REACTIVITY OF AMINOETHYLIMIDAZO[1,2- \underline{a}]PYRIDINE : ACCESS TO AZA- γ -CARBOLINE SERIES

Anne Jouanisson, 1 Olivier Chavignon, 1 Jacques Couquelet, 1 Jean-Claude Teulade, 1* Jean-Louis Chabard, 1 and Gérard Dauphin 2

1 Département d'Analyse Structurale et de Pharmacologie, Faculté de Pharmacie
B P 38, 28 P. H. Dunant, 63001 Clermont-Ferrand CEDEX 1, France
2 Laboratoire de Chimie Organique Biologique, URA-CNRS 485, 63170 Aubière,
France

Abstract - From 2-(2-aminoethyl)imidazo[1,2-a]pyridine (1), the synthesis of compounds possessing the azatetrahydrocarboline moiety was described. The Fujii procedure did not afford the expected tetracyclic compound (5). However, the Pictet-Spengler reaction led to tricyclic aza-y-carbolinic type compounds (8a-c).

The access to polycyclic indole alkaloids has been a widespread area of interest during last decades. In particular, the synthesis of pentacyclic indole derivatives related to yohimbine¹ and reserpine due to their potential pharmaceutical importance, has been intensively investigated.² Furthermore, it was noted that the addition of a nitrogen atom in an alkaloidic structure generally increased its activity and-or generated modifications of the pharmacological profile.³ In the course of our search on biologically active alkaloids, we decided to synthesize by different routes polycyclic compounds possessing the imidazo[1,2-a]pyridine moiety.⁴

The first route that was investigated for the synthesis of tetracyclic compounds is depicted in Scheme 1. The condensation of 1 obtained from 2-(2-aminoethyl)imidazo[1,2-a]pyridine dihydrochloride derivative,⁵ with ethyl

acrylate at 0°C resulted in the formation of two compounds (2a) and (2b), which were identified by mass [m/z: 361 (M⁺); 261 (M⁺) respectively] and by nmr spectroscopy. The same condensation at room temperature afforded only the diester (2a) in 59 % yield. Compound (2a) was dissolved in toluene and caused to undergo a Dieckmann reaction using an excess of potassium ter-butoxide as a condensing agent.⁶ The reaction was performed at 0°C for four hours with stirring at room temperature to yield compound (3a,b), which was identified in mass spectroscopy [m/z:315 (M⁺)]. The ¹³C-nmr spectrum showed a ketonic form (3a) (C-3': 56.42; C-4': 203.46) and an enolic form (3b) (C-3': 96.74; C-4': 171.03). In order to obtain tetracyclic compound (5), oxidation of the crude piperidine derivative (3a,b) followed by cyclisation in one step was foreseen.⁷ With Fujii⁸ procedure, 3a,b was oxidized to the 2-[2-(2,3-dehydro-3-ethoxycarbonyl-4-oxopiperidino)ethyl]imidazo[1,2-a]pyridine (4), which was identified by mass [m/z:313 (M⁺)] and nmr spectroscopy. The ¹H-nmr spectrum presented a singlet at δ 7.38 for the olefinic proton, and four triplets at δ 2.37, 3.03, 3.48, and 3.79 due to the methylene protons. In the ¹³C-nmr spectrum, signals at δ 100.14 and 159.57 assigned to C-3'and C-2' confirmed the presence of the unsaturated structure.

Reagents and conditions: (i) ethyl acrylate, triethylamine, H₂O, MeOH, 0°C; (ii) toluene, potassium t-butoxide 1.5 mol, 4 h, room temperature; (iii) 33 % aq. EtOH, 3 eq. Hg(OAc)₂, 3 eq. disodium edetate (EDTA-2Na), reflux 3 h; (iv) H₂SO₄ 10 %, room temperature or reflux; (v) N-benzyliminodiacetic acid, 250°C, 5 min.

The pyridine annelation of compound (4) by aqueous sulfuric acid⁹ did not afford the expected quinolizidine compound (5). It may be postulated that both conjugated carbonyl and ester functions stabilize the double bond, 10 avoiding thus cyclisation into tetracyclic quinolizidine derivative.

