SYNTHESIS OF FUSED 3a,4-DIHYDRO-5a,*H*-BENZOFURO-[3,3a-*d*]ISOXAZOLES¹

Kazuho Harada,^{*} Eisuke Kaji, Kuniaki Sasaki, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Abstract - Reaction of 2-isoxazoline-2-oxides (1) with titanium tetrachloride afforded Diels-Alder dimers (3) of 3a,4-dihydro-5a,*H*-benzofuro[3,3a-*d*]isoxazoles (2). The stereochemistry of the dimer (3a) was confirmed by X-ray analysis. As an application of the Diels-Alder reaction, several fused 3a,4-dihydro-5a,*H*-benzofuro[3,3a-*d*]isoxazoles (5,6, and 7) were synthesized by the reactions of 2 with acetylenic dienophiles.

Recently, we described new ring transformations of substituted 2-isoxazoline-2-oxides (1) to various heterocyclic ring systems such as fused furo[3,3a-*d*]isoxazoles,² monocyclic or fused 1,2-oxazines,³ and benzofuro[2,3-*c*]tetrahydropyrans.⁴ These transformations are mediated by Lewis acid (TiCl₄, TiBr₄ etc.), and the reaction course leading to the products depends on the type and site of substitution of 1. Among the above ring transformation products, fused furo[3,3a-*d*]isoxazoles, such as benzofuro[3,3a-*d*]isoxazoles (2),⁵ have a unique ring system which otherwise would be difficult to prepare. It is also important that 2 should have synthetic potential as the reactive cyclic dienes⁶ or as isoxazolines.⁷ We now report on the synthesis of a novel type of fused 3a,4-dihydro-5a,*H*-benzofuro[3,3a-*d*]isoxazoles (5,6, and

7) by Diels-Alder reaction of 2.

The reaction of isoxazoline-2-oxide $(1 a)^8$ with excess TiCl₄ was previously shown to give 2 a in 81 % yield by stirring for 30 min.⁹ When the reaction time was extended to 18 hours, two additional products (3 a¹⁰; 23 % and 4 a; 21 %) were isolated after chromatographical separation. (Scheme 1)

The structures of **2a**, **3a**, and **4a** were deduced from spectroscopic data and confirmed by X-ray crystallography. Thus, **3 a** showed an [M⁺] ion at *m*/*z* 626 corresponding to the molecular formula of $C_{26}H_{24}N_2O_{12}CI_2$ expected for a dimer of **2 a**. The ¹H-nmr spectrum showed the presence of two olefinic hydrogens [δ_{μ} 5.87, 6.10], two sets of coupled aliphatic methine hydrogens [δ_{μ} 3.97, 4.54, J=7.0 Hz ; 4.04, 4.83, J=9.2 Hz], of which the coupling constants and chemical shifts are similar to those of a set of H-3a and H-4 of **2 a** [δ_{μ} 4.21, 4.86, J=7.0 Hz], other six aliphatic methine hydrogens [δ_{μ} 2.98, 3.20, 3.54, 3.67, 4.55, 4.74], in addition to four ester Me groups. (Table 1) These spectral data suggested that **3a** should be a Diels-Alder dimer of **2a**. This deduction was proved by a single crystal X-ray analysis of **3a**. A perspective drawing of the molecule of **3a** is illustrated in Figure 1. The structure of

3a reveals that the molecule results from Diels-Alder dimerization of **2a**. Thus, the C(6)=C(7)-C(8)=C(9) and C(10)=C(11) moleties correspond to diene and dienophile compornents, respectively, in the Diels-Alder reaction for **3a**. The stereochemistry of **3a** was confirmed to be *endo* configuration, *i.e.*, as depicted in Figure 1, the bulky cyclohexene ring C(10)-C(11)-C(12)-C(13)-C(14)-C(15) (dienophile component) is under the bridge C(6)-C(7)-C(8)-C(9) (diene). The molecule is also assigned to be anti π -facial diastereomer⁶ with respect to the furan ring C(4)-C(2)-C(3)-C(5)-O(2), thus the addition of the dienophile forming C(10)-C(11) proceeds via anti to the diene forming cyclohexene ring C(5)-C(3)-C(6)-C(7)-C(8)-C(9). (Figure 1)

Table 1. and Coupling Constants for Compounds 3

	Chemical Sh	ift (ppm)		Coup I i	ng Con	stant (H	z)
	3a	3b	3c		3 a	3b	3c
H–1	4.54 d	4.49 d	4.54 d	J(1,14a)	7.0	7.0	7.0
H–2a	4.55 d	4.56 d	4.56 d				
H–3	5.87 d	6.09 d	5.88 d	J(4a,11a)	9.0	9.0	9.0
H-4a	2.98 dd	3.08 dd	2.98 dd				
H–5	3.67 dd	3.97 dd	3.68 dd	J(7,7a)	9.2	9.2	9.2
H-5a	4.74 d	4.72 d	4.73 d				
H7	4.83 d	4.83 d	4.83 d	J(4a, 5)	3.0	3.0	3.0
H7a	4.04 d	4.02 d	4.05 d				
H-11	3.54 dd	3.54 dd	3.54 dd	J(5,5a)	3.0	3.0	3.0
H-11a	3.20 dd	3.15 dd	3.20 dd				
H-14a	3.97 d	3.97 d	3.97 d	J(11.11a)	2.0	2.0	2.0
H-15	6.10 dd	6.37 dd	6.13 dd				

On the other hand, **4 a** showed an $[M^+]$ ion at m/z 313 corresponding to the molecular formula of $C_{13}H_{12}NO_6CI_2$, which corresponds to that of monomer (**2 a**). The ir and ¹H-nmr spectra exhibited the presence of oxime group and dihydrobenzofuran molety in **4a**. The structure of **4a** was finally confirmed by X-ray analysis. A perspective drawing of the molecule of **4a** is

Figure 2 A Perspective Drawing of 4a

Table 2Yields and Physical Properties of
the Compounds 2, 3, 4, 5, 6, and 7

Compd.	R	Yie	əld (%)	mp(°C)
		Method I	Method	1 1 1
20	<u> </u>	25	· ·	rof 9
28 05		35		101.9
20	Br	33		rer. 9
2c	F	32		ref. 9
3a	CI	23	78	245–246
3b	Br	22	75	225-226
3c	F	26	72	273–276
4a	CI	21		139-140
4b	Br	24	<u> </u>	147-149
5a	CI	4	43	118–119
5b	Br	4	42	131-133
5c	F	!	53	147 -1 49
6a	CI		30	146-148
6b	Br	:	28	syrup
6c	F		30	143–145
7a	CI	l	67	syrup
7b	Br	(65	syrup
7c	F	(61	133–135

