## ONE-STEP SYNTHESIS AND ENZYME INHIBITING ACTIVITIES OF PYRIZINOSTATIN ANALOGS

Kuniaki Tatsuta\* and Masayuki Kitagawa

Graduate School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169, Japan

Abstract - Pyrizinostatin analogs were synthesized from 2methylfervenulone and a variety of methyl ketones in only one step and showed stronger enzyme inhibiting activities than pyrizinostatin itself.

Pyrizinostatin [(-)-1] isolated from fermentation broth of *Streptomyces* sp. is a strong inhibitor against pyroglutamyl peptidase.<sup>1,2</sup> Recently, racemic pyrizinostatin (1) has been synthesized in our laboratories from an antibiotic, 2-methylfervenulone (2), in only one step and showed similar enzyme inhibiting activity with the natural product.<sup>3</sup>

Herein, we report one-step synthesis of a variety of racemic pyrizinostatin analogs, most of which displayed stronger enzyme inhibiting activitities than pyrizinostatin (1) itself.

Pyrizinostatin analogs (3 - 11) were synthesized from 2-methylfervenulone<sup>4,5</sup>(2: 2MF) and methyl ketones (RCOCH<sub>3</sub>) with or without solvent as shown in Table 1. The reaction mechanism is rationalized to be due to the nucleophilic attack of the resulting anion (RCOCH<sub>2</sub><sup>-</sup>) to 2 as shown below.



A typical synthetic procedure is the following.

The starting fluorescent 2-methylfervenulone (2) was isolated from the fermentation broth of the microbial strain<sup>4</sup> and also readily prepared on large scale in 4 steps from 1,3-dimethyl-4-chlorouracil.<sup>5</sup> 2-Methylfervenulone (2: 96.2 mg) was dissolved in acetophenone (4 ml) and the solution was stirred at 70°C for 2 days. The reaction mixture was directly chromatographed on silica gel column (10 g) with EtOAc-hexane (1:2 $\rightarrow$ 2:1). The fractions having Rf-value 0.29 on tlc (EtOAc-hexane 2:1) were combined and evaporated to dryness *in vacuo*. Recrystallization from MeOH gave crystals of 5 (133 mg) in 90% yield. mp 177°C; EI-ms m/z 343 (M<sup>+</sup>); <sup>1</sup>H nmr (90 MHz, CDCl<sub>3</sub>) 3.20 (6H, s), 3.26 (3H, s), 3.36 (1H, d, J=15.0 Hz), 3.80 (1H, d, J=15.0 Hz), 5.83(1H, br s), 7.37-7.94 (5H, m).

| Table 1. | Synthesis and physico-chemical | I properties of pyrizinostatin analog |
|----------|--------------------------------|---------------------------------------|
|----------|--------------------------------|---------------------------------------|

| Compds | R                       | Solvent                         | Yleid(%) | mp(°C)      | Recrystallization<br>solvent | FAB-ms(m/z) | Tic(Rf value*) |
|--------|-------------------------|---------------------------------|----------|-------------|------------------------------|-------------|----------------|
| 3      | < <sup>сн,</sup>        | CH2CICH2CI                      | 67       | 158~159.5   | EtOAc-hexane                 | 310(M+H)*   | 0.42           |
| 4      | $\neg$                  | CH2CICH2CI                      | 37       | 151.5~152.5 | EtOAc-hexane                 | 308(M+H)*   | 0.24           |
| 5      | $\neg \bigcirc$         | <u> </u>                        | 90       | 177         | MeOH                         | 343(M*)***  | 0.29           |
| 6      | - <b>()</b> -a          | CH2CICH2CI                      | 85       | 176.5~177.5 | MeOH                         | 377(M*)***  | 0.34           |
| 7      | $\rightarrow$           |                                 | 61       | 184.5~186   | MeOH                         | 345(M+H)*   | 0.21           |
| 8      | -\$J                    | CH2CICH2CI                      | 87       | 180~181.5   | EtOAc-hexane                 | 350(M+H)*   | 0.26           |
| 9      | -¢т <sup>сн,</sup>      |                                 | 79       | 194~194.5   | EtOAc-hexane                 | 348(M+H)*   | 0.11           |
| 10     | $\overline{\mathbf{x}}$ | CH <sub>2</sub> Cl <sub>2</sub> | 86       | 221~222**   | MeOH                         | 395(M+H)*   | 0.47           |
| 11     | $\overline{0}$          | CH2CICH2CI                      | 58       | 245~246     | MeOH                         | 432(M+H)*   | 0.47           |

\* On KGF254 60 (Merck) with EtOAc-hexane (2:1), \*\* Decomposition, \*\*\* Measured by El-ms.

Remarkably, all of the new pyrizinostatin analogs (3 - 11) showed enzyme inhibiting activities against pyroglutamyl peptidase as shown in Table 2.<sup>1,2</sup> The results indicated that the analogs having aromatic rings showed stronger activities than aliphatic analogs and a pyridine analog (7) was the strongest one. The further biological assay for medicinal use of these analogs will be reported in due course.

| Compds | R                                   | IC50 | Compds | R                        | IC50 |
|--------|-------------------------------------|------|--------|--------------------------|------|
| 1      | CH <sub>3</sub><br>(Pyrizinostatin) | 0.8  | 7      | →N=>                     | 0.02 |
| 3      | < <sup>сн</sup> ₃                   | 3.0  | 8      | ⊸\$〕                     | 0.4  |
| 4      | $\sim$                              | 4.5  | 9      | -√J cH³                  | 0.4  |
| 5      | $\neg$                              | 0.25 | 10     | $\neg \bigcirc \bigcirc$ | 0.4  |
| 6      |                                     | 0.2  | 11     |                          | 0.4  |

Table 2. Enzyme inhibiting activity against pyroglutamyl peptidase (ICso:µg/ml)

## ACKNOWLEDGMENT

We are grateful to the Institute of Microbial Chemistry, Nippon Kayaku Co. Ltd., Yamanouchi Pharmaceutical Co. Ltd. and Shikoku Chemicals Co. for their generous support of our program.

## REFERENCES

- 1 T. Aoyagi, M. Hatsu, C. Imada, H. Naganawa, Y. Okami, and T. Takeuchi, J. Antibiot., 1992, 45, 1795.
- 2 M. Hatsu, H. Naganawa, T. Aoyagi, and T. Takeuchi, J. Antibiot., 1992, 45, 1961.
- 3 K. Tatsuta and M. Kitagawa, J. Antibiot., 1994, 47, 925.
- 4 T. W. Miller, L. Chalet, B. Arison, R. W. Walker, N. R. Trenner, and F. J. Wolf, Antimicrob. Agents Chemother., 1963, 58.
- 5 E. C. Taylor and F. Sowinski, J. Org. Chem., 1975, 40, 2321.

Received, 28th February, 1994