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Abstract- Conformer ratios in 4-benzyloxy- and 4-siloxy-substifuted thianes,

cis- and rrans-thiane |-oxides, thiane 1.1-dioxides. and dihydrothiines were
revealed on the basis of their low temperature |H nmr analyses  Extreme
benzyloxy- and siloxy-axial (or -pseudoaxial) conformer preferences in frans-
thiane l-oxides, thiane 1.1-dioxides, and dihydrothiines were clearly

demonstrated.

Previously, we reported axial (ax} conformer preferences (>70% at 25 °C) of alkoxy and siloxy groups in the

chair-type cyclohexanones (1) and (2), glutaric anhydride (3* X = O). and glutarimide (3; X = NCH2Ph) not

1 R = CHsPh, Si(Me)ot-Bu, Si(Ph)p+-Bu, 2 3 X = O, NCH,Ph
C({Ph}s, SO:CgHyp-Br, COCgH4p-Br
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only in their CDCI3 solution but also in the crystalline state.! These prochiral compounds (1) and (3) should be
attractive to us from the viewpoint of a new design for the asymmetric induction.2

Significant attention was earlier directed toward the conformational analyses of subsututed thianes and their |-
oxides and 1,1 -dioxides. Martin and Ubel reported a conformational preference for the forms having sulfoxide
oxygen-ax over those with sulfoxide oxygen-equatorial {eg) in the ¢is- and trans-4-chloro-. 4-hydroxy-, or 4-p-
toluenesuifonyloxythiane [-oxides.? Ok1 and Nogami disclosed interesting evidence of a conformational
preference for the forms having Br-e¢ in the 4-bromothiane and nis ¢is-1-oxide and for the forms having Br-ax in

the trans-4-bromothiane 1-oxide and its 1,1-dioxide.* These results mentioned above prompted us to nvestigate

the systematic conformational analyses of the titled compounds (4-7) and dihydrothiines (8).
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Figure 1. Conformational equilibrium modes 1n 4-RO-substituted thianes, thiane 1-oxides,
thiane I,1-dioxides, and dihydrothiines

The low-temperature IH amr spectra of 4-RO-substituted thianes (da-d).5 cis-thiane 1-oxides (5a-c), > trans-

thiane 1-oxides (6a-¢),Y thiane 1,1-dioxides (7a-¢).5 and 4-RO-dihydrothiine (Sc)6 gave rise to two sets of 4-H
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or 2-H peaks which correspond to the RO-eg and RO-ax conformers based on the result from therr ring

interconversion as shown in Figure | and Table 1.

Table 1. Conformer ratios in RO-substituted thanes (4a-d),
cis-thiane 1-oxides (8a-c), rrans-thiane 1-oxides (ba-c),
thiane 1,1-dioxides (7a-¢). and dihydrothune (8¢) based
on 'H nmr analysis (400 MHz, CDCl5).

Conformer Ratio? &(ppm) of 4-H
Compound RO-eq : RO-ax RO-eq RO-ax TG

43 76:24 3.23 3.77 60

69 - 319 346 409 55
4¢ 47 .63 3.42 403 -50

89:11 3.37 4.02 60
5a 5545 345 3.7 <40
5b 34:66 365 397 40
5¢ 33:67 3.60 3.89 40
6a 11:89 340 3.81 50
6h 4:96 376 410 50
6c 2:98 3.70 407 50
7a 5:95 353 384 60
b 2.98 382 4.10 -70
7c 3:97 374 405 60
8¢ 2 gg? 316% 3579 -75

a) Unless otherwise, determined at -80 °C. b) Coalescence temp.
of 4-H peaks. c¢) Determined at -90 °C  d) Deternuned at -95 °C.
e} &(ppm) Value of 2-Haax.