Another route of access to tetracyclic structures was attempted according to literature data from indolopiperazinedione. ¹¹ Piperazinedione (6) was prepared in 7 % yield by heating at 250°C for 5 min N-benzyliminodiacetic acid with the ethyl amine (1). The structure of compound (6) [m/z: 348 (M⁺)] was established by ¹H and ¹³C-nmr spectral data. Due to the very poor yield, this route was discarded.

A new synthetic pathway was then worked up. The Pictet-Spengler reaction has been developed for the synthesis of carbolines and has often been applied to the synthesis of indole alkaloids. ¹² The condensation of an aldehyde R-CHO (R = CH₃, C₂H₅, Ph) with compound (1) at room temperature gave, through the formation of a Schiff base in an aprotic solvent, tetrahydrocarbolines (8a-c) in 20 %, 22 %, and 25 % yields, respectively (Scheme 2). They were identified by nmr spectroscopy; the ¹H-nmr spectrum of 8a exhibited a quartet at δ 4.36 due to H-1. The ¹³C-nmr spectrum showed the presence of three quaternary carbons at δ 122.16, 140.73, 144.45 corresponding to C-10a, C-4a, and C-5a respectively. In compound (8b) the two methylenic protons on α position of the asymmetric center C-1 were in enantiotopic relationships. We noted in ¹H-nmr spectrum of 8c the shielding of the signal corresponding to H-9, due to the effect of the phenyl nucleus. All these structures were also confirmed by mass spectroscopy [m/z: 187 (8a), 201 (8b), 249 (8c)].

Reagents and conditions: (i) Acetaldehyde, propionaldehyde or benzaldehyde 1.2 mol, methanol, room temperature, 8 h.

Scheme 2

In the Pictet-Spengler reaction, the use of various electrophilic reagents as Me₃SiCl, which could activate the C=N double, bond did not enhance the reaction rate contrary to the work of Hino in the indole serie.¹³

EXPERIMENTAL

General. It spectra were recorded with a BECKMAN ACCULAB 2 spectrophotometer. Absorption bands are expressed in cm⁻¹, ¹H- and ¹³C-nmr spectra were recorded on a Bruker AC-400 spectrometer working at 400 MHz (¹H-nmr) and 100 MHz (¹³C-nmr) and on a Bruker MSL-300 working at 300 MHz (¹H-nmr) and 75 MHz (¹³C-nmr). Chemical shift data are reported in ppm downfield δ from TMS. Coupling constants, <u>J</u>, are given in Hz; s, d, t, q, m, ps. t and br s indicate singlet, doublet, triplet, quartet, multiplet, pseudo triplet and broad singlet respectively; Im indicates imidazo[1,2-a]pyridine. Mass spectra were performed on HEWLETT PACKARD 5989A and 5985B instruments.

2-(2-Aminoethyl)imidazo[1,2-a]pyridine (1): The treatment of 2-(2-aminoethyl)imidazo[1,2-a]pyridine dihydrochloride (8.72 g, 38 mmol)⁵ with aqueous ammonia (20 %, 50 ml) at room temperature for 30 min afforded after filtration pure compound (1) (6 g, 38 mmol); mp 240-242°C; ir (KBr) v_{max} 3100, 1550, 1400, 760; ¹H-nmr (300 MHz, DMSO-d₆) δ 3.14 (m, 4H, CH₂), 4.14 (br s, 2H, NH₂), 6.96 (t, 1H, \underline{J} = 7 Hz, H-6), 7.34 (ps. t, 1H, H-7), 7.54 (d, 1H, \underline{J} = 9 Hz, H-8), 7.92 (s, 1H, H-3), 8.59 (d, 1H, \underline{J} = 7 Hz, H-5); ¹³C-nmr (75 MHz, DMSO-d₆) δ 25.43 (Im-CH₂), 38.45 (Im-CH₂CH₂), 111.41 (C-6), 113.33 (C-3), 115.14 (C-8), 126.99 (C-7), 127.39 (C-5), 139.98 (C-2), 143.23 (C-8a); ms (m/z, relative intensity) 161 (M⁺, 22), 143 (14), 132 (100), 131 (28), 78 (18); Anal. Calcd for C₉H₁₁N₃: C, 67.08; H, 6.83; N, 26.09. Found: C, 67.05; H, 6.85; N, 26.10.

