REACTION OF METAL CYCLOPENTADIENIDES WITH 1,3-BIS(METHYLTHIO)-1,2-DITHIOLIUM SALTS Klaus Hartke* and Xue-Ping Popp Institut für Pharmazeutische Chemie der Universität Marburg, Marbacher Weg 6, D-35032 Marburg/Lahn, Germany

This paper is dedicated to Professor Dr. Dr. h.c. R. Huisgen on the occasion of his 75th birthday

Abstract - Thallium and lithium cyclopentadienides (3) cleave the S,S-bond of 1,2-dithiolium salts (2) giving rise to intramolecular Diels-Alder adducts such as 6, 7, 8, and 9 or to intramolecular condensation products such as 10. Substitution of a methylthio group in 2 leads to the 2,3-dithiafulvalenes (11).

Nucleophiles attack 1,2-dithiolium cations (1) at C-3/C-5, at the S,S-bond or at the aliphatic side chain R (abstraction of an α -proton). These reactions have been studied extensively.¹ Almost nothing is known about chemical transformations of 1 with metal cyclopentadienides, only some highly substituted 2,3-dithiafulvalenes were isolated from the reaction of 3-alkyl-thio-1,2-dithiolium salts and sodium tetraphenylcyclopentadienide² or sodium pentakis(me-thylthio)cyclopentadienide.³

We investigated reactions of 3,5-bis(methylthio)-1,2-dithiolium salts (2) with the metal salts (3) of unsubstituted or monoalkyl substituted cyclopentadienes. A variety of products were obtained, mainly formed by a nucleophilic scission of the S,S-bond. The primary intermediate

l	R ¹	R ²	mp[°C]	yield [%]		R ¹	R ²	mp[°C]	yield [%]
6a	p-Tol	t-Bu		50	8a	H	Н	83	
7a	p-Tol	t-Bu	126-127	50	9a	н	H	_ \$	29
7b	<i>p</i> -Tol	H	155-158	70	10a	p-Toi	H	185	25
7c	н	H	105	96	10b	Et	Ħ	87-90	38
7 d	Н	t-Bu	105	28	11a	Et	Н	88-91	30
7 e	Et	H	oil	5	116	Et	t-Bu	98-100	34

should have the supposed structure (4) and might rearrange to 5 by a 1,5 H shift. 4 could also follow an intramolecular (4+2) cycloaddition pathway giving rise to the Diels-Alder product (6). According to our experience, 6 is comparatively unstable at room temperature and rearranges to 7 by a 1,3 shift of the S(7)-C(6) bond This process is obviously favored by the methylthio group at C-6 Reactions of 3 with 3,5-diaryl-1,2-dithiolium salts led to more stable Diels-Alder products (6) X-Ray analyses of these examples unequivocally established structures (6 and 7).⁴

Interception of 6 as the primary Diels-Alder product was only observed in the reaction of 2 $(R^{1}=p-Tol, X=I)$ with thallium *tert*-butylcyclopentadienide (3) $(R^{2}=t-Bu)$ in boiling THF (3 h). Isolated 6a, slightly red crystals, rearranged quantitatively to 7a on standing in a CHCl₃ solution at room temperature for a few days. The ¹H-nmr data for the skeleton protons in 6 and 7 are rather characteristic and quite different ⁵ The reaction of 2 $(R^{1}=p-Tol, X=I)$ with thallium cyclopentadienide (3) $(R^{2}=H)$ in THF at room temperature also gave rise to a primary product with structure (6) according to the ¹H-nmr data of the crude material. It rearranged, however, completely to 7b during chromatographic purification on silica gel