TH nmr (200 MHz, CDCI3, room temperature) bandwidths (W) of 4-H peaks of 4a-d exhibited fairly large
values (4a: 27.6 Hz, 4b: 25.1 Hz, 4¢: 24.0 Hz, and 4d: 29.0 Hz). which suggested their RO-eg conformer
preferences.! Then, we examined their 400 MHz H nimr analyses at -80 °C and could reveal the details of their
conformational ratios (eg vs ax) in CD2Cl12 solution as shown in Table I Interestingly, the order of RO-ey
conformer preferences among siloxy derivatives (4b-d) is shown to be 4d>4b>de. This order must be contrary
to that of the bulky size of siloxy groups. Eventually. the order (4d>da>d4b>4¢ and Sa>5h=>5¢) seemed 1o be
in proportion to the basicity (electron density) of the oxygen atom of 4-RO groups. Hence. basicity order of the
oxygen atom of the related benzyloxy and siloxy dervatives’ was tentatively determined on the basis of up-field

shift (A8 ppm) of 119Sn-peak of MeSnCly in the presence of the corresponding cyclohexanol ether as shown in
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Table 2. Interestingly, the basicity order (Me3S1-0>PhCH?2-O>t-Bu{Me)28i-O>1-Bu(Ph)28i-0) abtained by our
method is perfectly consistent with the order of the RO-e¢ comformer preferences in the compounds (4} and (5).

Table 2. Up-field shift (A8 ppm) of '"?Sn-peak (149 MHz. ''?Sn nmir) of Me»SnCl,
in the presence of ethers in CDCl, at -50 °C.

Chemical Shift of

Run? Conditions?) 11981 (5 ppm)®) A8 ppm®)
1} MezSnClo (0.3 mmol)/CDCla (2.5 mi) 143.42 —

2) MeaSnClz + QOSi(Me)g 120.09 -23.33
3) MezSnCls + <:>—OCH2Ph 131.51 -11.91
4) MeaSnClz + QOSi(Me)gt-Bu 138.45 -4.97
5) MeoSnCly + <:>-OS|(Ph)2r-Bu 142.92 -0.50

a) In Runs 2-5, a mixture of Me,SnCl, (0 3 mmol) and each ether (0.3 mmol) was determined in
CDCl3 (2.5 ml). b) Each chemical shift 1s indicated in the ppm value relative to the Me4] 19Sn signal.
¢) A8 ppm = & ppm (Me,''“SnCl, + ether) - & ppm (Me,' "SnCl5)

In the cases of ¢15-4-RO-thiane 1-oxides (5a-c¢), their RO-ax conformer preferences proved to be 45% (5a), 66%
(5b), and 67% (5c¢), respectively, on the basis of their 400 MHz Y e analyses at -80 °C. Each RO-qx
conformer preference extent of the thiane [-oxides Sa-¢ should be evidently larger than that of the corresponding
thianes (4a-c¢) exhibitting the same order aspect Sc>5h>5a as 4e>4h>4a. In the cases of trans-4-RO-thiane 1-
oxides (6ba-c) and 1,1-dioxides {7a-c). the extreme 4-RO-¢x conformer preference extent of 4-benzyloxy
derivatives (6a and 7a) seemes to be little lower than that of the corresponding 4-sitoxy ones (6b,c and 7h,c).
Tentative |H nmr (200 MHz, CDCI3, room temperature) analyses of 4-RO-dihydrothimnes (8a.c) and 1.1-
dioxide of 8¢ provided the fawly small W values [18.3 Hz (8a). 19,7 Hz (8¢}, and 18.6 Hz (1, 1-dioxide of 8¢}
due to their 4-H peaks, which should mean their 4-RO-psendoay conformer preferences as we anticipated.$ The

dynamic |H nmr anatysis of 8c at -95 °C definitly clarified its conformatonal ratio.
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Finally, crystalline compounds (6¢ and 7¢) were submiited to the X-ray analysis ¢ Perspective views of their
crystallographic structures are depicted in Figure 29 The thiane 1-oxide and 1.{-dioxide rings adopt a chair

form and the siloxy group, in fact, occupies the v site in their molecules.

Figure 2. Perspectives view of the crystallographic structures of compounds 6¢ and 7¢.
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