Preparation of 2-[2-bis(2-ethoxycarbonylethyl)aminoethyl]imidazo[1,2-a]pyridine (2a) and of 2-[(2-ethoxycarbonylethyl)aminoethyl]imidazo[1,2-a]pyridine (2b): Method A: A mixture of compound (1) (6 g, 38 mmol), water (44 ml), methanol (60 ml) and triethylamine (18 ml) was stirred and cooled to 0°C. Ethyl acrylate (10.6 ml, 98 mmol) was then added dropwise over 15 min. The solution was stirred at 0°C for 6 h. After solvent removal in vacuo, the residue was chromatographed on neutral alumina with CH₂Cl₂-EtOH (98: 2, v/v) to yield 2a (4.7 g, 35 %) as an oil; ir (NaCl) v_{max} 1720, 1630, 1170, 750; ¹H-nmr (400 MHz, CDCl₃) δ 1.11 (t, 6H, Δ = 7 Hz, CH₃), 2.35 (t, 4H, Δ = 7 Hz, CH₂CO), 2.76 (m, 8H, Im-CH₂, Im-CH₂CH₂, 2CH₂CH₂CO), 3.98 (q, 4H, Δ = 7 Hz, OCH₂), 6.61 (t, 1H, Δ = 7 Hz, H-6), 7.00 (ps. t, 1H, H-7), 7.30 (s, 1H, H-3), 7.40 (d, 1H, Δ = 9 Hz, H-8), 7.95 (d, 1H, Δ = 7 Hz, H-5); ¹³C-nmr (100 MHz, CDCl₃) δ 13.98 (CH₃), 26.64 (Im-CH₂), 32.53 (CH₂CO), 49.03 (CH₂CH₂CO), 53.27 (Im-CH₂CH₂), 60.06 (OCH₂), 109.48 (C-6), 111.74 (C-3), 116.52 (C-

8), 124.00 (C-7), 125.21 (C-5), 144.52 (C-8a or C-2), 145.20 (C-2 or C-8a), 172.31 (CO); ms (m/z, relative intensity) 361 (M+, 25), 274 (20), 260 (20), 230 (100), 216 (75), 145 (50), 131 (20), 78 (20); <u>Anal.</u> Calcd for C₁₉H₂₇N₃O₄: C, 63.16; H, 7.48; N, 11.63. Found C, 63.18; H, 7.47; N, 11.64. Further elution gave compound (**2b**) (0.30 g, 3%) as an oil; ir (NaCl) v_{max} 1720, 1180, 750; ¹H-nmr (400 MHz, CDCl₃) δ 1.21 (m, 3H, CH₃), 2.08 (br s, 1H, NH), 2.52 (t, 2H, \underline{J} = 6.5 Hz, CH₂CO), 2.96 (m, 4H, CH₂), 3.05 (m, 2H, CH₂), 4.10 (q, 2H, \underline{J} = 7 Hz, OCH₂), 6.73 (t, 1H, \underline{J} = 7 Hz, H-6), 7.13 (ps. t, 1H, H-7), 7.40 (s, 1H, H-3), 7.52 (d, 1H, \underline{J} = 9 Hz, H-8), 8.04 (d, 1H, \underline{J} = 7 Hz, H-5); ¹³C-nmr (100 MHz, CDCl₃) δ 14.19 (CH₃), 29.25 (Im-CH₂), 34.77 (CH₂CO), 44.97 (CH₂CH₂CO), 48.98 (Im-CH₂CH₂), 60.39 (OCH₂), 109.64 (C-6), 111.92 (C-3), 117.12 (C-8), 124.12 (C-7), 125.35 (C-5), 145.23 (C-8a or C-2), 145.65 (C-2 or C-8a), 172.69 (CO); ms (m/z, relative intensity) 261 (M+, 2), 174 (13), 160 (10), 145 (10), 132 (100), 78 (10); <u>Anal.</u> Calcd for C₁₄H₁₉N₃O₂: C, 64.37; H, 7.28; N, 16.09. Found: C, 64.35; H, 7.30; N, 16.08.

