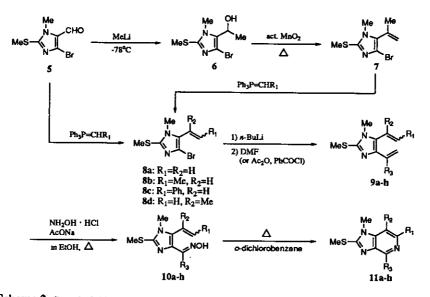

NEW SYNTHETIC ROUTE TO IMIDAZO[4,5-c]PYRIDINES BY THE THERMAL ELECTROCYCLIC REACTION OF 1-AZAHEXATRIENE SYSTEMS

Haruyuki Yashioka, Tominari Choshi, Eiichi Sugino, and Satoshi Hibino*

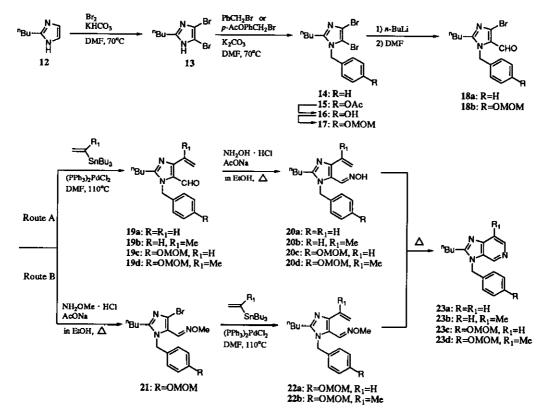
Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University Fukuyama, Hiroshima 729-02, Japan

Abstract----New routes to 1H- and 3H-imidazo[4,5-c]pyridines have been developed by the thermal electrocyclic reaction of 1-azahexatriene systems involving the imidazole 4,5-bond.

We are currently developping the synthesis of condensed heteroaromatic compounds, especially fused pyridine ring systems, by the thermal electrocyclic reaction¹ of either 1-aza-^{2,3} or 2-azahexatriene⁴ systems including one double bond of the aromatic or heteroaromatic portion. Gilchrist and co-worker have recently reported the extensive use of this reaction for the synthesis of indolo[3,2,1-*ij*][1,6]naphthyridine ring.⁵ We describe here the new syntheses of 1*H*- and 3*H*-imidazo[4,5-*c*]pyridine rings by an application of this methodology (Scheme 1).


Scheme 1

Although many synthetic efforts in this area have appeared,⁶ there is still need for a general and versatile method to gain access to the imidazo[4,5-c]pyridines because of their biological properties.⁷ The present methodology is based on the thermal electrocyclic reaction of 1-azahexatriene systems (1) or (3) with loss of water or methanol to construct the corresponding imidazo[4,5-c]pyridines (2) or (4).


We first attempted the synthesis of 1*H*-imidazo[4,5-*c*]pyridine (2) (Scheme 2). For the synthesis of a type of 1-azahexatriene system (1), a readily available 4-bromo-5-formylimidazole (5)^{4e} from 4,5-dibromo-1-methyl-2-methylthioimidazole was subjected to Wittig reaction using several alkylidenetriphenyl-phosphoranes (CH₂=, MeCH=, PhCH=) to provide the 5-alkenylimidazoles (8a-c) in good yields, respectively. 5-Isopropenylimidazole (8d) was prepared from 5 in a three step sequence [i; MeLi (70.7%), ii; act. MnO₂ (42.1%), iii; Ph₃P=CH₂ (98.4%)] because it was difficult to obtain 8d directly from 4,5-dibromo-1-methyl-2-methylthioimidazole. Subsequent treatment of the 5-alkenyl-4-bromoimidazoles (8a-d) with *n*-BuLi at -78°C followed by quenching with several electrophiles [DMF, (MeCO)₂O, PhCOCI] gave the corresponding 4-acylimidazoles (9a-h) (31-89.8%). The acylimidazole derivatives (9a-h) were converted into the oximes (10a-h) (36.4-95.8%), that is 1-azahexatriene system (1), by treatment with hydroxylamine in the usual manner. The thermal electrocyclic reaction of the oximes (10a-h) was carried out at the reflux temperature in *o*-dichlorobenzene to yield the proposed 1*H*-imidazo[4,5-*c*] pyridines (11a-h) in a moderate to good yield except 11a (17.4%). In the case of 11a, the oxime (10a) has been presumed to be relatively unstable, compared with the others (10a-h).

Next, we examined the extension of this strategy to the preparation of a type of 3H-imidazo[4,5-c]pyridine (4) (Scheme 3). To this end, an easily available 2-*n*-butylimidazole $(12)^8$ was treated with bromine in the presence of KHCO₃ at 70°C in DMF to give the dibromoimidazole (13) (91.2%). Benzylation of 13 with benzyl bromide (or p-acetoxylbenzyl bromide⁹) afforded the benzylimidazoles (14; 98.5% and 15; 99.8%), respectively. Halogen metal exchange reactions of 14 and 17 with n-BuLi at -78°C followed by quenching with DMF gave the 5-formylimidazoles (18a; 72.7% and 18b; 83.9%) regioselectively by the reported procedure.¹⁰ The acetyl group of 15 was converted into the methoxymethyl (MOM) ether via hydrolysis because of the failure of halogen metal exchange reaction. In order to obtain a type of 1-azahexatriene system (3), we examined two ways of route A and B from the 4-bromo-5-formylimidazoles (18a and 18b) (Scheme 3). In route A, the palladium-catalyzed cross-coupling reaction¹¹ between the 4-bromoimidazole (18a and 18b) and alkenyltributyltin (vinyl or isopropenyl¹²) in the presence of $(PPh_3)_2PdCl_3$, $Et_4N^+Cl^-$ and K₂CO₃ at 110°C in DMF afforded the alkenylimidazoles (19a-d) (54.3%-85.2%), respectively. Treatment of 19a-d with hydroxylamine gave the oximes (20a-d) (54.3-85.2%) as the 1-azahxatriene system (3). By contrast (Route B), the aldehyde (18b) was converted into the oxime ether (21) (98.7%) by treatment of hydroxylamine methyl ether under the conditions similar to those above. Subsequent palladium-catalyzed cross-coupling reactions¹¹ of the 4-bromoimidazole (21) with alkenyltributyltin (vinyl or isopropenyl¹²) were carried out in the presence of (PPh₃)₂PdCl₂, Et₄N⁺Cl⁻ and K₂CO₃ at 110°C in DMF to provide the desired alkenyl oxime ethers (22a; 97.6% and 22b; 60.8%) as the 1-azahexatriene (3). The oximes (20a-d) and the oxime ethers (22a-b) were subjected to the thermal electrocyclic reaction at the reflux temperature in o-dichlorobenzene to provide the expected 3H-imidazo[4,5-c]pyridines (23a-d) in good yields. There was almost no difference in the two routes (A and B) for the preparation of 3H-imidazo[4,5-c]pyridines (23c-d) in total yields from 18b (Route A; 57.3% and Route B; 57.4%).

The structures of all new compounds including both imidazo[4,5-c]pyridines were completely confirmed by spectroscopic evidence. The OH or OMe group at nitrogen atom in each dihydropyridine intermediate worked well as a leaving group to form the imidazo[4,5-c]pyridine (2 or 4) as reported previously.²

Scheme 2: Compds. 9-11 (a: $R_1 = R_2 = R_3 = H$; b: $R_1 = R_2 = H$, $R_3 = Me$; c: $R_1 = Me$, $R_2 = R_3 = H$; d: $R_1 = R_3 = Me$, $R_2 = H$; e: $R_1 = Ph$, $R_2 = R_3 = H$; f: $R_1 = R_3 = H$, $R_2 = Me$; g: $R_1 = H$, $R_2 = R_3 = H$; h: $R_1 = R_3 = H$; h: $R_2 = R_3 = H$; h: $R_3 = R_3 = R_3 = H$; h: $R_3 = R_3 =$

Scheme 3

In conclusion, the general and alternative methods of synthesis of two types of imidazo[4,5-c]pyridines (2 and 4) could be established and these findings demonstrate that the electrocyclic reactions of 1-azahexatriene systems (1 and 3) are useful methods to provide the 1H- and/or 3H-imidazo[4,5-c]pyridine nucleus.