illustrated in Figure 2. The molecule consists of a 2,3-dihydrobenzofuran ring with an oxime group which is svn to the 2.3-dihydrobenzofuran molety, so that the molecule has the E configuration. This procedure was applied to 1b (R=Br)⁸ to afford **2b** (33%), **3b** (22%), and 4b (24 %), however, in the case of 1c (R=F),* only 2c (32%) and 3c (26%) were isolated. (Table 2, Method I) We also examined the synthesis of 3 directly from 2. Thus, a solution of 2 in toluene was refluxed overnight to afford 3 in high vields. (Table 2, Method II) These results clearly show that the one-pot formation of 3 from 1 proceeds via the initial ring transformation into 2 via intermediate (B)¹¹ followed by the Lewis acid (TICI₄) promoted Diels-Alder dimerization⁶ in situ to give 3. Formation of 4 can be postulated to occur via formation of 3H-indole-1-oxide

intermediate (**A**).^{3c, 4} Then, nucleophilic attack of negatively charged oxygen at the site *meta* to the substituent R in **A** causes formation of the furan ring and the subsequent cleavage of the C-N bond with protonation gives **4**. (Scheme 2) To an application of the dimerization, we examined Diels-Alder cycloaddition of **2** with acetylenic dienophiles such as ethyl propiolate and dimethyl acetylenedicarboxylate. The results are shown in Table 2. Both of dienophiles resulted to give the corresponding cycloadducts, thus ethyl propiolate afforded a pair of positional isomers (**5** and **6**), while dimethyl acetylenedicarboxylate gave **7**. (Scheme 3)

The structures of the isomers 5 and 6 were distinguished on the basis of ¹H-nmr analysis. The ¹H-nmr spectral data of 5 were closely compatible with those of 6, except for the coupling pattern of the H-6 and H-9 protons. Thus, in the ¹H-nmr spectrum of 5, H-6 was not coupled with H-11 and H-9 was coupled with two olefinic protons (H-8 and H-10), while in that of 6, H-6 and H-9 were coupled with H-11 and H-8, respectively. (Table 3) These results clearly show that the ester group is attached at C-11 for isomer (5), while at C-10 for isomer (6). This deduction was proved by X-ray analyses of 5a and 6c.

Perspective drawings of the molecules of **5a** and **6c** are illustrated in Figures 3 and 4. The stereochemistry of **5 a** and **6 c** are assigned to be *anti* π -facial diastereomer⁶ with respect to

Scheme 3

Table 3.	Selected	¹ H–Nmr	Chemical	Shifts	and	Coupling	Constants	for
	Compounds	5, 6,	and 7					

	÷	Chemic	al Shift	(ppm)	/ Cou	pling Co	nstant	(Hz)	
	5a	5b	5c	6a	6b	6C	7a	7b	7c
Н-За	3.89	3.99	4.00	3.99	3.99	3.98	3.99	3.99	4.01
H–4	5.03	5.02	5.07	5.02	5.02	5.04	5.03	5.02	5.06
H-5a	4.67	4.73	4.68	4.72	4.72	4.74	4.89	4.88	4.92
H6	4.45	4.62	4.29	4.05	4.18	4.09	4.31	4.43	4.18
H-8	6.14	6.38	5.42	6.23	6.48	5.41	6.26	6.49	5.55
H–9	3.81	3.84	3.64	4.23	4.25	4.45	4.09	4.10	3.96
H–10	7.46	7.44	7.53						
H-11				7.38	7.38	7.53		_	
J(3a, 4)	9.0	8.5	9.0	8.5	8.5	9.0	9.0	9.0	9.0
J(5a,6)	4.0	3.8	3.8	4.0	3.5	3.6	4.0	4.0	3.8
J(6,11)				6.0	6.5	6.0			·
J(8,9)	6.0	6.0	6.5	6.8	7.0	6.9	7.0	7.0	7.0
J (9, 10)	6.0	6.0	6.0			 -			

1056

the furan ring C(4)-C(2)-C(3)-C(5)-O(2), which is similar to the stereochemistry of **3**. Therefore, the addition of the dienophile forming C(10)-C(11) proceeds *via anti* to the diene forming cyclohexene ring C(5)-C(3)-C(6)-C(7)-C(8)-C(9).

In conclusion, this work emphasizes a novel facet of the 3a,4-dihydro-5a,H-benzofuro[3,3a-d]isoxazole system which can act as a diene in Diels-Alder cycloaddition process to give novel bridged heterocyclic ring systems.

EXPERIMENTAL

Melting points were measured with a Yanaco MP apparatus and are uncorrected. Spectral data were recorded on the following instruments : Jasco IR-810(ir), JMS DX-300(ms), and Varian EM-390, XL-400, and VXR-300(¹H-nmr), JEOL PFT-100 and Varian XL-400(¹³C-nmr). Tetramethylsilane was used as an internal standard for nmr measurement in chloroform-d₃. Column chromatography was carried out on a silica gel(Kanto Kagaku Co. ; up to 100 mesh) column.

Tetramethyl 4,16-Dichloro-1,2a,4a,5,5a,7,7a,11,11a,14a-decahydro-5,11ethenoisoxazolo[5''',4''':3',4']furo[2'',3'':7',8']naphtho[2',3':4,5]furo[3,4-*d*]isoxazole-1,7,8,14-tetracarboxylate (3a) :

<Method I > To a solution of 313 mg (1.0 mmol) of 3,5-bis(methoxycarbonyl)-4-chlorophenyl-2-isoxazoline-2-oxide (**1a**) in 10 ml of dichloromethane was added 0.45 ml (4.0 mmol) of titanium tetrachloride at 0 °C and the reaction mixture was stirred at room temperature for 15 h. After the reaction mixture was quenched with 10% aqueous sodium carbonate and extracted with chloroform, separation by column chromatography on silica gel (hexane - ethyl acetate, 3:1) afforded **3a** (72 mg, 23%), dimethyl 7-chloro-3a,4-dihydro-5a,*H*-benzofuro[3,3a-*d*]isoxazole-3,4-dicarboxylate (**2 a**)⁹ (108.5 mg, 35%), and (*E*)-6-chloro-2-methoxycarbonyl-3-methoxalyl-2,3-dihydrobenzofuran oxime (**4a**) (66 mg, 21%). **3 a :** mp 245-246°C (chloroform-methanol). Ir v (KBr)cm⁻¹ : 1750(COOCH₃), 1620(C=N). Ms(m/z) : 626(M⁺), 628(M⁺+2). ¹H Nmr (CDCl₃, δ , ppm) : 2.98(dd, J_{4a,11a}=9.0 Hz, J_{11,15}=7.0 Hz, 1H, H-4a), 3.20(dd, J_{4a,11a}=9.0 Hz, J_{11,11a}=2.0 Hz, J_{11,15}=7.0 Hz, 1H, H-11), 3.65(s, 3H, CH₃), 3.67(dd, J_{4a,5}=3.0 Hz, J_{5,5a}=3.0 Hz, 1H, H-5), 3.69(s, 3H, CH₃), 3.97(d, J_{1,14a}=7.0 Hz, 1H, H-14a), 4.04(d, J_{7,7a}=9.2 Hz, 1H, H-7a), 4.54(d, J_{1,14a}=7.0 Hz, 1H, H-2a), 4.74(d, J_{5,5a}=3.0 Hz, 1H, H-7a), 4.54(d, J_{1,15}=7.0 Hz, 1H, H-1), 5.87(d, J_{2a,3}=2.3 Hz, 1H, H-3), 6.10(dd, J_{11,15}=7.0 Hz, 1H, H-5a), 4.83(d, J_{7,7a}=9.2 Hz, 1H, H-7), 5.87(d, J_{2a,3}=2.3 Hz, 1H, H-3), 6.10(dd, J_{11,15}=7.0 Hz, 1H, H-5a), 4.83(d, J_{7,7a}=9.2 Hz, 1H, H-7), 5.87(d, J_{2a,3}=2.3 Hz, 1H, H-3), 6.10(dd, J_{11,15}=7.0 Hz, 1H, H-5a), 4.54(Hz, 1H, Hz), 4.54(Hz, C), 11 20

 $J_{5,15}$ =2.5 Hz, 1H, H-15). Anal. Calcd for $C_{26}H_{24}N_2O_{12}Cl_2$: C, 49.78; H, 3.86; N, 4.47; Cl, 11.30. Found : C, 49.52; H, 4.07; N, 4.26; Cl, 11.86.

