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Abstract--Catalytic Lewis acid promoted tandem [4+42]cycloaddition-
rearrangement processes of the trienic esters (4), (8) and (9) are

reported. The novel tandem reactions proceed under thermal (110 °C,

aluminum catalyst) conditions and afford the highly functionalized

oxabicyclo[3.3.1]nonanes (5), (10) and (11), respectively.

The expeditious assembly of polycyclic ring systems from simple acyclic precursors with
regio- and stereochemical control has for many years remained an important goal in organic
synthesis. Tandem organic reactions! are among the most useful synthetic process, creating
several bonds in a single step.

As an outgrowth of our interest in intramolecular Diels-Alder reactions of trienic esters,? we
have been studying the tandem [4+2] cycloaddition-rearrangement process, a transformation

which has significant potential for stereoselective synthesis of cyclic natural products.
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Herein, we describe the results of preliminary studies on the Lewis acid promoted tandem [4+2]

cycloaddition-rearrangement process (1—2-3).

He!

An important advantage of the present strategy is that the required precursors are easily

Scheme 1

prepared by standard synthetic reactions involving the esterification of the appropriate
carboxylic acids with the unsaturated alcohols in good yield.

We have carried out extensive studies on the tandem [4+2] cycloaddition-rearrangement
chemistry of the trienic ester (4). The results, summarized in Table I, show that the outcome
of the novel tandem reaction can be altered dramatically by varying the reaction conditions.
First of all, we have examined Lewis acids? for the tandem process with the substrate (4)4 in
toluene or CH2Cl2 under argon. EtAlClz and TiClg are still totally reluctant to work for this
purpose, however, Et2AICl, Et2AlOEt and Et2 AICN provided the desired product (5),4
respectively (entries 3, 6, 7 and 9 in Table I} The product consisted of three isomers, (5), (6)
and (7), which could be separated by column chromatography. Thermolysis of 4 at
temperature ranging from 0 °C to 80 °C in the presence of Lewis acid showed no product
formation. When the temperature was raised to 110 °C, the starting material (4) was consumed
for 5 h to yield the highly functionalized oxabicyclo[3.3.1]nonane (5) in 48% yiv::ld5 (entry 6 1n
Table I). Although this yield is not impressive, it should be noted that the above process
(4—5) is a quite rare example of tandem pericyclic reaction-rearrangement seque:nce.1 The
low yields observed in entries 3, 6, 7 and 9 (Table I) may reflect the state of 4 rather than the

tandem reaction since 4 was utilized without purification.
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Scheme 1II

A possible mechanism for the formation of the rearranged product ($) is shown in Figure L
Namely, Lewis acid coordinated to both ester and lactone carbonyl moieties of 6 to give 12. This
initially formed adduct then undergoes a lactone cleavage to the cation (13). The equilibration
of the resultant cation ($3) to 14, and subsequent attack of the carboxylate group to the
cationic carbon gave the thermodynamically favored bicyclic product (5).

In order to illustrate the synthetic potential of this new methodology, we have prepared the
model compound (16),% featuring the bicyclic portion of C-aromatic taxane skeletons.?

In summary, we have shown that the combination of [442] cycleaddition and cationic
rearrangement reaction is a powerful new methodology that allows ready access into a variety

of oxabicyclo[3.3.1]nonanes.
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In this thus far unoptimized reaction, ca. 10% of the over-reduction product during
Lindlar reduction of (E)-3-methyl-2-penten-4-yl-1-01 was obtained along with varying
degrees of urea, In addition, resubmission of accumulated 6 to tandem reaction provides
more of c¢compound (5).

The diene part of 8 was prepared by applying Roush's prcocedm'fz.8
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