DENSITY FUNCTIONAL CALCULATIONS ON HETEROCYCLIC COMPOUNDS. PART 2.¹ ON THE PROTONATION OF 4,5-DICHLORO-2-METHYL-3(2*H*)-PYRIDAZINONE

Péter Mátyus,^{2*} Kaoru Fuji, and Kiyoshi Tanaka,^{*} Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan

János Rohonczy, Richárd Hargitai, and Pál Sohár* Department of General and Inorganic Chemistry, Lóránd Eötvős University, H-1518 Budapest-112, P O. Box 38, Hungary

Abstract - Studies on protonation of the title compound by DF and *ab initio* quantum chemical methods as well as ¹³C-nmr relaxation measurements revealed that *O*-protonation took place.

The regiochemistry of nucleophilic displacement reaction of 4,5-dichloro-2-methyl-3(2*H*)-pyridazinone (1) was found to be dramatically influenced by strongly acidic medium, and the protonation of (1) with hydrobromic acid was supposed to proceed at N-1 on the basis of unexpected formation of the 4-bromo derivative ³ In this paper we describe our studies on the site of protonation of 1.

We recently performed density functional (DF) calculations for a variety of heterocycles, and proton affinities gained by this way were in excellent agreement with the experimental values.¹

Total energy values for 1 and its protonated ions (2-4), were calculated by using DZVP/2⁴ basis set at LSD⁴ and NLSD⁴ (BP) levels of DF theory,⁴ and are listed in Table 1. For comparison, data obtained at 4-21G(*) and $6-31G^{**}$ *ab initio* HF levels are also included,⁵ which are also expected to reproduce the basicity order correctly.⁶ According to the NLSD level of DF theory, which could even approximate the experimental proton affinities numerically, the total energy differences between 2 and 3 or 4 are as large as -48.9 and -141.0 kJ/mol, respectively, *i.e.* the *O*-protonated form (2) should predominate. The same conclusion could be drawn on the basis of *ab initio* data.

Compound	Energies by DF theory			Energies by ab initio			
	Total ^{a,b}	Relative ^{c,d}	PA ^{c,e}	Total ^{a,f}	Relative ^{c,d}	PA ^{c,e}	
1	-1292.0738			-1289 4478			
	-1298.2594			-1294.3585			
2	-1292.4108	-171.7	884 8	-1289 8019	-131.9	929 7	
	-1298.6041	-141.0	905 0	-1294 7124	-146 7	929.2	
3	-1292.3942	-128.1	841.2	-1281 7655	- 36 3	834.1	
	-1298.5856	- 92 1	856.4	-1294.6821	- 67.2	849 7	
4	-1292 3454	0	713.1	-1289 7516	0	797.8	
	-1298 5504	0	764.0	-1294,6565	0	782 5	

Table 1. Energetic values for compounds (1-4)

a) In au, 1 au (hartree)=2625.5 kJ mol⁻¹; b) the first values were obtained by LSD⁴, the second ones by LDF+BP⁴; c) in kJ mol⁻¹; d) the energy of the given form relatively to the less stable protonated ion (4);
e) defined as the negative of the protonation enthalpy, *ie* the energy difference of the protonated ion and 1;
f) the first values were calculated at 4-21G(*) and the second ones at 6-31G** levels

To support the above theoretical results, the protonation of 1 was studied experimentally. ¹H Nmr shifts at pyridazinones as function of pH gave no information on the site of protonation ⁷ Neither the ¹³C-nmr chemical

shifts were found to be of value in this respect, since all carbon lines for 1 were shifted downfield at about equal extent upon protonation, as shown in Table 2. We measured then ¹³C-nmr T_1 relaxation times for pyridazinone (1) in CDCl₃ + TFA and CDCl₃ + TFA-*d* solutions by inversion recovery method. Nmr relaxation parameters have already been successfully used to investigate prototropic tautomerism,¹⁰ and protonation of nitrogen bases.¹¹ This method proved to be useful also in our case. The differences between the relaxation times measured in CDCl₃ + TFA and CDCl₃ + TFA-*d* are much larger for C-3 and C-4 than for the other carbons establishing that O-protonation took place.