4 a : mp 139-140°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹: 3300(N-OH), 1735(COOCH₃), 1610(C=N). Ms(m/z) : 313(M⁺), 315(M⁺+2). ¹H Nmr (CDCl₃, δ , ppm) : 3.73(s, 1H, CH₃), 3.77(s, 1H, CH₃), 5.42(d, J_{2,3}=11.0 Hz, 1H, H-3), 5.46(d, J_{2,3}=11.0 Hz, 1H, H-2), 6.90(d, J_{4,5}=11.0 Hz, 1H, H-4), 7.04(dd, J_{4,5}=11.0 Hz, J_{5,7}=2.0 Hz, 1H, H-5), 7.10(d, J_{5,7}=2.0 Hz, 1H, H-7). *Anal.* Calcd for C₁₃H₁₂NO₆Cl : C, 49.78; H, 3.86; N, 4.47; Cl, 11.30. Found : C, 49.66; H, 4.00; N, 4.31, Cl, 11.55. <Method II > A solution of 500 mg of 2a (1.6 mmoł) in 5 ml of toluene was refluxed for 15 h. The reaction mixture was concentrated to dryness and purified by column chromatography on silica gel (hexane - ethyl acetate, 1:1) to afford 390 mg of 3a (78%).

Tetramethyl 4,16-Dibromo-1,2a,4a,5,5a,7,7a,11,11a,14a-decahydro-5,11ethenoisoxazolo[5^{''',4''':3',4']furo[2'',3'':7',8']naphtho[2',3':4,5]furo[3,4-*d*]isoxazole-1,7,8,14-tetracarboxylate (3b) : Yield : 22% (Method I), 75% (Method II). mp 225-226°C (chloroform-methanol). Ir v (KBr)cm⁻¹: 1755(COOCH₃), 1620(C=N). Ms(m/z) : 714(M⁺), 716(M⁺+2). ¹H Nmr (CDCl₃, δ , ppm) : 3.08(dd, J_{4a,11a}=9.0 Hz, J_{4a,5}=3.0 Hz, 1H, H-4a), 3.15(dd, J_{4a,11a}=9.0 Hz, J_{11,11a}=2.0 Hz, 1H, H-11a), 3.54(dd, J_{11,11a}=2.0 Hz, J_{11,15}=7.0 Hz, 1H, H-11), 3.66(s, 3H, CH₃), 3.70(s, 3H, CH₃), 3.84(s, 3H, CH₃), 3.89(s, 3H, CH₃), 3.97(dd, J_{4a,5}=3.0 Hz, J_{5,5a}=3.0 Hz, 1H, H-5), 3.97(d, J_{1,14a}=7.0 Hz, 1H, H-14a), 4.02(d, J_{7,7a}=9.2 Hz, 1H, H-7a), 4.49(d, J_{1,14a}=7.0 Hz, 1H, H-1), 4.56(d, J_{2a,3}=2.3 Hz, 1H, H-2a), 4.72(d, J_{5,5a}=3.0 Hz, 1H, H-5a), 4.83(d, J_{7,7a}=9.2 Hz, 1H, H-7), 6.09(d, J_{2a,3}=2.3 Hz, 1H, H-3), 6.37(dd, J_{11,15}=7.0 Hz, J_{5,15}=2.5 Hz, 1H, H-15). *Anal.* Calcd for C₂₆H₂₄N₂O₁₂Br₂ : C, 43.60; H, 3.38; N, 3.91; Br, 22.31. Found : C, 43.89; H, 3.50; N, 3.85; Br, 22.43.}

(*E*)-6-Bromo-2-methoxycarbonyl-3-methoxalyl-2,3-dihydrobenzofuran Oxime (4b): Yield : 24% (Method I). mp 147-149°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹: 3300(N-OH), 1735(COOCH₃), 1610(C=N). Ms(m/z) : 357(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 3.74(s, 1H, CH₃), 3.76(s, 1H, CH₃), 5.43(d, J_{2,3}=11.0 Hz, 1H, H-3), 5.49(d, J_{2,3}=11.0 Hz, 1H, H-2), 6.90(d, J_{4,5}=11.0 Hz, 1H, H-4), 7.02(dd, J_{4,5}=11.0 Hz, J_{5,7}=2.0 Hz, 1H, H-5), 7.09(d, J_{5,7}=2.0 Hz, 1H, H-7). *Anal.* Calcd for C₁₃H₁₂NO₆Br : C, 43.60; H, 3.38; N, 3.91; Br, 22.31. Found : C, 43.43; H, 3.29; N, 3.89; Br, 22.59.

Tetramethyl 4,16-Difluoro-1,2a,4a,5,5a,7,7a,11,11a,14a-decahydro-5,11ethenoisoxazolo[5''',4''':3',4']furo[2'',3'':7',8']naphtho[2',3':4,5]furo[3,4-d]isoxazole-1,7,8,14-tetracarboxylate (3c) : Yield : 26% (Method I), 72% (Method II). mp 273-276°C (chloroform-methanol). lr v (KBr)cm⁻¹: 1750(COOCH₃), 1620(C=N). Ms(m/z): 594(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 2.98(dd, J_{4a,11a}=9.0 Hz, J_{4a,5}=3.0 Hz, 1H, H-4a), 3.20(dd, J_{4a,11a}=9.0 Hz, J_{11,11a}=2.0 Hz, 1H, H-11a), 3.54(dd, J_{11,11a}=2.0 Hz, J_{11,15}=7.0 Hz, 1H, H-11), 3.63(s, 3H, CH₃), 3.68(dd, J_{4a,5}=3.0 Hz, J_{5,5a}=3.0 Hz, 1H, H-5), 3.69(s, 3H, CH₃), 3.84(s, 3H, CH₃), 3.88(s, 3H, CH₃), 3.97(d, J_{1,14a}=7.0 Hz, 1H, H-14a), 4.05(d, J_{7,7a}=9.2 Hz, 1H, H-7a), 4.54(d, J_{1,14a}=7.0 Hz, 1H, H-1), 4.56(d, J_{2a,3}=2.3 Hz, 1H, H-2a), 4.73(d, J_{5,5a}=3.0 Hz, 1H, H-5a), 4.83(d, J_{7,7a}=9.2 Hz, 1H, H-7), 5.88(d, J_{2a,3}=2.3 Hz, 1H, H-3), 6.13(dd, J_{11,15}=7.0 Hz, J_{5,15}=2.5 Hz, 1H, H-15). Anal. Calcd for C₂₆H₂₄N₂O₁₂F₂: C, 52.25; H, 3.23; N, 4.71. Found : C, 52.16; H, 3.33; N, 4.59.