EXPERIMENTAL

Melting points were measured with a Yanagimoto micro melting point apparatus and are uncorrected. Ir spectra were recorded with a Shimadzu FTIR-8500 spectrophotometer. ¹H-Nmr spectra were taken by a JEOL PMX60Si spectrometer in CDCl₃ with tetramethylsilane as an internal standard unless otherwise stated .Mass (Ms) spectra and high resolution mass spectra (Hrms) were recorded on a Shimadzu GC-MS 9020DF spectrometer at 70 eV chamber voltage on a direct inlet system unless otherwise noted. Silica gel (60-100 mesh, Merck Art 7734) was used for column chromatography. The commercially available vinyltributyltin (Aldrich 27,143-8) was used for the cross-coupling reaction.

4-Bromo-5-(1-hydroxyethyl)-1-methyl-2-methylthioimidazole (6). A solution of MeLi (1.05 M in Et₂O, 4.5 ml, 4.3 mmol) was added to a stirred solution of the 5-formylimidazole (5)^{4c} (1.0 g, 4.3 mmol) in anhyd. THF (15 ml) at -78°C under argon atmosphere. After stirring at the same temperature for 75 min, the solution was worked up with water. The mixture was extracted with EtOAc. The extract was washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, 15 g) using EtOAc/hexane (1/4) as an eluent to give the alcohol (6) (764 mg, 70.7%), mp 100-101°C (EtOH). Ir(KBr): 3305 cm⁻¹(OH). ¹H-Nmr: δ 1.54(3H, d, *J*=7 Hz, CH₃CH), 2.57(3H, s, SCH₃), 3.69(3H, s, NCH₃) 4.76-5.23(1H, m, CH₃CHOH). Ms: *m/z* 252(M⁺+2), 250(M⁺). *Anal.* Calcd for C₇H₁₁N₂OBrS: C, 33.48; H, 4.41; N, 11.15. Found: C, 33.50; H, 4.18; N, 10.98.

5-Acetyl-4-bromo-1-methyl-2-methylthioimidazole (7). A mixture of the alcohol (6) (4 g, 15.9 mmol) and activated MnO₂ (13.8 g, 159 mmol) in toluene (30 ml) was stirred at 75°C for 1 h. The mixture was cooled to an ambient temperature and filtered off with celite. The celite was washed with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 60 g) using EtOAc/hexane (1/9) as an eluent to give the ketone (7) (1.67 g, 42.1%), mp 93-94°C (hexane). Ir(KBr): 1655 cm⁻¹(C=O). ¹H-Nmr: δ 2.59(3H, s, CH₃CO), 2.64(3H, s, SCH₃), 3.73(3H, s, NCH₃). Ms: *m/z* 250(M⁺+2), 248(M⁺). Anal. Calcd for C₇H₉N₂OBrS: C, 33.75; H, 3.64;N, 11.24. Found: C, 33.99; H, 3.78; N, 11.01.

General procedure for the preparation of 5-alkenyl-4-bromo-1-methyl-2-methylthioimidazoles (8a-d). A solution of *n*-BuLi (1.61 M in hexane, 2.9 ml, 4.70 mmol) was added to a stirred mixture of the alkyltriphenylphosphonium bromide (4.70 mmol) in anhyd. THF (40 ml) at 0°C (ice-water) under argon atmosphere. After being stirred at room temperature for 30 min, a solution of the carbonyl compound (5 or 7) (4.30 mmol) in anhyd. THF (40 ml) was added to the ylide solution at 0°C (ice-water), which was stirred at an ambient temperature for 12 h. The mixture was quenched with water and extracted

165

with EtOAc. The EtOAc layer was washed with brine, dried over Na_2SO_4 and concentrated to dryness. The residue was purified by column chromatography (silica gel, 20 g) using EtOAc/hexane (1/9) to give the oily alkenyl compounds (8a-d). Known compounds 8b and 8c were prepared by the similar method of reference 4c.

4-Bromo-5-ethenyl-1-methyl-2-mehylthioimidazole (8a): 89.7%(oil). ¹H-Nmr: δ 2.55(3H, s, SCH₃), 3.52(3H, s, NCH₃), 5.27(1H, dd, J_{gem} =2 Hz and J_{cis} =11 Hz, CH=CH₂ X 1/2), 5.67(1H, dd, J_{gem} =2 Hz and $J_{t_{rans}}$ =17 Hz, CH=CH₂ X 1/2), 6.37(1H, dd, J_{cis} =11 Hz and $J_{t_{rans}}$ =17 Hz, CH=CH₂). Ms: *m/z* 234(M⁺+2), 232(M⁺). HRms calcd for C₇H₉N₂BrS 231.9669, found 231.9681.

4-Bromo-1-methyl-2-methylthio-5-(2-propenyl)imidazole (8d): 98.4%(oil). ¹H-Nmr: δ 2.01 (3H, s, CH₃-C=), 2.55(3H, s, SCH₃), 3.41(3H, s, NCH₃), 4.95-5.10(1H, m, C=CH₂ X 1/2), 5.28-5.45(1H, m, C=CH₂ X 1/2). Ms: *m/z* 248(M⁺+2), 246(M⁺). HRms calcd for C₈H₁₁N₂BrS 245.9826, found 245.9853.

General procedure for the preparation of 5-alkenyl-1-methyl-2-methylthioimidazole-4-carboxaldehydes (9a-h). A solution of *n*-BuLi (1.56 M in hexane, 6.2 ml, 9.6 mmol) was added to a solution of the 4-bromoimidazoles (8a-d) (4.36 mmol) in anhyd. Et₂O (50 ml) at -78 $^{\circ}$ C under argon atmosphere. After being kept at -78 $^{\circ}$ C for 1 h, a solution of DMF (96 mmol) [Ac₂O or PhCOCl, 9.6 mmol] was added. The reaction mixture was stirred for 12 h at an ambient temperature. The mixture was quenched with water and extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 20 g) using EtOAc/hexane (1/9) as an eluent to give the 4-formylimidazoles (9a-h).

5-Ethenyl-1-methyl-2-methylthioimidazole-4-carboxaldehyde (9a): 71.6%(oil). Ir(neat): 1677 cm⁻¹ (CHO). ¹H-Nmr: δ 2.65(3H, s, SCH₃), 3.54(3H, s, NCH₃), 5.59(1H, dd, J_{gem} =2 Hz and J_{cis} =11 Hz, CH=CH₂ X 1/2), 5.89(1H, dd, J_{gem} =2 Hz and J_{trans} =17 Hz, CH=CH₂ X 1/2), 6.76(1H, dd, J_{cis} =11 Hz and J_{trans} =17 Hz, CH=CH₂ X 1/2), 6.76(1H, dd, J_{cis} =11 Hz and J_{trans} =17 Hz, CH=CH₂), 9.71(1H, s, CHO). Ms: m/z 182(M⁺). HRms calcd for C₈H₁₀N₂OS 182.0513, found 182.0485.

4-Acetyl-5-ethenyl-1-methyl-2-methylthioimidazole (9b): 47.1%(oil). Ir(neat): 1663 cm⁻¹(C=O). ¹H-Nmr: δ 2.49(3H, s, CH₃CO), 2.58(3H, s, SCH₃), 3.53(3H, s, NCH₃), 5.42(1H, dd, J_{gem} =2 Hz and J_{cis} =12 Hz, CH=CH₂ X 1/2), 5.67(1H, dd, J_{gem} =2 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.98(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.98(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.98(1H, dd, 196.0689.