Method B: According to the above procedure at room temperature, compound (2a) was obtained as a sole product in 59 % yield.

Preparation of 2-[2-(3-ethoxycarbonyl-4-oxopipendino)ethyl]imidazo[1,2-a]pyridine (3a): To a cooled (0°C) solution of 2a (3 g, 8.3 mmol) in toluene (15 ml) was added dropwise a solution of tBuOK (1.2 g, 10.7 mmol) in toluene (15 ml). After stirring 4 h at room temperature, water (15 ml) was added and the mixture was extracted with dichloromethane. After solvent removal in vacuo, the crude residue (3a) was directly used in the subsequent reaction without further purification; ir (KBr) v_{max} 3400, 1730, 1650, 1500, 1240, 760; ¹H-nmr (400 MHz, CDCl₃) δ 1.23 (m, 3H, CH₃), 2.40–3.70 (m, 11H), 4.10 (m, 2H, OCH₂), 6.70 (m, 1H, H-6), 7.10 (m, 1H, H-7), 7.40 (s, 1H, H-3), 7.50 (d, 1H, \underline{J} = 9 Hz, H-8), 8.00 (d, 1H, \underline{J} = 7 Hz, H-5); ¹³C-nmr (100 MHz, CDCl₃) ketonic form (3a) δ 14.25 (CH₃), 27.05 (Im-CH₂), 40.65 (CH₂), 53.16 (CH₂), 55.14 (CH₂), 56.42 (C-3'), 56.47 (Im-CH₂CH₂), 60.28 (OCH₂), 109.43 (C-6), 111.88 (C-3), 116.93 (C-8), 124.17 (C-7), 125.33 (C-5), 144.99 (C-8a or C-2), 145.55 (C-2 or C-8a), 170.12 (CO), 203.46 (C-4'); enolic form (3b) δ 14.25 (CH₃), 27.05 (Im-CH₂), 29.36 (CH₂), 49.33 (2CH₂), 57.33 (Im-CH₂CH₂), 60.28 (OCH₂), 96.74 (C-3'), 109.43 (C-6), 111.88 (C-3), 116.93 (C-8), 124.17 (C-7), 125.33 (C-5), 144.99 (C-8a or C-2), 145.55 (C-2 or C-8a), 170.12 (CO), 171.03 (C-4'); ms (m/z, relative intensity) 315 (M+, 10), 242 (20), 230 (25), 216 (20), 184 (40), 146 (100), 145 (90), 138 (60), 132 (70), 78 (25).

<u>Preparation of 2-[2-(2,3-dehydro-3-ethoxycarbonyl-4-oxopiperidino)ethyl]imidazo[1,2-a]pyridine (4)</u>: To a solution of 3 (0.315 g, 1 mmol) in ethanol (15 ml) was added a solution of EDTA disodium salt dihydrate (1.1 g,