Diels-Alder Cycloaddition of 2 with Ethyl Propiolate

----- General Procedure

A mixture of 0.64 mmol of **2** and 2.27 ml (22.4 mmol) of ethyl propiolate was refluxed for 21 h. After ethyl propiolate was removed under reduced pressure, the residue was purified by column chromatography on silica gel (hexane - ethyl acetate, 3:1) to afford **5** and **6**.

Dimethyl 7-Chloro-11-ethoxycarbonyl-3a,4,6,9-tetrahydro-5a,H-6,9-

ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (5a) : Yield : 43%. mp 118-119°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹ : 1745(COOCH₃), 1705(COOCH₃), 1580(C=N). Ms(m/z) : 412(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 1.33(t, J=7.0 Hz, 3H, CH₂CH₃), 3.63(s, 3H, COOCH₃), 3.81(dd, J_{8,9}=6.0 Hz, J_{9,10}=6.0 Hz, 1H, H-9), 3.84(s, 3H, COOCH₃), 3.89 (d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.23(q, J=7.0 Hz, 2H, CH₂CH₃), 4.45(d, J_{5a,6}=4.0 Hz, 1H, H-6), 4.67(d, J_{5a,6}=4.0 Hz, 1H, H-5a), 5.03(d, J_{3a,4}=9.0 Hz, 1H, H-4), 6.14(d, J_{8,9}=6.0 Hz, 1H, H-8), 7.46(d, J_{9,10}=6.0 Hz, 1H, H-10). *Anal.* Calcd for C₁₆H₁₈NO₈C1 : C, 52.49; H, 4.41; N, 3.40; Cl, 8.63. Found : C, 52.41; H, 4.38; N, 3.29; Cl, 8.60.

Dimethyl 7-Chloro-10-ethoxycarbonyl-3a,4,6,9-tetrahydro-5a,H-6,9ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (6a) : Yield : 30%. mp 146-148°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹: 1715(COOCH₃), 1715(COOCH₃), 1580(C=N). Ms(m/z): 412(M⁺). ⁻¹H Nmr (CDCI₃, δ , ppm): 1.29(t, J=7.0 Hz, 3H, CH₂CH₃), 3.65(s, 3H, COOCH₃), 3.87(s, 3H, COOCH₃), 3.99(d, J_{38,4}=8.5 Hz, 1H, H-3a), 4.05(dd, J_{58,6}=4.0 Hz, J_{6,11}=6.0 Hz, 1H, H-6), 4.22(q, J=7.0 Hz, 2H, CH₂CH₃), 4.23(d, J_{8,9}=6.8 Hz, 1H, H-9), 4.72(d, J_{58,6}=4.0 Hz, 1H, H-5a), 5.02(d, J_{38,4}=8.5 Hz, 1H, H-4), 6.23(d, J_{8,9}=6.8 Hz, 1H, H-8), 7.38(d, J_{6,11}=6.0 Hz, 1H, H-11). *Anal*. Calcd for C₁₈H₁₈NO₈Cl : C, 52.49; H, 4.41; N, 3.40; Cl, 8.63. Found : C, 52.43; H, 4.44; N, 3.22; Cl, 8.43.

Dimethyl 7-Bromo-11-ethoxycarbonyl-3a,4,6,9-tetrahydro-5a, H-6,9-

ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (5b) : Yield : 42%. mp 131-133°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹ : 1770(COOCH₃), 1720(COOCH₃), 1580(C=N). Ms(m/z) : 456(M⁺), 458(M⁺+2). ¹H Nmr (CDCl₃, δ , ppm) : 1.32(t, J=7.0 Hz, 3H, CH₂CH₃), 3.66(s, 3H, COOCH₃), 3.84(dd, J_{8,9}=6.0 Hz, J_{9,10}=6.0 Hz, 1H, H-9), 3.88(s, 3H, COOCH₃), 3.99(d, J_{38,4}=8.5 Hz, 1H, H-3a), 4.25(q, J=7.0 Hz, 2H, CH₂CH₃), 4.62(d, J_{58,6}=3.8 Hz, 1H, H-6), 4.73(d, J_{58,6}=3.8 Hz, 1H, H-5a), 5.02(d, J_{38,4}=8.5 Hz, 1H, H-4), 6.38(d, J_{8,9}=6.0 Hz, 1H, H-8), 7.44(d, J_{9,10}=6.0 Hz, 1H, H-10). *Anal.* Calcd for C₁₈H₁₈NO₈Br : C, 47.38; H, 3.98; N, 3.07; Br, 17.51. Found : C, 47.28; H, 4.00; N, 3.06; Br, 17.27.

Dimethyl 7-Bromo-10-ethoxycarbonyl-3a,4,6,9-tetrahydro-5a,H-6,9-

ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (6b) : Yield : 28%.

A syrup. Ir v (KBr)cm⁻¹ : 1760(COOCH₃), 1720(COOCH₃), 1590(C=N). Ms(m/z) : 456(M⁺), 458(M⁺+2). ¹H Nmr (CDCI₃, δ , ppm) : 1.29(t, J=7.0 Hz, 3H, CH₂CH₃), 3.66(s, 3H, COOCH₃), 3.88(s, 3H, COOCH₃), 3.99(d, J_{3a,4}=8.5 Hz, 1H, H-3a), 4.18(dd, J_{5a,6}=3.5 Hz, J_{6,11}=6.5 Hz, 1H, H-6), 4.22(q, J=7.0 Hz, 2H, CH₂CH₃), 4.25(d, J_{8,8}=7.0 Hz, 1H, H-9), 4.72(d, J_{5a,6}=3.5 Hz, 1H, H-5a), 5.02(d, J_{3a,4}=8.5 Hz, 1H, H-4), 6.48(d, J_{8,9}=7.0 Hz, 1H, H-8), 7.38(d, J_{6,11}=6.5 Hz, 1H, H-11). *Anal.* Calcd for C₁₈H₁₈NO₈Br : C, 47.38; H, 3.98; N, 3.07; Br, 17.51. Found : C, 47.60; H, 4.18; N, 3.00; Br, 17.19.