1-Methyl-2-methylthio-5-(1-propenyl)imidazole-4-carboxaldehyde (9c): 72.5%. mp 73-74°C (Et₂O). Ir(KBr): 1680cm⁻¹(CHO). ¹H-Nmr: δ 1.95(3H, d, J=5 Hz, CH₃CH=), 2.65(3H, s, SCH₃), 3.48(3H, s, NCH₃), 6.11-6.57(2H, m, CH=CH), 9.65(1H, s, CHO). Ms: *m/z* 196(M⁺). Anal. Calcd for C₉H₁₂N₂OS: C, 55.08; H, 6.16; N, 14.27. Found: C, 54.82; H, 6.39; N, 14.19.

4-Acetyl-1-methyl-2-methylthio-5-(1-propenyl)imidazole (9d): 39.1%. mp 87.5-89.5°C (hexane). Ir(KBr): 1653 cm⁻¹(C=O). ¹H-Nmr: δ 1.90(3H, d, J=5 Hz, CH₃CH=), 2.47(3H, s, CH₃CO), 2.57(3H, s, SCH₃), 3.46(3H, s, NCH₃), 5.79-6.76(2H, m, CH=CH). Ms: *m/z* 210(M⁺). *Anal.* Calcd for C₁₀H₁₄N₂OS: C, 57.12; H, 6.71; N, 13.32. Found: C, 56.98; H, 6.85; N, 13.49.

1-Methyl-2-methylthio-5-(2-phenylethenyl)imidazole-4-carboxaldehyde (9e): 89.8%(oil) [a mixture of cis/trans (1/1)]. Ir(neat) : 1672 cm⁻¹(CHO). ¹H-Nmr: δ 2.57(3H, s, SC<u>H₃</u>), 2.68(3H, s, SC<u>H₃</u>), 3.03(3H, s, NC<u>H₃</u>), 3.60(3H, s, NC<u>H₃</u>), 6.56(1H, d, J_{cis} =10 Hz, C<u>H</u>=CH), 6.77-7.69(12H, m, C₆<u>H₅</u> X 2 and C<u>H</u>=C<u>H</u>), 7.88(1H, d, J_{cis} =10 Hz CH=C<u>H</u>), 9.70(1H, s, C<u>H</u>O), 9.81(1H, s, C<u>H</u>O). Ms: m/z 258(M⁺). HRms calcd for C₁₄H₁₄N₂OS 258.0826, found 258.0815.

1-Methyl-2-methylthio-5-(2-propenyl)imidazole-4-carboxaldehyde (9f): 75.3%(oil). Ir(neat): 1677 cm⁻¹(CHO). ¹H-Nmr: δ 2.07(3H, s, CH₃-C=), 2.65(3H, s, SCH₃), 3.42(3H, s, NCH₃), 5.09-5.19 (1H, m, C=CH₂ X 1/2), 5.43-5.61(1H, m, C=CH₂ X 1/2), 9.53(1H, s, CHO). Ms: *m/z* 196(M⁺). HRms calcd for C₉H₁₂N₂OS 196.0670, found 196.0684.

4-Acetyl-1-methyl-2-methylthio-5-(2-propenyl)imidazole (9g): 31.0%(oil). Ir(neat): 1674 cm⁻¹ (C=O). ¹H-Nmr: δ 1.41(3H, s, CH₃CO), 1.97(3H, s, CH₃-C=), 2.51(3H, s, SCH₃), 3.34(3H, s, NCH₃), 4.86-5.13(1H, m, C=CH₂ X 1/2), 5.27-5.52(1H, m, C=CH₂ X 1/2). Ms: *m/z* 210(M⁺). HRms calcd for C₁₀H₁₄N₂OS 210.0826, found 210.0835.

4-Benzoyl-1-metyl-2-methylthio-5-(2-propenyl)imidazole (9h): 45.6%(oil). Ir(neat): 1673 cm⁻¹ (C=O). ¹H-Nmr: δ 2.04(3H, s, CH₃-C=), 2.63(3H, s, SCH₃), 3.44(3H, s, NCH₃), 4.89-5.07(1H, m, C=CH₂ X 1/2), 5.30-5.84(1H, m, C=CH₂ X 1/2), 6.90-7.57(3H, m, aromatic protons), 7.76-8.30(2H, m, aromatic protons). Ms: *m/z* 272(M⁺). HRms calcd for C₁₃H₁₆N₂OS 272.0983, found 272.0965.

General procedure for the preparation of the oxime derivatives (10a-h). A stirred mixture of the carbonyl compounds (9a-h) (1.53 mmol), $NH_2OH \cdot HCl$ (3.29 g, 47.4 mmol) and AcONa (3.89 g, 47.4 mmol) in EtOH (20 ml) was refluxed for 1.5 h. After cooling to room temperature, the mixture was worked up with water and extracted with CHCl₃. The CHCl₃ layer was washed with brine, dried over Na_2SO_4 and concentrated to dryness. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc/hexane (1/4) as an eluent to give the oximes (10a-h).

5-Ethenyl-4-hydroxyiminomethyl-1-methyl-2-methylthioimidazole (10a): 73.5%(oil). Ir(neat): 3235 cm⁻¹(OH). ¹H-Nmr: δ 2.59(3H, s, SCH₃), 3.47(3H, s, NCH₃), 5.27(1H, dd, J_{gem} =2 Hz and J_{cis} =12 Hz, CH=CH₂ X 1/2), 5.42(1H, dd, J_{gem} =2 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.55(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz and J_{trans} =18 Hz and J_{trans}

5-Ethenyl-4-(1-hydroxyimino)ethyl-1-methyl-2-methylthioimidazole (10b): 49.5%(oil). Ir(neat): 3149 cm⁻¹(OH). ¹H-Nmr: δ 2.28(3H, s, CH₃-C=N), 2.55(3H, s, SCH₃), 3.56(3H, s, NCH₃), 5.24(1H, dd, J_{gem} =2 Hz and J_{cus} =12 Hz, CH=CH₂ X 1/2), 5.53(1H, dd, J_{gem} =2 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.78(1H, dd, J_{cis} =12 Hz and J_{trans} =18 Hz, CH=CH₂), 9.13(1H, br s, OH). Ms: *m/z* 211(M⁺). HRms calcd for C₉H₁₃N₃OS 211.0779, found 211.0771.

4-Hydroxyiminomethyl-1-methyl-2-methylthio-5-(1-propenyl)imidazole (10c): 64.8%. mp 152.5-155°C (EtOH). Ir(KBr): 3309 cm⁻¹(OH). ¹H-Nmr(MeOH- d_4 /CDCl₃): δ 1.88(3H, d, J=5 Hz, CH₃-CH=), 2.60(3H, s, SCH₃), 3.43(3H, s, NCH₃), 5.80-6.37(2H, m, CH=CH), 7.94(1H, s, N=CH). Ms(CI): *m*/z 211(M⁺). Anal. Calcd for C₉H₁₃N₃OS: C, 51.16; H, 6.20; N, 19.89. Found: C, 51.02; H, 6.38; N, 20.03.

4-(1-Hydroxyimino)ethyl-1-methyl-2-methylthio-5-(1-propenyl)imidazole (10d): 58.8%. mp 125.5-127.5°C (EtOH). Ir(KBr): 3157 cm⁻¹(OH). ¹H-Nmr: δ 1.86(3H, d, J=6 Hz, CH₃-CH=), 2.26(3H, s, CH₃-C=N), 2.52(3H, s, SCH₃), 3.51(3H, s, NCH₃), 5.54-6.65(2H, m, CH=CH), 8.61(1H, br s, OH). Ms: *m/z* 225(M⁺). *Anal.* Calcd for C₁₀H₁₅N₃OS: C, 53.31; H, 6.71; N, 18.65. Found: C, 53.29; H, 6.98; N, 18.71.