In the condensation of the 3-unsubstituted 1,2-dithiolium iodide (2) ($\mathbb{R}^{1}=\mathbb{H}$, X=I) with metal cyclopentadienides (3) no stable or partially stable Diels-Alder adducts (6) were observed With thallium cyclopentadienide (3) ($\mathbb{R}^{2}=\mathbb{H}$) in THF at room temperature a nearly quantitative yield of 7c was obtained. With lithium cyclopentadienide (3) ($\mathbb{R}^{2}=\mathbb{H}$) in THF at -78 °C (4 h) neither 6 nor 7 could be detected; instead, a mixture of the two isomers (8a) and (9a) was isolated and separated by hplc This result is probably due to an intramolecular Diels-Alder reaction of intermediate (5), leading to endo isomer (8a) and exo isomer (9a). The rearrangement of 4 to the thermodynamically more stable 5 *via* a deprotonation/reprotonation process⁶ catalyzed by basic lithium cyclopentadienide is faster than a 1,5-sigmatropic hydrogen shift in the presence of nonbasic thallium cyclopentadienide. Under the same conditions, 2 ($\mathbb{R}^{1}=\mathbb{H}$, $X=\mathbb{I}$) and lithium *tert*-butyl cyclopentadienide (3) ($\mathbb{R}^{2}=t-\mathbb{B}u$) gave a mixture of 7d, 8b ($\mathbb{R}^{2}=t-\mathbb{B}u$) and 9b ($\mathbb{R}^{2}=t-\mathbb{B}u$) from which only 7d could be isolated in pure state. The most characteristic structural element in the ¹H-nmr spectra of 8a and 9b are the methylene protons at C-10 with a chemical shift of about 2 ppm and a geminal coupling

constant of ²J=9 Hz. In the *endo* isomer (8a) the 5-SCH₃ is diamagnetically shifted to $\delta = 2.15$ ppm due to shielding by the 8,9-double bond.

Condensation of 3-ethyl-1,2-dithiolium tetrafluoroborate (2) ($R^{1}=Et$, $X=BF_{4}$) and thallium cyclopentadienide (3) ($R^{2}=H$) at 0 °C in THF led to a mixture of products consisting mainly of 7e and the 2,3-dithiafulvalene (11a).⁷ Therefore, nucleophilic attack had occurred not only at the S,S-bond of 3 but also at C-3. With thallium *tert* -butylcyclopentadienide (3) ($R^{2}=t-Bu$) no tricyclic product (6) or (7) was detected at all; only 11b could be isolated as dark red crystals, showing in solution both possible isomers (11b) (minor) and (11b') (major). More strongly nucleophilic lithium cyclopentadienide (3) ($R^{2}=H$) once again cleaved the S,S-bond of 3-ethyl-1,2-dithiolium tetrafluoroborate (2) ($R^{1}=Et$, X=BF₄) leading to the rearranged intermediate (5), which cyclized to yield the thiopyran-4-thione(10b). A similar behaviour was observed with lithium cyclopentadiende (3) ($R^{2}=H$) and 3-p-tolyl-1,2-dithiolium iodide (2) ($R^{1}=p-Tol$, X=I) giving rise to 10a. In solution a tautomeric equilibrium 10 \rightleftharpoons 10' is observed.

REFERENCES AND NOTES

- Reviews: H Prinzbach, E. Futterer, Adv. Heterocycl. Chem., 1966, 7, 39. N. Lozac'h, M. Stavaux, Adv. Heterocycl. Chem, 1980, 27, 151. C T. Pedersen, Adv. Heterocycl. Chem., 1982, 31, 63. D. M McKinnon in Comprehensive Heterocyclic Chemistry (A. R. Katritzky, C. W. Rees, Eds.), Vol. 6, p 783, Pergamon Press, Oxford, 1984.
- 2 A. Lüttringhaus, E. Futterer, H. Prinzbach, Tetrahedron Lett., 1963, 1209.
- 3. R. Gompper, R. Guggenberger, Tetrahedron, 1986, 42, 835.
- 4 K. Hartke, A. Kraska, W. Massa, M. Molinier, S. Wocadlo, *Tetrahedron Lett.*, 1994, in press.
- 5. **6a** (CD₂Cl₂): δ (ppm) = 5.89 (m, 1H, 10-H); 4.53 (m, 1H, 8-H); 3.24 (m, 1H, 1-H); 3.20 (m, 1H, 2-H); 7a (CDCl₃): δ (ppm) = 5.82 (m, 1H, 8-H), 4.81 (m, 1H, 6-H); H); 4.65 (m, 1H, 2-H); 3.74 (m, 1H, 1-H).
- 6. S. McLean, P. Haynes, Tetrahedron, 1965, 21, 2329
- 7. Due to the decomposition of 11a on silica gel, a clear cut separation proved difficult.11a slowly precipitated as violet needles from a solution of the crude product in *n*-hexane at -78 °C, whereas 7e was obtained as a slightly red oil by chromatography of the mother liquor on silica gel.

Received, 15th March, 1994