Dimethyl 11-Ethoxycarbonyl-7-fluoro-3a,4,6,9-tetrahydro-5aH-6,9-

ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (5c) : Yield : 53%. mp 147-149°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹ : 1745(COOCH₃), 1730(COOCH₃), 1580(C=N). Ms(m/z) : 395(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 1.30(t, J=7.0 Hz, 3H, CH₂CH₃), 3.63(s, 3H, COOCH₃), 3.64(dd, J_{8,9}=6.5 Hz, J_{9,10}=6.0 Hz, 1H, H-9), 3.85(s, 3H, COOCH₃), 4.00(d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.22(q, J=7.0 Hz, 2H, CH₂CH₃), 4.29(d, J_{5a,6}=3.8 Hz, 1H, H-6), 4.68(d, J_{5a,6}=3.8 Hz, 1H, H-5a), 5.07(d, J_{3a,4}=9.0 Hz, 1H, H-4), 5.42(d, J_{8,9}=6.5 Hz, 1H, H-8), 7.53(d, J_{9,10}=6.0 Hz, 1H, H-10). *Anal.* Calcd for C₁₈H₁₈NO₈F : C, 54.66; H, 4.59; N, 3.54. Found : C, 54.77; H, 4.60; N, 3.66.

Dimethyl 10-Ethoxycarbonyl-7-fluoro-3a,4,6,9-tetrahydro-5a,*H-*6,9-

ethenobenzofuro[3,3a-d]isoxazole-3,4-dicarboxylate (6c) : Yield : 30%. mp 143-145°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹ : 1745(COOCH₃), 1715(COOCH₃), 1580(C=N). Ms(m/z) : 395(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 1.29(t, J=7.0 Hz, 3H, CH₂CH₃), 3.63 (s, 3H, COOCH₃), 3.87(s, 3H, COOCH₃), 3.98(d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.09(dd, J_{5a,6}=3.6 Hz, J_{6,11}=6.0 Hz, 1H, H-6), 4.23(q, J=7.0 Hz, 2H, CH₂CH₃), 4.45(d, J_{8,9}=6.9 Hz, 1H, H-9), 4.74(d, J_{5a,6}=3.6 Hz, 1H, H-5a), 5.04(d, J_{3a,4}=9.0 Hz, 1H, H-4), 5.41(d, J_{8,9}=6.9 Hz, 1H, H-8), 7.53(d, J_{6,11}=6.0 Hz, 1H, H-11). Anal. Calcd for C₁₈H₁₈NO₈F : C, 54.66; H, 4.59; N, 3.54. Found : C, 54.73; H, 4.71; N, 3.69.

Diels-Alder Cycloaddition of 2 with Dimethyl Acetylenedicarboxylate

A mixture of 0.48 mmol of 2 and 2.06 ml (16.7 mmol) of dimethyl acetylenedicarboxylate was refluxed for 2 h. After dimethyl acetylenedicarboxylate was removed under reduced pressure, the residue was purified by column chromatography on silica gel (hexane - ethyl acetate, 3:1) to afford **7**.

Dimethyl 7-Chloro-10,11-bis(methoxycarbonyl)-3a,4,6,9-tetrahydro-5a,H-6,9-

ethenobenzofuro[3,3a-*d*]isoxazole-3,4-dicarboxylate (7a) : Yield : 67%. A syrup. Ir v (KBr)cm⁻¹: 1730(COOCH₃), 1580(C=N). Ms(m/z) : 456(M⁺). ¹H Nmr (CDCl₃, δ , ppm) : 3.67(s, 3H, COOCH₃), 3.81(s, 3H, COOCH₃), 3.84(s, 3H, COOCH₃), 3.89(s, 3H, COOCH₃), 3.99(d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.09(d, J_{8,9}=7.0 Hz, 1H, H-9), 4.31(d, J_{5a,6}=4.0 Hz, 1H, H-6), 4.89(d, J_{5a,6}=4.0 Hz, 1H, H-5a), 5.03(d, J_{aa,4}=9.0 Hz, 1H, H-4), 6.26(d, J_{8,9}=7.0 Hz, 1H, H-8). *Anal.* Calcd for C₁₉H₁₈NO₁₀C1 : C, 50.01; H, 3.98; N, 3.07. Found : C, 50.21; H, 3.89; N, 2.99. Dimethyl 7-Bromo-10,11-bis(methoxycarbonyl)-3a,4,6,9-tetrahydro-5a,*H*-6,9ethenobenzofuro[3,3a-*d*]isoxazole-3,4-dicarboxylate (7b) : Yield : 65%. A syrup. Ir v (KBr)cm⁻¹: 1730(COOCH₃), 1580(C=N). Ms(m/z) : 500(M⁺), 502(M⁺+2). ¹H Nmr (CDCl₃, δ , ppm) : 3.66(s, 3H, COOCH₃), 3.80(s, 3H, COOCH₃), 3.84(s, 3H, COOCH₃), 3.88(s, 3H, COOCH₃), 3.99(d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.10(d, J_{8,9}=7.0 Hz, 1H, H-9), 4.43(d, J_{5a,6}=4.0 Hz, 1H, H-6), 4.88(d, J_{5a,6}=4.0 Hz, 1H, H-5a), 5.02(d, J_{3a,4}=9.0 Hz, 1H, H-4), 6.49(d, J_{8,9}=7.0 Hz, 1H, H-8). *Anal.* Calcd for C₁₉H₁₈NO₁₀Br : C, 45.58; H, 3.63; N, 2.80. Found : C, 45.33; H, 3.60; N, 3.01.

Dimethyl 7-Fluoro-10,11-bis(methoxycarbonyl)-3a,4,6,9-tetrahydro-5a,*H*-6,9ethenobenzofuro[3,3a-*d*]isoxazole-3,4-dicarboxylate (7c) : Yield : 61%. mp 133-135°C (ethyl acetate-hexane). Ir v (KBr)cm⁻¹ : 1730(COOCH₃), 1580(C=N). Ms(m/z) : 440(M⁺). ⁻¹H Nmr (CDCl₃, δ , ppm) : 3.66(s, 3H, COOCH₃), 3.80(s, 3H, COOCH₃), 3.83(s, 3H, COOCH₃), 3.89(s, 3H, COOCH₃), 3.96(d, J_{8,9}=7.0 Hz, 1H, H-9), 4.01(d, J_{3a,4}=9.0 Hz, 1H, H-3a), 4.18(d, J_{5a,6}=3.8 Hz, 1H, H-6), 4.92(d, J_{5a,6}=3.8 Hz, 1H, H-5a), 5.06(d, J_{3a,4}=9.0 Hz, 1H, H-4), 5.55(d, J_{8,9}=7.0 Hz, 1H, H-8). *Anal*. Calcd for C₁₉H₁₈NO₁₀F : C, 51.94; H, 4.13; N, 3.19; F, 4.32. Found : C, 51.87; H, 4.17; N, 3.09; F, 4.03.

X-Ray Analyses of 3a, 4a, 5a, and 6c

X-Ray structure analyses of **3a**, **4a**, **5a**, and **6c** were carried out on a Rigaku AFC-5R diffractometer, and the cell parameters and the intensity data were measured with graphite

monochromated Cu K α (λ =1.54179 Å) radiation at 23°C. The crystal data are summarized in Table 4. The structures were solved by the direct method using the program MITHRIL (C. J. Gilmore : MITHRIL, an integrated direct method computer program, *J. Appl. Cryst.*, 1984, **17**, 42, Univ. of Glasgow, Scotland). The parameters of non-hydrogen atoms were refined by the full-matrix least-squares method with anisotropic temperature factors. The hydrogen atoms were located from a difference Fourier synthesis, and refined only the temperature factors isotropically. The positional parameters for **3a**, **4a**, **5a**, and **6c** are listed in Tables 9, 10, 11 and 12, respectively. In the case of **3a**, a pair of enantiomer was solved as a unit. The positional parameters for both of them are listed in Table 5, in which Cl(3), Cl(4), O(13)-O(24), N(3), N(4), and C(27)-C(52) are another pairs to Cl(1), Cl(2), O(1)-O(12), N(1), N(2), and C(1)-C(26), respectively.