4-Hydroxyiminomethyl-1-methyl-2-methylthio-5-(2-phenylethenyl)imidazole (10e): 95.8% [a mixture of cis/trans (1/1)]. mp 161.5-164°C (EtOH). Ir(KBr): 3136 cm⁻¹(OH). ¹H-Nmr: δ 2,61(3H, s, SCH₃), 2.64(3H, s, SCH₄), 3.06(3H, s, NCH₃), 3.55(3H, s, NCH₃), 6.29(1H, d, J_{cis} =12 Hz, CH=CH), 6.73-7.66(13H, m, C₆H₅ X 2, CH=CH and CH=CH), 7.93(1H, br s, OH), 8.16(1H, br s, OH). Ms: *m/z* 273(M⁺). Anal. Calcd for C₁₄H₁₅N₃OS: C, 61.52; H, 5.53; N, 15.37. Found: C, 61.62; H, 5.74; N, 15.08. 4-Hydroxyiminomethyl-1-methyl-2-methylthio-5-(2-propenyl)imidazole (10f): 53.0%. mp 142-143.5°C (EtOH). Ir(KBr): 3161 cm⁻¹(OH). ¹H-Nmr: δ 1.99(3H, s, CH₃-C=), 2.62(3H, s, SCH₃), 3.38(3H, s, NCH₃), 4.89-5.10(1H, m, C=CH₂ X 1/2), 5.28-5.50(1H, m, C=CH₂ X 1/2), 7.88(1H, s, N=CH), 8.82(1H, br s, OH). Ms(CI): *m/z* 211(M⁺). Anal. Calcd for C₉H₁₃N₃OS: C, 51.16; H, 6.20; N, 19.89. Found: C, 51.38; H, 6.31; N, 20.13.

4-(1-Hydroxyimino)ethyl-1-methyl-2-methylthio-5-(2-propenyl)imidazole (10g): 36.4%. mp 121-122°C (EtOH). Ir(KBr): 3160 cm⁻¹(OH). ¹H-Nmr: δ 1.98(3H, s, C<u>H</u>₃-C=), 2.26(3H, s, C<u>H</u>₃-C=N), 2.58(3H, s, SC<u>H</u>₃), 3.44(3H, s, NC<u>H</u>₃), 4.87-5.60(2H, m, C=C<u>H</u>₂), 8.64(1H, br s, OH). Ms: m/z 225(M⁺). Anal. Calcd for C₁₀H₁₅N₃OS: C, 53.31; H, 6.71; N, 18.65. Found: C, 53.12; H, 6.88; N, 18.79.

4-(1-Hydroxyimino)beznyl-1-methyl-2-methylthio-5-(2-propenyl)imidazole (10h): 40.3%. mp 143.5-144.5°C (EtOH). Ir(KBr): 3143 cm⁻¹(OH). ¹H-Nmr: δ 1.64(3H, s, CH₃-C=), 2.60(3H, s, SCH₃), 3.42(3H, s, NCH₃), 4.69-5.10(2H, m, C=CH₂), 6.93-7.58(5H, m, C₆H₅), 10.65(1H, br s, OH). Ms: m/z 287(M⁺). Anal. Calcd for C₁₅H₁₇N₃OS: C, 62.69; H, 5.96; N, 14.62. Found: C, 62.85; H, 6.02; N, 14.47.

General procedure for the preparation of 1H-imidazo[4,5-c]pyridine derivatives (11a-h). A solution of the oximes (10a-h) (0.43 mmol) in *o*-dichlorobenzene (5 ml) was refluxed at 190°C for 30-60 min. After the reaction solution was cooled to room temperature, the solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel, 7 g) using EtOAc as an eluent to give the imidazo[4,5-c]pyridines (11a-h).

1-Methyl-2-methylthio-1*H***-imidazo**[4,5-*c*]pyridine (11a): 17.5%(oil). ¹H-Nmr: δ 2.78(3H, s, SCH₃), 3.62(3H, s, NCH₃), 7.06(1H, d, *J*=5 Hz, C₇-H), 8.24(1H, d, *J*=5 Hz, C₆-H), 8.82(1H, br s, C₄-H). Ms: *m/z* 179(M⁺). HRms calcd for C₈H₉N₃S 179.0517 found 179.0501.

1,4-Dimethyl-2-methylthio-1*H***-imidazo**[**4,5-c**]**pyridine** (11b): 98%. mp 108-109°C (EtOAc). ¹H-Nmr: δ 2.82(6H, s, C₄-C<u>H</u>₃ and SC<u>H</u>₃), 3.63(3H, s, NC<u>H</u>₃), 6.98(1H, d, *J*=6 Hz, C₇-<u>H</u>), 8.19(1H, d, *J*=6 Hz, C₆-<u>H</u>). Ms: *m/z* 193(M^{*}). Anal. Calcd for C₉H₁₁N₃S: C, 55.93; H, 5.74; N, 21.74. Found: C, 56.11; H, 5.63; N, 21.64.

1,6-Dimethyl-2-methylthio-1H-imidazo[4,5-c]pyridine (11c): 78.7%(oil). ¹H-Nmr: δ 2.58(3H,

s, C₆-C<u>H₃</u>), 2.77(3H, s, SC<u>H₃</u>), 3.52(3H, s, NC<u>H₃</u>), 6.85(1H, br s, C₇-<u>H</u>), 8.64(1H, br s, C₄-<u>H</u>). Ms: m/z 193(M⁺). HRms calcd for C₉H₁₁N₃S 193.0673, found 193.0698.

2-Methylthio-1,4,6-trimethyl-1H-imidazo[4,5-c]pyridine (11d): 66.4%. mp 108.5-110°C (EtOAc). ¹H-Nmr: δ 2.59(3H, s, C₆-C<u>H₃</u>), 2.78(6H, s, C₄-C<u>H₃</u>), 3.55(3H, s, NC<u>H₃</u>), 6.75(1H, br s, C₇-<u>H</u>). Ms: *m/z* 207(M⁺). Anal. Calcd for C₁₀H₁₃N₃S: C, 57.94; H, 6.32; N, 20.27. Found: C, 58.19; H, 6.21; N, 20.46.

1-Methyl-2-methylthio-6-phenyl-1*H***-imidazo**[4,5-*c*]**pyridine** (11e): 59.5%(oil). ¹H-Nmr: δ 2.83 (3H, s, SC<u>H</u>₃), 3.69(3H, s, NC<u>H</u>₃), 7.20-8.19(6H, m, C₇-<u>H</u> and C₆<u>H</u>₅), 8.93(1H, s, C₄-<u>H</u>). Ms: *m/z* 255(M⁺). HRms calcd for C₁₄H₁₃N₃S 255.0829, found 255.0806.

1,7-Dimethyl-2-methylthio-1*H***-imidazo**[**4,5-***c*]**pyridine** (**11f**): 82.6%. mp 126-127°C (MeOH). ¹H-Nmr: δ 2.55(3H, s, C₇-C<u>H₃</u>), 2.75(3H, s, SC<u>H₃</u>), 3.76(3H, s, NC<u>H₃</u>), 7.91(1H, br s, C₆-<u>H</u>), 8.65 (1H, br s, C₄-<u>H</u>). Ms: *m/z* 193(M⁺). *Anal*. Calcd for C₉H₁₁N₃S: C, 55.93; H, 5.74; N, 21.74. Found: C, 55.99; H, 5.91; N, 21.46.

2-Methylthio-1,4,7-trimethyl-1H-imidazo[4,5-*c*]pyridine (11g): 64.7%. mp 142.5-143.5°C (EtOAc). ¹H-Nmr: δ 2.50(3H, s, C₇-C<u>H₃</u>), 2.75(6H, s, C₄-C<u>H₃</u> and SC<u>H₃</u>), 3.76(3H, s, NC<u>H₃</u>), 7.79(1H, br s, C₆-<u>H</u>). Ms: *m/z* 207(M⁺). Anal. Calcd for C₁₀H₁₃N₃S: C, 57.94; H, 6.32; N, 20.27. Found: C, 57.88; H, 6.25; N, 20.45.

