Calcd for C₁₆H₁₆: 208.1251 Found: 208.1246.

3-[2-(3-Biphenylyl)ethyl]-2,2-dichlorocyclobutanone (13). Compound (13) was prepared by the method of Dpres *et al.*² Active Zn (4.47 g, 68.3 mmol) was added to a solution of **12** (2.37 g, 11.4 mmol) in Et₂O (30 ml), POCl₃ (4.24 ml, 45.6 mmol) and CCl₃COCl (76.7 ml, 45.6 mmol) in Et₂O (30 ml) was added dropwise for 3 h with sonication.² The mixture was refluxed for 16 h and filtered. The filtrate was washed with water and saturated aqueous NaHCO₃, dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (50:1) gave **13** (2.31 g, 66.0%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.80-1.92 (2H, m), 2.05-2.22 (3H, m), 2.25-2.41 (2H, m), 7.21-7.85 (9H, m), ir (CHCl₃) cm⁻¹: 1810. EI ms (M/z): 318, 320, 322 (M⁺). High ms Calcd for C₁₈H₁₆OCl₂: 318.0577, 320.0547, 322.0518. Found: 318.0559, 320.0554, 322.0503.

HETEROCYCLES, Vol. 38, No. 7, 1994

3-[2-(3-Biphenylyl)ethyl]cyclobutanone (14). Zn (0.138 g, 2.17 mmol) was added to a solution of **13** (1.38 g, 0.43 mmol) in CH₃COOH (4.3 ml). The mixture was stirred for 2 h at 70°C under Ar atmosphere, poured into the mixture of saturated aqueous NaHCO₃ and *c*-NH₄OH and extracted with AcOEt. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (20:1) gave **14** (0.107 g, 66.0%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.80-1.95 (2H, m), 2.00-2.25 (3H, m), 2.25-2.43 (4H, m), 7.30-7.61 (9H, m), ir (KBr) cm⁻¹: 1770. EI ms (m/z): 250 (M⁺). High ms Calcd for C₁₈H₁₈O: 250.1357. Found: 250.1371.

anti and syn-3-[2-(3-Biphenylyl)ethyl]-2-hydroxymethylcyclobutanone (16a-b). To a solution of 14 (0.100 g, 0.40 mmol) in CH₂Cl₂ (2.0 ml), 2,6-lutidine (93 µl, 0.80 mmol) and t-butyldimethylsilyl trifluoromethanesulfonate (138 μ l, 0.60 mmol) were added dropwise in an ice-bath. The mixture was stirred for 15 h, poured into water and extracted with CH₂Cl₂. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (100:1) gave 15 (0.099 g, 68.0%) as a syrup. A solution of this syrup in CH₂Cl₂ (1.5 ml) was added dropwise to a mixture of SnCl₄ (0.47 µl, 0.4 mmol) in CH₂Cl₂ (3 ml) and HCHO (prepared by heating of paraformaldehyde 0.37 g) in Et₂O (1 ml) for 20 min under Ar atmosphere at -78°C. The mixture was stirred for 1 h and poured into saturated aqueous NaHCO₃, After standing for 1 h, the organic layer was separated, dried and concentrated. The residue was separated by ptic (silica gel, hexane-AcOEt (1:1)) to give 16a (10.7 mg) and 16b (8.2 mg) as a syrup, respectively. Combined yield based on recovered cyclobutanone was 54%. 16a: ¹H Nmr (CDCl₂) δ : 1.90-2.10 (2H, m), 2.20-2.43 (1H, m), 2.55-2.82 (4H, m), 2.93-3.20 (1H, m), 3.70-3.90 (2H, m), 7.30-7.61 (9H, m), ir (KBr) cm⁻¹: 1770, 2850-2950, 3200-3600. EI ms (m/z): 280 (M⁺). High ms calcd for C₁₉H₂₀O₂. 280.1463. Found 280.1460. 16b: ¹H Nmr (CDCl₃) &: 1.90-2.13 (2H, m), 2.22-2.46 (1H, m), 2.50-2.85 (4H, m), 3.04-3.28 (1H, m), 3.71-3.92 (2H, m), 7.30-7.60 (9H, m), ir (KBr) cm⁻¹: 1760 2850-2950, 3200-3600. EI ms (m/z): 280 (M⁺). High ms calcd for C19H20O2: 280.1463. Found 280.1458. NOE between C-2 and c-3 protons (cyclobutanone numbering) was observed in 16b and not observed in 16a.