		· · · · · · · · · · · · · · · · · · ·		
	3a	4a	5a	6c
Formula	C ₂₆ H ₂₄ N ₂ CI ₂ O ₁₂	C ₁₃ H ₁₂ NCIO ₆	C ₁₈ H ₁₈ NCIO ₈	C ₁₈ H ₁₈ NFO ₈
F _w	627.39	313.69	411.80	395.34
Crystal dimensions (mm)	0.2×0.2×0.2	0.1×0.2×0.2	0.3×0.1×0.1	0.2×0.1×0.4
Crystal system	triclinic	orthorhombic	monoclinic	monoclinic
Space group	<i>P</i> 1	<i>P</i> bca	<i>C</i> 2/c	<i>P</i> 2,/n
Lattice parameters				
a/Å	13.174 (4)	28.622 (4)	32.561 (9)	15.790 (5)
b/Å	19.400 (7)	12.767 (4)	6.860 (5)	6.811 (6)
c/Å	10.751 (3)	7.565 (3)	19.688 (6)	18.513 (5)
α/deg	94.66 (3)			
β/deg	90.70 (2)		120.13 (2)	111.31 (2)
γ/deg	80.30 (3)			
V/Å ³	2699 (2)	2764 (2)	3803 (6)	1855 (2)
Ζ	4	8	8	4
Dc/gcm ⁻³	1.544	1.507	1.438	1.416
$\mu(Cu K\alpha)/cm^{-1}$	28.02	27.36	22.01	9.79
$2\theta_{max}/deg$	139.9	139.8	139.9	140.0
No. of Observation	3744	1418	2001	1216
No. of Variables	757	202	253	253
R (Rw)	0.055 (0.042)	0.067 (0.065)	0.065 (0.063)	0.077 (0.066)

Table 4 Crystallographic Data for Compounds (3a, 4a, 5a, and 6c)

Table 5Positional Parameters and Their Estimated Standard
Deviations for **3a**

Atom	x	y	Ζ	B _{eq}
<u>ci/1</u>)	0.0000(0)	0.0721/1)	1.0692/2)	4.2(1)
	0.9222(2)	0.0721(1)	1.0002(2)	4.2(1)
	0.0723(2) 0.4213(2)	0.0410(1)	1.1372(2)	5.3(1) 5.1(1)
	0.4213(2) 0.1739(2)	0.0021(1)	0.3330(2) 0.1780(2)	4 0(1)
0(1)	0.1730(2) 0.6780(4)	0.3496(3)	1.0606(5)	3 3 (3)
0(2)	0.0700(4) 0.8840(4)	0.3430(3) 0.2531(3)	1 1933(5)	3.5(3)
0(3)	0.0040(4) 0.4798(4)	0.2331(3)	0 8149(4)	3.4(3)
0(4)	0.5535(4)	0.2271(3)	0.7878(4)	3 1 (3)
0(5)	0.8121(4)	0.4977(3)	0.9104(6)	5.4(4)
0(6)	0.9571(5)	0.4196(3)	0.9067(6)	6.1(4)
0(7)	0.9247(4)	0.3598(3)	1,3506(3)	4.5(4)
0(8)	0.9862(5)	0.4341(3)	1,2017(5)	5.3(4)
0(9)	0.2333(4)	0.1311(3)	0.9444(5)	4.4(4)
0(10)	0.2776(4)	0.1333(3)	0.7441(5)	5.1(4)
0(11)	0.2651(4)	0.3375(3)	0.7693(5)	4.6(4)
0(12)	0.2335(4)	0.2899(3)	0.9468(5)	5.1(4)
0(13)	0.1826(4)	0.3445(3)	0.3896(5)	3.2(3)
0(14)	0.3913(4)	0.2462(3)	0.2386(5)	3.9(3)
0(15)	- 0.0151(4)	0.0914(3)	0.5728(5)	3.8(3)
0(16)	0.0586(4)	0.2259(3)	0.6323(4)	3.3(3)
0(17)	0.3122(4)	0.4938(3)	0.5883(6)	5.7(4)
0(18)	0.4567(5)	0.4173(3)	0.5765(6)	6.0(4)
0(19)	0.4233(4)	0.3546(3)	0.1151(5)	4.6(4)
0(20)	0.4003(5)	0.4289(3)	0.2842(5)	5.8(4)
0(21)	- 0.2661(5)	0.1252(4)	0.4588(5)	7.2(5)
0(22)	- 0.2148(4)	0.1367(3)	0.6556(5)	5.6(4)
0(23)	- 0.2290(4)	0.3367(3)	0.6759(5)	5.0(4)
0(24)	- 0.2651(5)	0.2866(4)	0.4879(6)	5.9(4)
N(1)	0.7126(5)	0.4063(3)	1.0098(6)	3.5(4)
N(2)	0.4568(5)	0.2680(3)	0.7697(6)	3.5(4)
N(3)	0.2159(5)	0.4018(3)	0.4583(6)	3.4(4)
N(4)	-0.0371(5)	0.2675(3)	0.6585(6)	3.7(4)
C(1)	0.8088(6)	0.3889(4)	0.9890(7)	3.0(5)
C(2)	0.8549(6)	0.3171(4)	1.0211(7)	2.9(5)
C(3)	0.7579(6)	0.28/2(4)	1.045/(/)	2.8(5)
C(4)	0.9166(6)	0.3102(4)	1.1453(8)	3.2(5)
	0.778(6)	0.2528(4)	1.1/01(7)	2./(4)
U(b)	0./253(6)	0.2348(4)	0.9455(6)	2.5(4)
	0.8095(6)	0.1/13(4)	0.9366(7)	2.8(5)
C(8)	0.8281(6)	0.1438(4)	1.0429(8)	2.6(4)
U(9)	0.7623(6)	0.1/6/(4)	1.1525(6)	2.5(4)
U(10)	0.6228(6)	0.21/9(4)	0.9974(7)	2.0(4)