1,7-Dimethyl-2-methylthio-4-phenyl-1*H*-imidazo[4,5-c]pyridine (11h): 71.1%. mp 187-187.5°C (MeOH). ¹H-Nmr: δ 2.51(3H, s, C₇-C<u>H₃</u>), 2.76(3H, s, SC<u>H₃</u>), 3.70(3H, s, NC<u>H₃</u>), 7.10 -7.60(3H, m, aromatic protons), 7.94(1H, br s, C₆-<u>H</u>), 8.40-8.71(2H, m, aromatic protons). Ms: *m/z* 269(M⁺). *Anal.* Calcd for C₁₅H₁₅N₃S: C, 66.89; H, 5.61; N, 15.60. Found: C, 67.15; H, 5.78; N, 15.41.

2-n-Butyl-4,5-dibromoimidazole (13). A solution of bromine (1.04 ml, 20.1 mmol) in DMF (2 ml) was added to a stirred mixture of 2-*n*-butylimidazole (12)⁸ (1.0 g, 8.05 mmol) and KHCO₃ (2.01 g, 20.1 mmol) in DMF (10 ml) at an ambient temperature. The mixture was stirred at 70°C for 3 h and then cooled to an ambient temperature. After addition of aqueous 28% NH₄OH until the disappearance of excess bromine, the mixture was concentrated under reduced pressure. The residue was extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 15 g) using EtOAc/hexane (1/4) to an eluent to give the dibromoimidazole (13) (2.07 g, 91.2%), mp 153-155°C (EtOAc/hexane). ¹H-Nmr: δ 0.69-1.97(7H, m, CH₃CH₂CH₂), 2.72(2H, t, *J*=7 Hz, CH₃CH₂CH₂CH₂). Ms: *m/z* 284(M⁺+4), 282(M⁺+2), 280(M⁺). Anal. Calcd for C₇H₁₀N₂Br₂: C, 29.82; H, 3.57; N, 9.93. Found: C, 29.61; H, 3.39; N, 9.81.

1-Benzyl-2-*n*-butyl-4,5-dibromoimidazole (14). A solution of benzyl bromide (0.89 ml, 7.45 mmol) in DMF (5 ml) was added to a stirred mixture of the 2-*n*-butylimidazole (13) (2.0 g, 7.09 mmol) and K_2CO_3 (1.37 g, 9.93 mmol) in DMF (20 ml) at room temperature. The stirred mixture was heated at 70°C for 1.5 h and then the solvent was removed. After addition of water to the residue, the mixture was extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 20 g) using EtOAc/hexane (1/19) as an eluent to

169

give the oily 1-benzylimidazole (14) (2.60 g, 98.5%). ¹H-Nmr: δ 0.68-1.91(7H, m, CH₃CH₂CH₂), 2.58(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 5.10(2H, s, NCH₂Ph), 6.79-7.44(5H, m, C₆H₅). Ms: *m/z* 374(M⁺+4), 372(M⁺+2), 370(M⁺). Hrms calcd for C₁₄H₁₆N₂Br₂ 369.9679, found 369.9969.

1-(4-Acetoxybenzyl)-4,5-dibromo-2-*n*-butylimidazole (15). The same procedure as above: 2-*n*-butylimidazole (13) (11.3 g, 40.1 mmol), K_2CO_3 (7.75 g, 56.1 mmol) and 4-acetoxybenzyl bromide⁹ (13.5 g, 58.9 mmol) in DMF (30 ml). Column chromarography (silica gel, 150 g): The eluent solvent; EtOAc/hexane=1/4. The oily 1-(4-acetoxybenzyl)imidazole (15); 17.2 g, 99.8%. Ir(neat): 1771 cm⁻¹(C=O). ¹H-Nmr: δ 0.69-1.81(7H, m, CH₃CH₂CH₂), 2.25(3H, s, CH₃CO), 2.57(2H, t, J=7 Hz, CH₃CH₂-CH₂CH₂), 5.07(2H, s, NCH₂Ph), 6.96(4H, s, aromatic protons). Ms: *m/z* 432(M⁺+4), 430(M⁺+2), 428(M⁺). HRms calcd for C₁₆H₁₈N₂O₂Br₂ 427.9734, found 427.9752.

4,5-Dibromo-2-n-butyl-1-(4-hydroxybenzyl)imidazole (16). A mixture of the 1-(4-acetoxybenzyl)imidazole (15) (11.8 g, 27.4 mmol) and aqueous 10% K₂CO₃ (80 ml) in EtOH (80 ml) was stirred at room temperature for 12 h. After removal of the solvent, the mixture was extracted with CHCl₃. The CHCl₃ layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was recrystallized from EtOAc to give the 1-(4-hydroxybenzyl)imidazole (16) (9.52 g, 89.4%), mp 160-162°C (EtOAc). Ir(KBr): 3009 cm⁻¹(OH). ¹H-Nmr(MeOH- d_4 /CDCl₃): δ 0.61-1.94(7H, m, CH₃CH₂CH₂), 2.61(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 5.04(2H, s, NCH₂Ph), 6.81(4H, s, aromatic protons). Ms: *m/z* 390(M⁺+4), 388(M⁺+2), 386(M⁺). Anal. Calcd for C₁₄H₁₆N₂OBr₂: C, 43.33; H, 4.16; N, 7.22. Found: C, 43.09; H, 4.25; N, 7.44.

4,5-Dibromo-2-*n***-butyl-1-(4-methoxymethyloxybenzyl)imidazole** (17). A solution of 1-(4-hydroxybenzyl)imidazole (16) (6.0 g, 15.5 mmol) in DMF (15 ml) was added to a stirred mixture of NaH (60% dispersion, 680 mg, 17.0 mmol) in DMF (15 ml) with ice-cooling under argon atmosphere. After stirring at the same temperature for 30 min, a solution of chloromethyl methyl ether (1.29 ml, 17.0 mmol) in DMF (5 ml) was added and then the mixture was stirred at an ambient temperature for 30 min. After removal of solvent followed by addition of water, the mixture was extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 100 g) using EtOAc/hexane (1/9) as an eluent to give the oily methoxymethyl ether (17) (6.3 g, 94.0%). ¹H-Nmr: δ 0.66-2.01(7H, m, CH₃CH₂CH₂), 2.58(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.42(3H, s, OCH₃), 5.02(2H, s, OCH₂O), 5.08(2H, s, NCH₂Ph), 6.89(4H, s, aromatic protons). Ms: *m/z* 434(M⁺+4), 432(M⁺+2), 430(M⁺). HRms calcd for C₁₆H₂₀N₂O₂Br₂ 429.9890, found 429.9883.

1-Benzyl-4-bromo-2-*n***-butylimidazole-5-carboxaldehyde** (18a). A solution of *n*-BuLi (1.66 M in hexane, 13.4 ml, 22.2 mmol) was added at -78° C to a stirred solution of the 4,5-dibromoimidazole (14) (6.61 g, 17.8 mmol) in anhyd. Et₂O (150 ml) under argon atmosphere. After stirring at -78° C for 30 min, a solution of DMF (13.8 ml, 177.6 mmol) was added and then the mixture was stirred at an ambient

temperature for 12 h. The mixture was worked up with water, which was extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 100 g) using EtOAc/hexane (1/19) as an eluent to give the oily aldehyde (18a) (4.15 g, 72.7%). Ir(neat): 1678 cm⁻¹(CHO). ¹H-Nmr: δ 0.68-1.96(7H, m, CH₃CH₂CH₂), 2.62(2H, t, *J*=7 Hz, CH₃CH₂CH₂CH₂), 5.51(2H, s, NCH₂Ph), 6.81-7.43(5H, m, C₆H₅), 9.61(1H, s, CHO). Ms: *m*/2 322(M⁺+2), 320(M⁺). HRms calcd for C_{1.5}H_{1.7}N₂OBr 320.0523, found 320.0496.