3 mmol) and mercuric acetate (0.96 g, 3 mmol) in water (30 ml). The resulting mixture was heated under reflux for 3 h. After cooling, the reaction mixture was poured into saturated aqueous ammonia (20 %, 20 ml) and extracted with dichloromethane (30 ml). The combined extracts were dried with K_2CO_3 , filtered and evaporated; the residue was purified by chromatography on silica gel with CH_2Cl_2 -EtOH (90 : 10, v/v) to yield 4 (0.081 g, 26 %) as a viscous oil; ir (KBr) v_{max} 1710, 1680, 1600, 1500, 1240, 750; ¹H-nmr (400 MHz, CDCl₃) δ 1.10 (t, 3H, \underline{J} = 7 Hz, CH₃), 2.37 (t, 2H, \underline{J} = 8 Hz, CH₂-5'), 3.03 (t, 2H, \underline{J} = 7 Hz, Im-CH₂), 3.48 (t, 2H, \underline{J} = 8 Hz, CH₂-6'), 3.79 (t, 2H, \underline{J} = 7 Hz, Im-CH₂CH₂), 4.01 (q, 2H, \underline{J} = 7 Hz, OCH₂), 6.69 (t, 1H, \underline{J} = 7 Hz, H-6), 7.09 (ps. t, 1H, H-7), 7.38 (s, 1H, H-2'), 7.43 (d, 1H, \underline{J} = 9 Hz, H-8), 7.92 (s, 1H, H-3), 8.02 (d, 1H, \underline{J} = 7 Hz, H-5); ¹³C-nmr (100 MHz, CDCl₃) δ 14.51 (CH₃), 28.22 (Im-CH₂), 35.95 (C-5'), 46.79 (Im-CH₂CH₂), 56.65 (C-6'), 59.65 (OCH₂), 100.14 (C-3'), 110.55 (C-6), 112.62 (C-3), 117.00 (C-8), 125.28 (C-7), 125.77 (C-5), 141.99 (C-2), 145.51 (C-8a), 159.57 (C-2'), 165.00 (CO), 186.85 (CO); ms (m/z, relative intensity) 313 (M+, 2), 284 (33), 266 (20), 240 (10), 182 (10), 145 (100), 132 (65), 78 (20); Anal. Calcd for C₁₇H₁₉N₃O₃: C, 65.18; H, 6.07; N, 13.42. Found: C, 65.15; H, 6.06; N, 13.44.

Preparation of 2-[2-(4-benzyl-2, 6-dioxopiperazino)ethyl]imidazo[1,2-a]pyridine (6): Compound (1) (0.1 g, 0.6 mmol) and N-benzyliminodiacetic acid (0.14 g, 0.6 mmol) were mixed and heated to 250°C for 5 min under a nitrogen atmosphere. The residue was purified by column chromatography on neutral alumina with CH₂Cl₂-EtOH (98: 2, v/v) to give 6 as an oil (0.015 g, 7%); ir (KBr) v_{max} 2920, 1670, 750; 1 H-nmr (400 MHz, CDCl₃) δ 3.05 (t, 2H, J = 7.5 Hz, Im-CH₂), 3.40 (s, 4H, CH₂-3', CH₂-5'), 3.60 (s, 2H, CH₂Ph), 4.15 (t, 2H, J = 7.5 Hz, Im-CH₂CH₂), 6.74 (t, 1H, J = 7 Hz, H-6), 7.13 (ps. t, 1H, H-7), 7.30 (m, 5H, Ph), 7.42 (s, 1H, H-3), 7.55 (d, 1H, J = 9 Hz, H-8), 8.03 (d, 1H, J = 7 Hz, H-5); 13 C-nmr (100 MHz, CDCl₃) δ 27.00 (CH₂), 29.78 (CH₂), 38.70 (CH₂), 56.39 (CH₂), 60.76 (CH₂), 109.82 (C-6), 112.42 (C-3), 117.03 (C-8), 124.81 (C-7), 125.53 (C-5), 128.22 (C-Ph), 128.75 (C-Ph), 129.19 (C-Ph), 135.50 (C-ipso), 143.63 (C-8a or C-2), 144.79 (C-2 or C-8a), 169.93 (CO); ms (m/z, relative intensity) 348 (M+, 10), 257 (100), 145 (35), 132 (10), 91 (35); Anal. Calcd for C₂0H₂0N₄O₂: C, 68.97; H, 5.75; N, 16.09. Found: C, 68.95; H, 5.76; N, 16.07.

General procedure for the preparation of the 1,2,3,4-tetrahydroimidazo[1,2-a:5,4-c']dipyridine (8a-c): To a solution of 1 (0.2 g, 1.2 mmol) in methanol (15 ml) was added 1.2 mmol of aldehyde. The mixture was stirred for 4 h at room temperature. After addition of MgSO₄ (2 g) and stirring for additional 4 h, the mixture was filtered off and was washed with dichloromethane. Solvent was removed in vacuo, and the residue was chromatographed on neutral alumina with CH₂Cl₂-EtOH (98: 2, v/v) to give compounds (8a-c) as oils.