Table	5	continued
Idule	0	COLLINGE

Atom	x	У	Z	B _{eq}
	0.0400(0)	0 1717(4)	1 1102(0)	2 4 (4)
	0.6483(6)	0.1717(4)	1.1103(0)	2,4(4)
C(12)	0.63/6(6)	0.0972(4)	1.0/5/(/)	2.0(4)
	0.0110(0)	0.0091(4)	0.9000(0)	3 + 1(3) 2 + 0(E)
C(14)	0.5776(6)	0.1104(4)	0.8600(7)	3.0(5)
0(15)	0.5524(6)	0.1884(4)	0.9006(7)	2.4(4)
	0.4075(6)	0.12/6(4)	0.9052(7)	2.0(4)
C(17)	0.43/4(5)	0.2005(4)	0.9377(6)	2.4(4)
C(18)	0.3950(6)	0.2543(4)	0.8512(7)	3.1(5)
C(19)	U.85/5(/)	0.4371(5)	0.9288(8)	3.9(0)
C(20)	0.8631(7)	0.5463(5)	0.850(1)	7.1(7) 2.0(F)
C(21)	0.9098(7)	0.3/56(5)	1.2326(9)	3.6(5)
C(22)	0.9326(7)	0.418/(4)		5.2(6)
C(23)	0.29/1(7)	0.1304(4)	0.8499(8)	3.0(5)
U(24)	0.1258(6)	0.1403(6)	0.9068(8)	0.2(7)
C(25)	0.2861(7)	0.2968(5)	0.860(1)	3.8(5)
C(26)	0.1627(7)	0.3803(5)	0.7/80(9)	0.1(0) 0.0(F)
C(27)	0.3110(6)	0.3852(4)	0.4806(7)	2.8(5)
C(28)	0.3591(6)	0.3133(4)	0.4318(7)	2.7(4)
C(29)	0.2630(6)	0.2832(4)	0.3928(7)	2,7(4)
C(30)	0.4212(6)	0.304/(4)	0.3078(7)	3.0(5)
	0.2835(6)	0.245/(4)	0.2030(7)	3.1(3)
C(32)	0.2280(6)	0.2318(4)	0.4813(6)	2.7(4)
U(33)	0.3117(6)	0.1682(4)	0.4809(7)	3.0(5)
C(34)	0.3325(6)	0.13/5(4)	0.3692(8)	3.1(5)
C(35)	0.2684(6)	0.1686(4)	0.2635(7)	2.9(5)
C(36)	0.1267(5)	0.2139(4)	0.4201(6)	Z.4(4)
C(37)	0.1565(5)	0.1655(4)	0.2980(6)	2.5(4)
C(38)	0.1423(6)	0.0913(4)	0.3107(7)	3.0(5)
C(39)	0.1135(6)	0.0644(4)	0.4102(8)	3.3(5)
C(40)	0.0811(6)	0.1086(4)	0.5302(7)	3.4(5)
• C(41)	0.0561(6)	0.1855(4)	0.5104(7)	2.5(4)
C(42)	- 0.0901(6)	0.1250(4)	0.4907(7)	3.3(5)
C(43)	-0.0600(5)	0.19/2(4)	0.4749(6)	2.7(4)
	-0.1016(6)	0.2529(4)	0.5740(8)	3.1(5)
C(45)	0.3678(8)	0.4332(5)	0.5526(8)	3.7(0)
C(46)	0.3628(8)	0.5426(5)	0.004(1)	7.4(7) 2.4(5)
C(47)	U.4118(b)	0.3093(5)	0.23/1(9)	3,4(5) E e(e)
U(48)	0.4287(7)	0.4138(5)	0.0412(8)	3.0(0)
U(49)	-0.1969(7)	0.1290(5)	0.5463(9)	4. F(0)
C(50)	-0.3728(7)	0.1359(7)	0.500(1)	10.2(9)
U(51)	-0.2082(7)	0.2930(5)	0.5/2(1)	4.2(0)
C(52)	- 0.3317(7)	0.3/9/(5)	0.0783(9)	7.0(7)

•

Atom	x	у	Z	B _{eq}
	0.54732(7)	0.2041(2)	0.9626(3)	5.0(1)
0(1)	0.3861(1)	0.2080(3)	0.6756(6)	3.2(2)
0(2)	0.2839 (2)	0.0664(4)	0.5421(7)	4.7(3)
0(3)	0.2950(2)	0.2063(4)	0.7166(7)	4.0(3)
0(4)	0.3655(2)	- 0.1553(4)	0.3954(7)	4.1(3)
0(5)	0.3367(2)	- 0.1401(4)	0.9172(6)	3.8(3)
0(6)	0.3482(2)	0.0329(3)	0.8993(6)	3.5(3)
N(1)	0.3530(2)	- 0.1513(4)	0.5714(8)	3.2(3)
C(1)	0.5013(2)	0.1480(6)	0.846(1)	3.2(4)
C(2)	0.5057(3)	0.0471(6)	0.788(1)	3.7(4)
C(3)	0.4695(3)	0.0014(6)	0.691(1)	3.2(4)
C(4)	0.4306(2)	0.0590(5)	0.6566(8)	2.3(3)
C(5)	0.4267(2)	0.1598(5)	0.716(1)	2.6(3)
C(6)	0.4622(3)	0.2065(7)	0.813(1)	3.4(4)
C(7)	0.3863(2)	0.0302(5)	0.5611(9)	2.5(3)
C(8)	0.3601(2)	0.1374(5)	0.561(1)	2.9(3)
C(9)	0.3623(2)	- 0.0633(5)	0.642(1)	2.5(3)
C(10)	0.3475(2)	- 0.0643(6)	0.837(1)	2.9(3)
C(11)	0.3324(3)	0.0430(6)	1.083(1)	5.0(5)
C(12)	0.3088(3)	0.1305(5)	0.606(1)	3.3(4)
C(13)	0.2461(3)	0.2026(7)	0.768(1)	5.8(5)

Table 6Positional Parameters and Their Estimated Standard
Deviations for 4a

Table	7	Positional	Parameters	and	Their	Estimated	Standard
		Deviations	for 5a				

Atom	X	Y	Z	B_{eq}
CI (1)	0.06598(7)	0.8977(3)	0.7634(1)	8.0(1)
0(1)	0.1355(1)	0.7373(6)	1.0919(2)	4.5(2)
0(2)	0.1408(1)	0.5903(6)	0.9295(2)	5.0(2)
0(3)	0.2855(1)	0.8873(6)	1.1541(2)	4.9(2)
0(4)	0.2764(1)	0.7288(6)	1.2458(2)	5.4(2)
0(5)	0.2595(1)	0.4874(6)	1.0737(2)	5.2(2)
0(6)	0.1935(2)	0.3194(7)	1.0426(3)	6.5(2)
0(7)	-0.0396(2)	0.7360(9)	0.9230(3)	8.5(3)
0(8)	-0.0136(1)	0.5003(8)	0.8765(2)	6.3(2)
N(1)	0.1828(2)	0.7415(7)	1.1517(2)	4.0(2)
C(1)	0.2093(2)	0.7829(8)	1,1241(3)	3.5(2)
C(2)	0.1831(2)	0.8086(8)	1.0358(3)	3.5(2)
$\hat{\mathbf{C}}(3)$	0.1324(2)	0 7975(8)	1 0174(3)	3.7(2)
$\tilde{C}(\tilde{4})$	0.1876(2)	0.6358(9)	0 987393)	38(2)
C(5)	0.1084(2)	0.6361(8)	0.9545(3)	3.0(2)
	0.1004(2)	0.0301(0)	0.0040(0)	3.3(2)
	0.1010(2)	0.301(1)	0.3003(3)	4.0(3)
U(7)	0.0965(2)	1.033(1)	0.9100(4)	5.2(3)