4-Bromo-2-*n*-butyl-1-(4-methoxymethyloxybenzyl)imidazole-5-carboxaldehyde (18b). The same procedure as above: 4,5-dibromoimidazole (17) (3.0 g, 6.94 mmol) in anhyd. Et₂O (70 ml), *n*-BuLi (1.71 M in hexane, 8.1 ml, 13.9 mmol) and DMF (5.4 ml, 69.4 mmol). Column chromatography (silica gel, 50 g): the eluent solvent; EtOAc/hexane=1/9. The oily aldehyde (19); 2.22 g, 83.9%. Ir(neat): 1667 cm⁻¹(CHO). ¹H-Nmr: δ 0.60-1.99(7H, m, CH₃CH₂CH₂), 2.65(2H, t, *J*=7 Hz, CH₃CH₂CH₂CH₂), 3.43(3H, s, OCH₃), 5.10(2H, s, OCH₂O), 5.46(2H, s, NCH₂Ph), 6.93(4H, s, aromatic protons), 9.62(1H, s, CHO). Ms: *m/z* 382(M⁺+2), 380(M⁺). HRms calcd for C₁₇H₂₁N₂O₃Br 380.0734, found 380.0760.

1-Benzyl-2-n-butyl-4-ethenylimidazole-5-carboxaldehyde (19a). A solution of vinyltributylin (241 mg, 0.76 mmol) in anhyd. DMF (2 ml) was added to a stirred suspension of the 4-bromoimidazole (18a) (163 mg, 0.51 mmol), $Et_4N^+CI^-$ (85 mg, 0.51 mmol), K_2CO_3 (70 mg, 0.51 mmol), $(PPh_3)_2PdCl_2$ (9 mg, 0.013 mmol) in anhyd. DMF (5 ml) at room temperature under argon atmosphere. The mixture was heated at 110°C for 1-2 h under stirring. The mixture was quenched with aqueous 30% KF, which was filtered off with celite. After concentration of the filtrate, the residue was extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromarography (silica gel, 10 g) using EtOAc/hexane (1/9) as an eluent to give the oily 4-vinylimidazole (19a) (95 mg, 69.8%). Ir(neat): 1661 cm⁻¹(CHO). ¹H-Nmr: δ 0.67-1.97(7H, m, CH₃CH₂CH₂), 2.64(2H, t, J=7 Hz, CH₃CH₂CH₂), 5.46(1H, dd, J_{gem} =2 Hz and J_{cia} =10 Hz, CH=CH₂ X 1/2), 6.69-7.42(6H, m, C₆H₅ and CH=CH₂), 9.82(1H, s, CHO). Ms: *m/z* 268(M⁺). HRms calcd for C₁₇H₂₀N₂O 268.1575, found 268.1552.

1-Benzyl-2-*n*-butyl-4-(2-propenyl)imidazole-5-carboxaldehyde (19b). The same procedure as above (isopropenyltributyltin¹² was used instead of vinyltributyltin): 67.4%(oil). Ir(neat): 1666 cm⁻¹(CHO). ¹H-Nmr: δ 0.66-1.97(7H, m, CH₃CH₂CH₂), 2.22(3H, s, CH₃-C=), 2.65(2H, t, J=7 Hz, CH₃CH₂-CH₂CH₂), 5.19-5.44(2H, m, CH=CH₂), 5.57(2H, s, NCH₂Ph), 6.85-7.39(5H, m, C₆H₅), 9.71(1H, s, CHO). Ms: m/z 282(M⁺). HRms calcd for C₁₈H₂₂N₂O 282.1731, found 282.1750.

2-*n***-Butyl-4-ethenyl-1-(4-methoxymethyloxybenzyl)imidazole-5-carboxaldehyde** (19c). The same procedure as above: 90.7%(oil). Ir(neat): 1663 cm⁻¹(CHO). ¹H-Nmr: δ 0.67-1.98(7H, m, CH₃CH₂CH₂), 2.65(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.39(3H, s, OCH₃), 5.06(2H, s, OCH₂O), 5.43(2H, s, NCH₂Ph), 5.43(1H, dd, J_{gem} =2 Hz and J_{cte} =10 Hz, CH=CH₂ X 1/2), 6.13(1H, dd, J_{gem} =2 Hz and J_{trans} =17 Hz, CH=CH₂ X 1/2), 6.90(4H, s, aromaric protons), 6.93(1H, dd, J_{cis} =10 Hz and J_{trans} =17 Hz, CH=CH₂), 9.81(1H, s, CHO). Ms: *m/z* 328(M⁺). HRms calcd for C₁₉H₂₄N₂O₃ 328.1786, found

328.1816.

2-n-Butyl-4-(2-propenyl)-1-(4-methoxymethyloxybenzyl)imidazole-5-carboxaldehyde

(19d). The same procedure as above (isopropenyltributyltin¹² was used instead of vinyltributyltin): 75.9%(oil). Ir(neat): 1651 cm⁻¹(CHO). ¹H-Nmr: δ 0.69-1.95(7H, m, CH₃CH₂CH₂), 2.20(3H, s, CH₃-C=), 2.66(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.42(3H, s, OCH₃), 5.07(2H, s, OCH₂O), 5.15-5.39(2H, m, C=CH₂), 5.46 (2H, s, NCH₂Ph), 6.90(4H, s, aromaric protons), 9.66(1H, s, CHO). Ms: *m/z* 342(M⁺). HRms calcd for C₂₀H₂₆N₂O₃ 342.1942, found 342.1928.

General procedure for the preparation of the oximes (20a-d). A mixture of the aldehydes (19a-d) (2.38 mmol), NH₂OH \cdot HCl (5.11 g, 73.6 mmol), AcONa (6.04 g, 73.6 mmol) in EtOH (20 ml) was heated at the reflux temperature for 30 min. The mixture was poured into water, which was extracted with CHCl₃. The CHCl₃ layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 10 g) using EtOAc/hexane (1/4) as an eluent to give the oximes (20a-d).

1-Benzyl-2-*n***-butyl-4-ethenyl-5-hydroxyiminomethylimidazole** (20a): 54.3%. mp 158-160°C (EtOH). Ir(KBr): 3033 cm⁻¹(OH). ¹H-Nmr(MeOH- d_4 /CDCl₃): δ 0.63-1.90(7H, m, CH₃CH₂CH₂), 2.59 (2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 2.98-3.48(1H, m, OH), 5.20(1H, dd, J_{gem} =2 Hz and J_{cis} =10 Hz, CH=CH₂ X 1/2), 5.48(2H, s, NCH₂Ph), 5.87(1H, dd, J_{gem} =2 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis} =10 Hz and J_{irans} =17 Hz, CH=CH₂ X 1/2), 6.70 (1H, dd, J_{cis}]

1-Benzyl-2-*n***-butyl-5-hydroxyiminomethyl-4-(2-propenyl)imidazole** (20b): 63.6%. mp 147-148.5°C (EtOH). Ir(KBr): 3089 cm⁻¹(OH). ¹H-Nmr: δ 0.52-1.81(7H, m, CH₃CH₂CH₂), 2.07(3H, s, CH₃-C=), 2.47(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 4.93-5.22(2H, m, CH=CH₂), 5.45(2H, s, NCH₂Ph), 6.75-7.36(5H, m, C₆H₅), 8.17(1H, s, N=CH). Ms(CI): *m*/z 297(M⁺). Anal. Calcd for C₁₈H₂₃N₃O: C, 72.69; H, 7.80; N, 14.13. Found: C, 72.91; H, 7.69; N, 14.05.