3-[2-(3-Biphenylyl)ethyl]butyrolactone (17). To a solution of 14 (0.107 g, 0.43 mmol) in CH₂Cl₂ (4.3 ml), 3-chloroperbenzoic acid (0.111 g, 0.65 mmol) was added. The mixture was stirred for 40 min and poured into 10% Na₂CO₃. After stirring for 10 min, the resultant mixture was extracted with CH₂Cl₂. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (10:1) gave 17 (0.104 g, 91 %) as a syrup. ¹H Nmr (CDCl₃) δ : 1.85-2.02 (2H, m), 2.15-2.41 (1H, m),

2.54-2.83 (4H, m), 3.81-4.00 (1H, m), 4.34-4.50 (1H, m), 7.30-7.61 (9H, m), ir (KBr) cm⁻¹: 1760, 2890-3050, 3200-3600. EI ms (m/z): 266 (M⁺). High ms: Calcd for C₁₈H₁₈O₂: 266.1307. Found: 266.1306. anti and syn-3-[2-(3-Biphenylyl)ethyl]-2-hydroxymethylbutyrolactone (18a-b). Compound (17) was treated by a similar manner to the preparation of 6a except the use of HCHO and separated with ptlc (silica gel, hexane-AcOEt (1:1)) to give anti-18a and syn-18b (combined yield: 24%) as a syrup, respectively. 18a: ¹H Nmr (CDCi₃) δ: 1.81-2.04 (2H, m), 2.40-2.52 (1H, m), 2.61-2.84 (3H, m), 3.61-4.00 (3H, m), 4.31-4.56 (1H, m), 7.48-7.72 (9H, m), ir (KBr) cm⁻¹: 1750, 2800-3000, 3200-3550. EI ms (m/z): 296 (M⁺). High ms calcd for C19H20O3: 296.1412. Found: 296.1401. 18b: ¹H Nmr (CDCl₃) δ : 1.81-2.02 (2H, m), 2.42-2.55 (1H, m), 2.60-2.80 (3H, m), 3.61-4.04 (3H, m), 4.30-4.51 (1H, m), 7.40-7.72 (9H, m), ir (KBr) cm⁻¹: 1750, 2800-3000, 3200-3550. EI ms (m/z): 296 (M⁺). High ms calcd for C₁₉H₂₀O₃: 296.1412. Found: 296.1410. NOE between C-2 and C-3 protons (butyrolactone numbering) was observed in 18b and not observed in 18a. Benzyl anti-5-[2-(3-Biphenylyl)ethyl]-2-(t-butyldiphenylsilyloxymethyl)-3-hydroxypentanoate (20). Compound (11) was treated by the manner reported previously¹ to give 19, which was treated with TBDPS-Cl and imidazole in a similar manner to the preparation of 7a to give 20 as a syrup. ¹H Nmr (CDCl₃) δ : 1.01 (9H, s), 1.51-1.96 (2H, m), 2.45 (1H, br s), 2.61-2.93 (3H, m), 3.90-4.25 (3H, m), 5.10 (2H, s), 6.93-7.80 (24H, m).

anti-5-[2-(3-Biphenylyl)ethyl]-2-(*t*-butyldiphenylsilyloxymethyl)pentan-1,3-diol. (21). A solution of DIBAL-H (1 mol/l, in hexane, 4.46 ml) was added dropwise to a solution of 20 (0.301 g, 0.48 mmol) in Et₂O (9.5 ml) at -78°C. The mixture was stirred for 5.8 h under Ar atmosphere, warmed gradually to room temperature and stirred for 2.3 h before quenching with 10% H₂SO₄. The resultant mixture was extracted with Et₂O. The extract was dried and concentrated. The residue was chromatographed on silica gel column and the elution with hexane-AcOEt (3:1) gave 21 (0.225 g, 89%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.10 (9H, s), 1.64-2.11 (3H, m), 2.53 (2H, br s), 2.61-2.90 (2H, m), 3.82-4.13 (5H, m), 7.10-7.80 (19H, m). *anti*-5-[2-(3-Biphenylyl)ethyl]-2-(*t*-butyldiphenylsilyloxymethyl)-1-*p*-toluenesulfonyloxypenatan-3-ol (22). To a solution of 21 (87 mg, 0.17 mmol) in CH₂Cl₂ (1.7 ml), pyridine (3.2 μ l, 0.39 mmol) and *p*-TsCl (38 mg, 0.20 mmol) were added . The mixture was stirred for 7 h at 0°C, poured into saturated aqueous NaHCO₃ and extracted with CH₂Cl₂. The extract was dried and concentrated. The residue was separated by ptlc (silica gel, hexane-AcOEt (1:1)) to give 22 (60 mg, 53%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.01 (9H, s), 1.51-1.96 (3H, m), 2.43 (3H, s), 2.53-2.90 (3H, m), 3.63-4.16 (3H, m), 4.22-4.54 (2H, m), 7.00-8.06 (23H, m).