Table 2. ¹³C-nmr chemical shifts ($\delta_{TMS}=0$ ppm) and $T_I(^{13}C)$ relaxation times for compound (1) at 20 MHz

Carbon	δ C (ppm)		T_I (¹³ C) spin lattice relaxation time (sec)					
	CDCl ₃	TFA/TFA-d	CDCl ₃	TFA	TFA-d	Differencea	Differenceb	
CH ₃	40.6	41.6	9 2	6.9	6.8	0 1	15	
<i>C</i> -3	156 4	158 5	158	48	140	- 92	66	
<i>C</i> -4	133.6	133.9	129	115	228	-113	50	
C-5	136,1	138 3	99	73	80	-7	9	
<i>C-</i> 6	135.0	137.5	4.6	2.5	2.3	02	9	

a) Difference in T_1 (13C) measured in TFA and in TFA-d, b) the same in %.

In conclusion, the protonation of 1 was predicted by DF theory and *ab initio* methods to afford *O*-protonated form (2), in agreement with the experimental result based on 13 C-nmr relaxation time measurements.

ACKNOWLEDGMENT

P M. wishes to thank CIBA-GEIGY Foundation for the Promotion of Sciences (Japan) for a fellowship.

REFERENCES AND NOTES

- 1. Part 1. P. Mátyus, K. Fuji, and K. Tanaka, Tetrahedron, 1994, 50, 2405.
- 2. On leave from Institute for Drug Research, Ltd., H-1325, Budapest, P. O. Box 82, Hungary.
- 3. M Takaya, Yakugaku Zasshi, 1988, 108, 911
- All calculations were done on Cray-YMP supercomputer with DGAUSS 1.1.1./ UC-1 1.1 program Full geometric optimizations were carried out. The Becke-Perdew (BP) treatments were done after the final SCF. For details of calculations see ref. 1, and J. Andzelm and E. Wimmer, J. Chem. Phys., 1992, 96, 1280.
- All calculations were done on IBM RS6000 workstation with TX90 program Full geometric optimizations were carried out by the GDIIS algorithm (P. Pulay, *Theor. Chim. Acta*, 1979, 50, 299) The split-valence 4-21G(*) basis set contains polarization function on atoms differ from carbon and hydrogen (G. Fogarasi, X. Zhou, P W Taylor, and P Pulay, *J. Am. Chem. Soc.*, 1992, 114, 8191).
- J.-L M Abbond, P. Cabildo, T. Cañada, J. Catalán, R M. Claramant, J. L G de Paz, J. Elguero, H. Homan, R. Notario, C Toiron, and G I Yranto, J. Org. Chem., 1992, 57, 3938
- 7. G. B Barlin and D M. Fenn, Aust. J. Chem., 1979, 32, 2297.
- 8. Samples were prepared from 0.6 mmol of 1 with 0 5 ml of CDCl₃ containing 1% TMS; for protonation or deuteration, 1 2 mmol of anhydrous TFA or TFA-*d*, respectively, were also added. The samples were measured at room temperature on a BRUKER AC-80 spectrometer operating at 80 MHz. Values for quaternary and protonated carbons were obtained from inversion recovery spectra Assignments agree with ref 9.
- 9. T Liptaj, V. Konecny, and S Kovác, Magn. Res. Chem., 1990, 28, 380.
- 10. R. S. Norton, R. P. Gregson, and R. J. Quinn, J. Chem. Soc., Chem. Commun., 1980, 330.
- 11. D. J. Cralk, G C. Levy, and A Lombardo, J. Phys. Chem., 1982, 86, 3893

Received, 11th April, 1994