2-n-Butyl-4-ethenyl-5-hydroxyiminomethyl-1-(4-methoxymethyloxybenzyl)imidazole

(20c): 80.8%. mp 140-142°C (EtOH). Ir(KBr): 3110 cm⁻¹(OH). ¹H-Nmr(MeOH- d_a /CDCl₃): δ 0.64-1.84 (7H, m, CH₃CH₂CH₂), 2.60(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.43(3H, s, OCH₃), 5.09(2H, s, OCH₂O), 5.20(1H, dd, J_{gem} =2 Hz and J_{cus} =10 Hz, CH=CH₂ X 1/2), 5.37(2H, s, NCH₂Ph), 5.86(1H, dd, J_{gem} =2 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.70(1H, dd, J_{cus} =10 Hz and J_{trans} =18 Hz, CH=CH₂ X 1/2), 6.88(4H, s, aromatic protons), 8.07(1H, s, N=CH). Ms(CI): *m*/z 343(M⁺). Anal. Calcd for C₁₉H₂₅N₃O₃: C, 66.45; H, 7.34; N, 12.24. Found: C, 66.18; H, 7.26; N, 12.41.

2-*n***-Butyl-5-hydroxyiminomethyl-1-(4-methoxymethyloxybenzyl)-4-(2-propenyl)imidazole (20d):** 85.2%. mp 106-108°C (Et₂O). Ir(KBr): 3132 cm⁻¹(OH). ¹H-Nmr: δ 0.55-1.77(7H, m, C<u>H₃CH₂CH₂), 2.07(3H, s, CH₃-C=), 2.53(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.40(3H, s, OC<u>H₃), 4.97-5.22(2H, m, C=CH₂), 5.09(2H, s, OCH₂O), 5.42(2H, s, NCH₂Ph), 6.87(4H, s, aromatic protons), 8.16(1H, s, N=CH). Ms(CI): *m/z* 357(M⁺). *Anal.* Calcd for C₂₀H₂₇N₃O₃: C, 67.20; H, 7.61; N, 11.76. Found: C, 67.33; H, 7.78; N, 12.85.</u></u> 4-Bromo-2-*n*-butyl-5-methoxyiminomethyl-1-(4-methoxymethyloxybenzyl)imidazole (21). A mixture of the aldehyde (18b) (500 mg, 1.31 mmol), NH₂OMe · HCl (3.40 g, 40.7 mmol) and AcONa (3.33 g, 40.7 mmol) in EtOH (20 ml) was heated at the reflux temperature for 30 min. The mixture was poured into water and extracted with EtOAc. The EtOAc layer was washed with brine, dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 7 g) using EtOAc/hexane (1/19) as an eluent to give the oily oxime ether (21) (531 mg, 98.7%). ¹H-Nmr: δ 0.63-1.93(7H, m, CH₃CH₂CH₂), 2.61(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.43(3H, s, OCH₃), 3.79(3H, s, N-OCH₃), 5.09(2H, s, OCH₂O), 5.43(2H, s, NCH₂Ph), 6.92(4H, s, aromatic protons), 7.95(1H, s, N=CH). Ms: *m/z* 411(M⁺+2), 409(M⁺). HRms calcd for C₁₈H₂₄N₃O₃Br 409.1000, found 409.1005.

2-n-Butyl-4-ethenyl-5-methoxyiminomethyl-1-(4-methoxymethyloxybenzyl)imidazole

(22a). A solution of vinyltributyltin (232 mg, 0.731 mmol) in anhyd. DMF (2 ml) was added to a stirred suspension of the oxime ether (21) (200 mg, 0.487 mmol), $Et_4N^+CI^-(81 \text{ mg}, 0.487 \text{ mmol})$, K_2CO_3 (67 mg, 0.487 mmol), (PPh_3)_2PdCl_2 (8 mg, 0.012 mmol) in anhyd. DMF (5 ml) under an argon atmosphere. The mixture was heated at 110°C for 30 min. The mixture was quenched with aqueous 30% KF and then filtered off with celite. The celite was washed with EtOAc and the combined organic layer was washed with brine, which was dried over Na₂SO₄ and concentrated to dryness. The residue was purified by column chromatography (silica gel, 7 g) using EtOAc/hexane (1/9) as an eluent to give the 4-ethenylimidazole (22a) as an oil (170 mg, 97.6%). ¹H-Nmr: δ 0.64-1.95(7H, m, CH₃CH₂CH₂), 2.61(2H, t, J=7 Hz, CH₃CH₂-CH₂), 3.39(3H, s, OCH₃), 3.76(3H, s, N-OCH₃), 5.05(2H, s, OCH₂O), 5.18(1H, dd, J_{gem} =2 Hz and J_{cia} =10 Hz, CH=CH₂ X 1/2), 5.34(2H, s, NCH₂Ph), 5.92(1H, dd, J_{gem} =2 Hz and J_{trans} =17 Hz, CH=CH₂ X 1/2), 6.67(1H, dd, J_{cis} =10 Hz and J_{trans} =17 Hz, CH=CH₂), 6.88(4H, s, aromatic protons), 8.01(1H, s, N=CH). Ms: m/z 357(M⁺). HRms calcd for C₂₀H₂₇N₃O₃ 357.2051, found 357.2075.

2 -n-Butyl-4-(2-propenyl)-5-methoxyiminomethyl-1-(4-methoxymethyloxybenzyl)imidazole (22b). The same procedure as above (isopropenyltributyltin¹² was used instead of vinyltributyltin): 60.8%(oil). ¹H-Nmr: δ 0.66-1.99(7H, m, CH₃CH₂CH₂), 2.12(3H, s, CH₃-C=), 2.62(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.41(3H, s, OCH₃), 3.75(3H, s, N-OCH₃), 4.94-5.25(2H, m, C=CH₂), 5.10(2H, s, OCH₂O), 5.45(2H, s, NCH₂Ph), 6.91(4H, s, aromatic protons), 8.07(1H, s, N=CH). Ms: *m/z* 371(M⁺). HRms calcd for C₂₁H₂₉N₃O₃ 371.2208, found 371.2198.

General procedure for the preparation of 3H-imidazo[4,5-c]pyridine derivatives (23a-d). A stirred solution of the oximes (20a-d) (0.251 mmol) in *o*-dichlorobenzene (4-5 ml) was refluxed at 190°C for 1-3 h. After removal of the solvent, the residue was purified by column chromatography (silica gel, 5 g) using EtOAc as an eluent to give the 3H-imidazo[4,5-c]pyridines (23a-d) (Route A).

3-Benzyl-2-n-butyl-3H-imidazo[4,5-c]pyridine (23a): 70.7%. mp 72.5-74.5°C (Et₂O/hexane). ¹H-Nmr: δ 0.69-2.19(7H, m, CH₃CH₂CH₂), 2.86(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂CH₂), 5.35(2H, s, NCH₂Ph), 6.85-7.43(5H, m, C₆H₅), 7.57(1H, d, J=6 Hz, C₇-H), 8.32(1H, d, J=6 Hz, C₆-H), 8.53(1H, s, C₄-H). Ms: *m/z* 265(M⁺). Anal. Calcd for C₁₇H₁₉N₃: C, 76.94; H, 7.22; N, 15.84. Found: C, 76.78; H, 7.31; N, 15.91. **3-Benzyl-2-***n***-butyl-7-methyl-3***H***-imidazo[4,5-***c***]pyridine (23b): 79.1%. mp 89-90.5°C (Et₂O). ¹H-Nmr: \delta 0.71-2.04(7H, m, CH₃CH₂CH₂), 2.63(3H, s, C₇-CH₃), 2.88(2H, t,** *J***=7 Hz, CH₃CH₂CH₂-CH₂), 5.34(2H, s, NCH₂Ph), 6.87-7.40(5H, m, C₆H₅), 8.18(1H, br s, C₆-H), 8.39(1H, br s, C₄-H). Ms:** *m/z* **279(M⁺). Anal. Calcd for C₁₈H₂₁N₃: C, 77.38; H, 7.58; N, 15.04. Found: C, 77.63; H, 7.49; N, 14.88.**

