DENSITY FUNCTIONAL CALCULATIONS ON HETEROCYCLIC COMPOUNDS. PART 2.¹ ON THE PROTONATION OF 4,5-DICHLORO- 2 -METHYL-3(2H)-PYRIDAZINONE

Péter Mátyus.^{2*} Kaoru Fuji, and Kiyoshi Tanaka,^{*} Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611. Japan

János Rohonczy, Richárd Hargitai, and Pál Sohár* Department of General and Inorganic Chemistry, Lóránd Eötvos University, H-1518 Budapest-112, P 0. Box 38, Hungary

Abstract - Studies on protonation of the title compound by DF and *ab mitio* quantum chemical methods as well as 13C-nmr relaxation measurements revealed that O-protonation took place.

The regiochemistry of nucleophilic displacement reaction of **4.5-dichloro-2-methyl-3(2H)-pyridazinone (1)** was found to be dramatically influenced by strongly acidic medium, and the protonation of (1) with hydrobromic acid was supposed to proceed at $N-1$ on the basis of unexpected formation of the 4-bromo derivative 3 In this paper we describe our studies on the site of protonation of 1 .

We recently performed density functional (DF) calculations for a variety of heterocycles, and proton affinities gained by this way were in excellent agreement with the experimental values.¹

Total energy values for 1 and its protonated ions (2-4), were calculated by using DZVP/2⁴ basis set at LSD⁴ and NLSD⁴ (BP) levels of DF theory,⁴ and are listed in Table 1. For comparison, data obtained at 4-21G(*) and 6- $31G^{**}$ *ab initio* HF levels are also included,⁵ which are also expected to reproduce the basicity order correctly.⁶ According to the NLSD level of DF theory, which could even approximate the experimental proton affinities numerically, the total energy differences between 2 and 3 or 4 are as large as -48.9 and -141.0 kJ/mol, respectively, **i.e.** the 0-protonated form (2) should predominate. The same conclusion could be drawn on the basis of *ab* **lnrfro** data.

Compound	Energies by DF theory				Energies by ab initio			
	Totala,b	Relative ^{c,d}	PAC,e	Totala,f	Relative ^{c,d}	PAC, c		
1	-1292.0738			-12894478				
	-1298.2594			-1294.3585				
$\mathbf{2}$	-1292.4108	-171.7	8848	-12898019	-131.9	9297		
	-1298.6041	-141.0	9050	-1294 7124	-1467	929.2		
3	-1292 3942	-128.1	841.2	-12817655	-363	834.1		
	-1298.5856	-921	856.4	-1294.6821	-67.2	8497		
$\overline{\mathbf{4}}$	-1292 3454	$\mathbf 0$	713.1	-1289 7516	$\mathbf 0$	797.8		
	-1298 5504	$\mathbf 0$	764.0	-1294.6565	0	782.5		

Table I. Energetic values for compounds (1-4)

a) In au, 1 au (hartree)=2625.5 kJ mol⁻¹; b) the first values were obtained by LSD⁴, the second ones by LDF+BP⁴; c) in kJ mol⁻¹; d) the energy of the given form relatively to the less stable protonated ion (4); e) defined as the negative of the protonation enthalpy, **ie** the energy difference of the protonated ion and 1; **f)** the first values were calculated at 4-21G(*) and the second ones at 6-3 1G** levels

To support the above theoretical results, the protonation of **1** was studied experimentally. 'H Nmr shifts at pyridazinones as function of pH gave no information on the site of protonation ⁷ Neither the ¹³C-nmr chemical

shifts were found to be of value in this respect, since all carbon lines for 1 were shifted downfield at about equal extent upon protonation, as shown in Table 2. We measured then $13C$ -nmr T_I relaxation times for pyridazinone (1) in CDCI, + TFA and CDCI, + TFA-d solutions by inversion recovey method. **Nmr** relaxation parameters have already been successfully used to investigate prototropic tautomerism,¹⁰ and protonation of nitrogen bases.¹¹ This method proved to be useful also in our case. The differences between the relaxation times measured in CDCl₃ + TFA and CDCl₃ + TFA-d are much larger for C-3 and C-4 than for the other carbons establishing that O -protonation took place.