1-Methyl-1,2,3,4-tetrahydroimidazo[1,2-a: 5,4-c']dipyridine (8a): Yield: 20 %; ir (KBr) $ν_{max}$ 3400, 2920, 1500, 760; ¹H-nmr (400 MHz, CDCl₃) δ 1.52 (d, 3H, \underline{J} = 6.5 Hz, CH₃), 2.10 (br s, 1H, NH), 2.87 (m, 2H, H-4,4'), 3.15 (m, 1H, H-3), 3.31 (m, 1H, H-3'), 4.36 (q, 1H, \underline{J} = 6.5 Hz, H-1), 6.78 (t, 1H, \underline{J} = 7 Hz, H-8), 7.13 (ps. t, 1H, H-7), 7.55 (d, 1H, \underline{J} = 9 Hz, H-6), 7.85 (d, 1H, \underline{J} = 7 Hz, H-9); ¹³C-nmr (100 MHz, CDCl₃) δ 18.96 (CH₃), 27.02 (C-4), 40.58 (C-3), 46.22 (C-1), 111.71 (C-8), 117.36 (C-6), 122.16 (C-10a), 123.07 (C-7 or C-9), 123.14 (C-9 or C-7), 140.73 (C-4a), 144.45 (C-5a); ms (m/z, relative intensity) 187 (M+, 20), 172 (100), 157 (15), 145 (18), 78 (22); Anal. Calcd for C₁₁H₁₃N₃: C, 70.59; H, 6.95; N, 22.46. Found C, 70.55; H, 6.97; N, 22.48.

1-Ethyl-1,2,3,4-tetrahydroimidazo[1,2-a: 5,4-c']dipyridine (8b): Yield: 22 %; ir (KBr) $ν_{max}$ 3400, 2940, 1500, 750; ¹H-nmr (400 MHz, CDCl₃) δ 1.07 (t, 3H, J = 7.5 Hz, CH₃), 1.77 (m, 1H, CH_ΔCH₃), 1.94 (m, 1H, CH_BCH₃), 2.30 (br s, 1H, NH), 2.86 (m, 2H, H-4,4'), 3.13 (m, 1H, H-3), 3.27 (m, 1H, H-3'), 4.12 (m, 1H, H-1), 6.77 (t, 1H, J = 7 Hz, H-8), 7.12 (ps. t, 1H, H-7), 7.55 (d, 1H, J = 9 Hz, H-6), 7.84 (d, 1H, J = 7 Hz, H-9); ¹³C-nmr (100 MHz, CDCl₃) δ 10.62 (CH₃), 25.14 (CH₂), 26.96 (C-4), 40.33 (C-3), 52.25 (C-1), 111.75 (C-8), 117.35 (C-6), 121.35 (C-10a), 123.09 (C-7 or C-9), 123.20 (C-9 or C-7), 141.10 (C-4a), 144.49 (C-5a); ms (m/z, relative intensity) 201 (M+, 5), 172 (100), 155 (5), 145 (10), 78 (20); Anal. Calcd for C₁₂H₁₅N₃: C, 71.64; H, 7.46; N, 20.90. Found: C, 71.63; H, 7.47; N, 20.88.