2-*n***-Butyl-3-(4-methoxymethyloxybenzyl)-3***H***-imidazo[4,5-***c***]pyridine (23c): 78.2%. mp 65.5-67.5°C (Et₂O). ¹H-Nmr: \delta 0.66-2.05(7H, m, CH₃CH₂CH₂), 2.72(2H, t,** *J***=7 Hz, CH₃CH₂CH₂CH₂), 3.36(3H, s, OCH₃), 5.01(2H, s, OCH₂O), 5.16(2H, s, NCH₂Ph), 6.83(4H, s, aromatic protons), 7.40(1H, d,** *J***=5 Hz, C₇-H), 8.19(1H, d,** *J***=5 Hz, C₆-H), 8.38(1H, s, C₄-H). Ms:** *m/z* **325(M⁺). Anal. Calcd for C_{1.0}H_{2.3}N₃O₂: C, 70.13; H, 7.12; N, 12.91. Found: C, 70.21; H, 7.03; N, 13.19.**

2-*n***-Butyl-3-(4-methoxymethyloxybenzyl)-7-methyl-3H-imidazo[4,5-c]pyridine (23d): 88.7%. mp 103-105°C (CHCl₃/hexane). ¹H-Nmr: \delta 0.73-1.99(7H, m, CH₃CH₂CH₂), 2.61(3H, s, C₇-CH₃) 2.90(2H, t, J=7 Hz, CH₃CH₂CH₂CH₂), 3.41(3H, s, OCH₃), 5.08(2H, s, OCH₂O), 5.27(2H, s, NCH₂Ph), 6.92(4H, s, aromatic protons), 8.15(1H, s, C₆-H), 8.39(1H, s, C₄-H). Ms:** *m/z* **339(M⁺). Anal. Calcd for C₂₀H₂₅N₃O₂: C, 70.77; H, 7.43; N, 12.38. Found: C, 70.54; H, 7.18; N, 12.52.**

2-n-Butyl-3-(4-methoxymethyloxybenzyl)-3H-imidazo[4,5-c]pyridine (23c) from the oxime ether (22a) (Route B). A stirred solution of the oxime ether (22a) (157 mg, 0.493 mmol) in *o*-dichlorobenzene (5 ml) was heated at 190°C for 3 h. After removal of the solvent, the residue was purified by column chromatography (silica gel, 7 g) using EtOAc as an eluent to give the imidazo[4,5-c]pyridine (23c) (103 mg, 72.1%).

2-n-Butyl-3-(4-methoxymethyloxybenzyl)-7-methyl-3*H*-imidazo[4,5-c]pyridine (23d) from the oxime ether (22b) (Route B). The same procedure as above, 75.5%.

REFERENCES AND NOTES

- 1. (a) E. N. Marvell, "*Thermal Electrocyclic Reaction*", Academic Press, 1980. (b) W. H. Okamura and A. R. de Lera, in "*Comprehensive Organic Synthesis*", Ed. by B. M. Trost, I. Fleming, and L. A. Paquette, Pergamon Press, 1991, Vol. 5, pp. 699-750.
- (a) S. Hibino, S. Kano, N. Mochizuki, and E. Sugino, J. Org. Chem., 1984, 49, 5006. (b) S. Hibino, E. Sugino, T. Yamochi, M. Kuwata, H. Hashimoto, K. Sato, F. Amanuma, and Y. Karasawa, Chem. Pharm. Bull., 1987, 35, 2261. (c) S. Hibino, E. Sugino, T. Choshi, and K. Sato, J. Chem. Soc., Perkin Trans. 1, 1988, 2429. (d) S. Hibino, E. Sugino, Y. Adachi, K. Nomi, K. Sato, and K. Fukumoto, Heterocycles, 1989, 28, 275. (e) S. Hibino, E. Sugino, N. Ogura, Y. Shintani, and K. Sato, Heterocycles, 1990, 30, 271. (f) S. Hibino, E. Sugino, T. Kuwada, N. Ogura, K. Sato, and T. Choshi, J. Org. Chem., 1992, 57, 5981.
- Utilization of other type of 1-azahexatriene intermediates generated from benzocyclobutene derivatives:
 (a) W. Oppolzer, Angew. Chem., 1972, 84, 1108. (b) T. Kametani, K. Ogasawara, and T. Takahashi, J. Chem. Soc., Chem. Commun., 1972, 675. (c) idem., Tetrahedron, 1973, 29, 73. (d)

T. Kametani, Y. Hirai, F. Sato, K. Ogasawara, and K. Fukumoto, *Chem. Pharm. Bull.*, **1973**, *21*, 907. (e) T. Kametani, M. Takemura, K. Ogasawara, and K. Fukumoto, *J. Heterocycl. Chem.*, **1974**, *11*, 179. (f) T. Kametani, C. Ohtsuka, H. Nemoto, and K. Fukumoto, *Chem. Pharm. Bull.*, **1976**, *24*, 2525. (g) W. Oppolzer, M. Petrzilka, and K. Battig, *Helv. Chim. Acta*, **1977**, *60*, 2964. (h) K. Shishido, K. Hiroya, and K. Fukumoto, *Heterocycles*, **1989**, *28*, 39.

- 4. (a) S. Hibino and E. Sugino, *Heterocycles*, 1987, 26, 1883. (b) S. Hibino, E. Sugino, T. Kuwada, N. Ogura, Y. Shintani, and K. Sato, *Chem. Pharm. Bull.*, 1991, 39, 79. (c) T. Choshi, A. Tonari, H. Yoshioka, K. Harada, E. Sugino, and S. Hibino, J. Org. Chem., 1993, 58, 7952 and related references cited therein.
- (a) T. L. Gilchrist, and M. A. M. Healy, *Tetrahedron Lett.*, 1990, 31, 5807. (b) A. L. Germain, T. L. Gilchrist, and P. D. Kemmitt, *Heterocycles*, 1994, 37, 697. (c) I. R. Girling and D. A. Widdowson, *Tetrahedron Lett.*, 1982, 23, 4281. (d) idem, J. Chem. Soc., Perkin Trans. 1, 1988, 1317.
- 6. J. A. Montgomery and J. A. Secrist III, in "Comprehensive Hetérocyclic Chemistry", Ed. by A. R. Katritzky and C. W. Rees, Pergamon Press, 1984, Vol. 5, pp. 619-623.
- 7. (a) D. W. Robertson and J. S. Hayes, Drugs of the Future, 1985, 10, 295. (b) D. W. Robertson, E. E. Beedle, J. H. Krushinski, G. D. Pollock, H. Wilson, V. L Wyss, and J. S. Hayes, J. Med. Chem., 1985, 28, 717. (c) W. W. K. R. Mederski and K. G. R. Pachler, Tetrahedron, 1992, 48, 10549. (d) N. Cho, K. Kubo, S. Furuya, M. Kajino, Y.Sugiura, T. Yasuma, Y. Kohara, M. Ojima, Y. Inada, K. Nishikawa, and T. Naka, in "14th Symposium on Medicinal Chemistry and 3rd Annual Meeting of Division of Medicinal Chemistry in The Pharmaceutical Society of Japan", 1993 (Shizuoka), Abstract pp. 53-54.
- 8. N. J. Curtis and R. S. Brown, J. Org. Chem., 1980, 45, 4083.
- D. R. Britain, R. Howe, and R. Wood, Eur. Pat. Appl., EP66,378 (1982) (Chem. Abstr., 1983, 98, 179379d).
- (a) B. Iddon, N. Khan, and B.-L. Lim, J. Chem. Soc., Chem. Commun., 1985, 1428. (b) B. Iddon and N. Khan, J. Chem. Soc., Perkin Trans. 1, 1987, 1453. (c) J. Becher, K. Pluta, N. Krake, K. Brøndum, N. J. Christensen and M. V. Vinader, Synthesis, 1989, 530.
- 11. Y. Kondo, R.Watanabe, T. Sakamoto, and H. Yamanaka, Chem. Pharm. Bull., 1989, 37, 2814.
- Isopropenyltributyltin (bp 106-108°C/2 torr, 80.6%) was prepared from isopropenylmagnesium bromide and tri-n-butyltin chloride by the following method: D. Seyferth and F. G. A. Stone, J. Am. Chem. Soc., 1957, 79, 515.

Received, 22nd September, 1994