anti-2-[2-(3-Biphenylyl)ethyl]-3-(t-butyldiphenylsilyloxymethyl)oxetane (23). To a solution of 22 (60 mg, 0.088 mmol) in THF (1.6 ml), KOt-Bu (20 mg, 0.18 mmol) was added at 0°C. After stirring for 20 min, water was added. The mixture was extracted with AcOEt. The extract was dried and concentrated. The residue was separated by ptlc (silica gel, hexane-AcOEt (2:1)) to give 23 (35 mg, 79%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.04 (9H, s), 1.92-2.31 (2H, m), 2.62-2.94 (3H, m), 3.80 (2H, dd, J=4.0, 7.2 Hz), 4.40 (1H, t, J=6.5 Hz), 6.92-7.80 (19H, m).

anti-2-[2-(3-Biphenylyl)ethyl]-3-hydroxymethyloxetane (24). Compound (23) (34 mg, 0.07 mmol) was added to a solution 1*M*-tetrabutylammolonium fluoride in THF (350 μ l, 0.35 mmol). The mixture was stirred for 50 min at room temperature. After dilution with water, the mixture was extracted AcOEt. The extract was dried and concentrated. The residue was separated by ptlc (silica gel, hexane-AcOEt (1:3)) to give 24 (16 mg, 89%) as a syrup. ¹H Nmr (CDCl₃) δ : 1.70 (1H, br s), 2.00-2.29 (2H, m), 2.65-2.88 (3H, m), 3.83 (2H, d, *J*=7 Hz), 4.42 (1H, t, *J*=7 Hz), 4.57-4.68 (2H, m), 7.15-7.65 (9H, m). ¹³C Nmr (CDCl₃, 75 MHz): 141.94, 141.37, 128.82, 128.69, 127.31, 127.27, 127.21, 127.14, 124.81, 84.47, 70.31, 63.80, 42.49, 38.70, 30.54, ir (KBr) cm⁻¹: 960, 2800-3100, 3200-3550. NOE between C-2 and C-3 protons (oxetane numbering) was not observed. Inhibition against HMG-CoA Synthase (*in vitro* Assay).

Inhibitory activities against HMG-CoA synthase were assayed as reported previously.4

Inhibition against Cholesterol Biosynthesis in Mouse Liver (in vivo Assay).

Compounds were evaluated for their abilities to inhibit the cholesterol synthesis in standard chow-fed male ddY mouse by the manner reported.¹

REFERENCES

- H. Hashizume, H. Ito, K. Yamada, H. Nagashima, M. Kanao, H. Tomoda, T.Sunazuka, H. Kumagai, and S. Omura, *Chem. Pharm. Bull.*, 1994, 42, 512.
- 2. J.-P. Dpres and A. E. Green, J. Org. Chem., 1980, 45, 2036.
- 3. B. Ermst, Angew. Chem. Int. Ed. Engl., 1988, 27, 797.
- 4. H. Tomoda, H. Kumagai, H. Tanaka, and S. Omura, Biochim. Biophys. Acta, 1987, 922, 351.
- 5. H. Tomoda, H. Kumagai, H. Tanaka, and S. Omura, J. Antibiotics, 1992, 46, 1139.
- 6. M. D. Greenspan, H. G. Bull, J. B. Yudkovitz, D. P. Hanf, and A. W. Albert, Biochem. J., 1993, 289, 889.
- 7. R. J. Mayer, P. Louis-Flamberg, J. D. Elliott, M. Fisher, and J. Leber, *Biochem. Biophys. Res. Commun.*, 1990, **169**, 610.

- 8. E. Negishi, A. O. King, and N. Okukado, J. Org. Chem., 1977, 42, 1821.
- 9. L. N. Pridgen, J. Heterocycl. Chem., 1975, 12, 443.
- 10. J. E. Thorpe, Ger. Patent 2,718,976 [Chem. Abstr., 1978, 88, 50866z].
- W. J. Thompson, J. Gaudino, K. Burdeska, H. Fuhrer, G. Kabas, and A. E. Siegrist, J. Org. Chem., 1984, 49, 5237.
- 12. H. E. Zimmolerman, D. F. Juers, J. M. McCall, and B. Schroder, J. Am. Chem. Soc., 1971, 93, 3662.
- 13. T. M. Cresp, M. V. Sargent, and P. Vogel, J. Chem. Soc., Perkin Trans. I, 1974, 37.
- 14. M. P. Doyle, B. Siegfried, R. C. Elliott, and J. F. Dellaria Jr., J. Org. Chem., 1977, 42, 2431.
- 15. T. Sunazuka, K. Tsuzuki, H. Kumagai, H. Tomoda, H. Tanaka, H. Nagashima, H. Hashizume, and S. Ōmura, J. Antibiotics, 1992, 45, 1139.

Received, 18th February, 1994