1-Phenyl-1,2,3,4-tetrahydroimidazo[1,2-a: 5,4-c']dipyridine (8c): Yield: 25 %; if (KBr) ν_{max} 3400, 2920, 1490, 740, 690; ¹H-nmr (400 MHz, CDCl₃) δ 2.17 (br s, 1H, NH), 2.99 (m, 2H, H-4,4'), 3.14 (m, 1H, H-3), 3.31 (m, 1H, H-3'), 5.36 (s, 1H, H-1), 6.54 (t, 1H, \underline{J} = 7 Hz, H-8), 7.09 (ps. t, 1H, H-7), 7.20-7.33 (m, 6H, Ph, H-9), 7.57 (d, 1H, \underline{J} = 9 Hz, H-6); ¹³C-nmr (100 MHz, CDCl₃) δ 26.92 (C-4), 41.89 (C-3), 56.27 (C-1), 111.61 (C-8), 117.04 (C-6), 118.91 (C-10a), 123.52 (C-7 or C-9), 123.66 (C-9 or C-7), 128.09 (C-Ph), 128.45 (C-Ph), 129.18 (C-Ph), 139.88 (C-ipso), 142.70 (C-4a), 144.80 (C-5a); ms (m/z, relative intensity) 249 (M+, 20), 248 (M+-1, 22), 219 (25), 172 (100), 145 (10), 78 (20); Anal. Calcd for C₁₆H₁₅N₃: C, 77.11; H, 6.02; N, 16.87. Found C, 77.13; H, 6.03; N, 16.84.

REFERENCES

- 1. G. B. Kline, J. Am. Chem. Soc., 1959, 81, 2251.
- 2. M. E. Kuehne and R. S. Muth, J. Org. Chem., 1991, 56, 2701.

- J.-C. Chermann, J. Gruest, L. Montagnier, F. Wendling, P. Tambourin, M. Perrin, F. Pochon, C. Ducrocq, C. Rivalle, and E. C. R. Bisagni, C. R. Acad. Sci. Ser D, 1977, 285, 945; F. Marsais, P.Pineau, F. Nivolliers, M. Mallet, A. Turck, A. Godard, and G. Queguiner, J. Org. Chem., 1992, 57, 565.
- 4. A. Diez, S. Mavel, J.-C. Teulade, O. Chavignon, M.-E. Sinibaldi, Y. Troin, and M. Rubiralta, Heterocycles, 1993, 36, 2451.
- 5. G. J. Durant, J. M. Loynes, and S. H. B. Wright, J. Med. Chem., 1973, 16, 1272.
- 6. J. Bonjoch, I. Serret, and J. Bosch, Tetrahedron, 1984, 40, 2505.
- 7. M. Lounasmaa, and E. Karvinen, Heterocycles, 1991, 32, 489.
- 8. T. Fujii, M. Ohba, and N. Sasaki, <u>Heterocycles</u>, 1984, 22, 1805; L. F. Fieser and M. Fieser, "Reagents for Organic Synthesis", Vol 1, John Wiley and Sons, Inc., New York, 1968, p. 648.
- E. Winterfeldt, <u>Ber.</u>, 1964, 97, 2463; E. Wenkert, K. G. Dave, and F. Haglid, <u>J. Am. Chem. Soc.</u>, 1965, 87, 5461; M. Rubiralta, A. Diez, C. Vila, Y. Troin, and M. Feliz, J. Org. Chem., 1991, 56, 6292.
- 10. J. E. Johansen, B. D. Christie, and H. Rapoport, J. Org. Chem., 1981, 46, 4914.
- 11. N. Valls, V. M. Segarra, X. Lopez, and J. Bosch, <u>Heterocycles</u>, 1989, 29, 231; F. Yuste, Y. Pallas, H. Barrios, B. Ortiz, and R. Sanchez-Obregon, <u>J. Heterocycl. Chem.</u>, 1986, 23, 189; M. D. Brewer, M. N. Burgess, R. J. J. Dorgan, R. L. Elliott, P. Mamalis, B. R. Manger, and R. A. B. Webster, <u>J. Med. Chem.</u>, 1989, 32, 2058.
- 12. W. M. Whaley and T. R. Govindachari, "Organic Reactions", Vol. 6, ed. by R. Adams, John Wiley and Sons, Inc., New York, 1951, p. 151; A. H. Jackson and A. E. Smith, <u>Tetrahedron</u>, 1968, 24, 403; F. Ungemach and J. M. Cook, <u>Heterocycles</u>, 1978, 9, 1089.
- 13. T. Kawate, M. Nakagawa, K. Ogata, and T. Hino, Heterocycles, 1992, 33, 801.