Table 2. ¹³C-nmr chemical shifts (δ_{FMS} =0 ppm) and T_I (¹³C) relaxation times for compound (1) at 20 MHz

Carbon	δC (ppm)		T_I (¹³ C) spin lattice relaxation time (sec)					
	CDCl ₃	TFA/TFA-d	CDCl ₂	TFA	$TFA-d$	Difference ^a	Difference ^b	
CH ₃	40.6	41.6	92	6.9	6.8	0 ₁	15	
$C-3$	1564	158.5	158	48	140	-92	66	
$C-4$	133.6	133.9	129	115	228	-113	50	
$C-5$	136.1	1383	99	73	80	-7	9	
$C - 6$	135.0	137.5	4.6	2.5	2.3	0 ₂	9	

a) Difference in T_I (¹³C) measured in TFA and in TFA-d, b) the same in %.

In conclusion, the protonation of 1 was predicted by DF theory and *ab unitio* methods to afford O-protonated form **(Z),** in agreement with the experimental result based on 13C-nmr relaxation time measurements.

ACKNOWLEDGMENT

P M. wishes to thank CIBA-GEIGY Foundation for the Promotion of Sciences (Japan) for a fellowship

REFERENCES AND NOTES

- 1. Part 1. P. Matyus, K. Fuji, and K. Tanaka, *Tefrahedron,* 1994, 50, 2405.
- 2. On leave from Institute for Drug Research, Ltd., H-1325, Budapest, P **0.** Box 82, Hungary.
- 3. M Takaya, *Yakugaku Zasshr,* 1988, 108,911
- 4. All calculations were done on Cray-YMP supercomputer with DGAUSS 1.1.1./ UC-1 1.1 program Full geometric optimizations were carried out. The Becke-Perdew (BP) treatments were done after the final SCF. For details of calculations see ref 1, and J. Andzelm and E. Wimmer, *J. Chem. Phys.,* 1992, **96:** 1280.
- 5. All calculations were done on IBM RS6000 workstation with TX90 program Full geometric optimizations were carried out by the GDIIS algorithm (P. Pulay, *Theor. Chim. Ada, 1979,* 50, 299) The split-valence 4-21G(*) basis set contains polarization function on atoms differ from carbon and hydrogen (G. Fogarasi, X. Zhou, P W Taylor,and P Pulay, *J. Am. Chem. Soc.,* 1992, 114, 8191).
- 6. J.-L M Abbond, P. Cabildo, T. Caiiada, J. Catalan, R M. Claramant, J. L G de **Paz,** J. Elguero, H. Homan, R. Notario, C Toiron, and G I Yranto, *J. Org. Chem.,* 1992, *57,* 3938
- **7.** *G.* B Barlin and D M. Fenn, *Aust. J. Chem.,* 1979, 32, 2297.
- 8. Samples were prepared from 0.6 mmol of 1 with 0 5 ml of CDCI, containing 1% TMS; for protonation or deuteration, 1 2 mmol of anhydrous TFA or TFA-d, respectively, were also added. The samples were measured at room temperature on a BRUKER AC-80 spectrometer operating at 80 MHz. Values for quaternary and protonated carbons were obtained from inversion recovery spectra Assignments agree with ref 9.
- 9. T Liptaj, V. Konecny, and **S** Kovac, *Map. Res. Chem.,* 1990, 28,380.
- 10. R. S. Norton, R. P. Gregson, and R J. Quinn, *J. Chem. Soc..Chem. Commun.,* 1980, 330.
- 11. D. **J.** Cralk, G C. Levy, and A Lombardo, J. *Phys. Chem.,* 1982, *86,* ³⁸⁹³

Received, 11th **April,** 1994