Atom	x	У	Z	B _{eq}
C(8)	0.0757(2)	0.892(1)	0.8586(3)	5.1(3)
C(9)	0.0620(2)	0.711(1)	0.8864(3)	4.3(3)
C(10)	0.0531(2)	0.916(1)	0.9747(3)	5.1(3)
C(11)	0.0327(2)	0.755(1)	0.9224(3)	4.6(3)
C(12)	0.2608(2)	0.8059(9)	1.1745(3)	3.9(3)
C(13)	0.3273(2)	0.749(1)	1.3002(3)	6.3(3)
C(14)	0.2129(2)	0.462(1)	1.0365(3)	4.0(3)
C(15)	0.2895(3)	0.341(1)	1.1290(4)	7.1(4)
C(16)	- 0.0103(2)	0.675(1)	0.9088(4)	5.4(3)
C(17)	-0.0532(3)	0.375(1)	0.8605(4)	8.9(5)
C(18)	-0.0889(3)	0.382(1)	0.7807(5)	10.3(5)

Table 7 continued

Table	8	Positional	Parameters	and Their	Estimated	Standard
		Deviations	for 6c			

Atom	X	Y	Z	Ben
		-		
F(1)	0.2979(4)	1.160(1)	0.9389(3)	5.6(3)
0(1)	- 0.0421(4)	0.975(1)	0.7274(4)	4.1(4)
0(2)	0.1199(4)	0.835(1)	0.9020(4)	4.3(4)
0(3)	- 0.1692(5)	1.131(1)	0.9023(4)	4.1(4)
0(4)	- 0.2586(4)	0.965(1)	0.7971(4)	4.8(4)
0(5)	- 0.0784(5)	0.727(1)	0.9426(4)	4.5(4)
0(6)	- 0.0186(6)	0.560(1)	0.8681(5)	5.7(5)
0(7)	0.0086(6)	1.373(2)	0.6166(5)	7.8(6)
0(8)	0.1030(5)	1.169(1)	0.5866(4)	5.2(4)
N(1)	- 0.1251(5)	0.979(1)	0.7394(5)	4.2(5)
C(1)	- 0.1072(6)	1.019(2)	0.8123(6)	3.0(5)
C (2)	- 0.0076(6)	1.049(2)	0.8606(5)	2.6(5)
C(3)	0.0330(6)	1.039(2)	0.7955(6)	3.3(5)
C(4)	0.0394(7)	0.886(2)	0.9171(6)	4.0(6)
C(5)	0.1060(7)	0.880(2)	0.8213(6)	3.3(5)
C(6)	0.0739(7)	1.233(2)	0.7778(6)	3.4(5)
C(7)	0.1540(8)	1.285(2)	0.8500(6)	3.7(6)
C(8)	0.2186(9)	1.151(2)	0.8740(8)	4.7(7)
C(9)	0.1977(7)	0.976(2)	0.8227(7)	4.3(6)
C(10)	0.1074(7)	1.165(2)	0.7128(6)	3.3(6)
C(11)	0.1716(7)	1.028(2)	0.7378(7)	4.3(6)
C(12)	- 0.1831(7)	1.045(2)	0.8423(7)	3.5(6)
C(13)	- 0.3344(7)	0.985(2)	0.8230(7)	7.0(7)
C(14)	- 0.0206(8)	$0.702(2)^{\circ}$	0.9060(7)	4.0(6)
C(15)	- 0.1481(9)	0.581(2)	0.9313(8)	7.0(8)
C(16)	0.0679(8)	1.255(2)	0.6354(7)	4.6(7)
C(17)	0.0676(8)	1.243(2)	0.5071(7)	6.5(8)
C(18)	0.124(1)	1.145(3)	0.4685(7)	10(1)

Bond Lo	ength (A)	Bond Angle	(*)	Torsion Angle (`)	
$\frac{0}{0(1) - N(1)}$ $0(1) - C(3)$ $0(4) - N(2)$ $0(4) - C(15)$ $N(1) - C(1)$ $C(3) - C(5)$ $C(3) - C(6)$ $C(6) - C(7)$ $C(7) - C(8)$ $C(8) - C(9)$ $C(10) - C(11)$	1.409 (7) 1.464 (8) 1.404 (7) 1.480 (8) 1.274 (8) 1.543 (9) 1.530 (9) 1.51 (1) 1.303 (9) 1.504 (9) 1.567 (9)	$\begin{array}{c} 0(1) - N(1) - C(1) \\ N(1) - 0(1) - C(3) \\ 0(4) - N(2) - C(18) \\ N(2) - 0(4) - C(15) \\ C(3) - C(6) - C(7) \\ C(3) - C(6) - C(10) \\ C(5) - C(9) - C(8) \\ C(5) - C(9) - C(11) \\ C(6) - C(7) - C(8) \\ C(7) - C(8) - C(9) \\ C(11) - C(12) - C(13) \end{array}$	107.9 (6) 109.6 (5) 108.1 (6) 110.4 (5) 107.0 (6) 103.8 (6) 106.3 (6) 110.8 (6) 110.8 (7) 117.3 (7) 128.5 (7)	$\begin{array}{c} 0(1) - N(1) - C(1) - C(2) \\ 0(4) - N(2) - C(18) - C(17) \\ N(1) - O(1) - C(3) - C(2) \\ N(2) - O(4) - C(15) - C(17) \\ C(3) - C(6) - C(7) - C(8) \\ C(3) - C(5) - C(9) - C(8) \\ C(3) - C(5) - C(9) - C(11) \\ - C(3) - C(6) - C(10) - C(11) \\ - C(6) - C(3) - C(5) - C(9) \\ C(6) - C(10) - C(11) - C(9) \\ C(10) - C(11) - C(12) - C(13) \\ \end{array}$	0.7 - 1.4 18.0 9.4 56.6 52.6 - 60.7 - 71.9 2.0 15.2	(9) (7) (7) (8) (8) (8) (7) (7) (7) (1)
C(12)-C(13)	1.299 (9)	C(12) - C(13) - C(14)	123.4 (7)	C(11) - C(12) - C(13) - C(14)	- 6	(1)

Table 9 Selected Bond Lengths, Bond Angles, and Torsion Angles of 3a

Table 10 Selected Bond Lengths, Bond Angles, and Torsion Angles of 4a

Bond Length	(A) I	Bond Angle (°)	Tors	ion Angle (*)
$\begin{array}{c} \hline CI(1)-C(1) & 1.74'\\ O(1)-C(5) & 1.35'\\ O(1)-C(8) & 1.45!\\ O(4)-N(1) & 1.380'\\ N(1)-C(9) & 1.27'\\ C(7)-C(8) & 1.562'\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-C(4) 115.1 C(8)-C(7) 107.9 N(1)-C(9) 112.4 O(1)-C(8) 107.0 C(7)-C(8) 101.0 C(9)-C(10) 121.4	$\begin{array}{cccc} (6) & 0(1)-C(5)-C\\ (6) & 0(1)-C(8)-C\\ (6) & 0(4)-N(1)-C\\ (5) & N(1)-C(9)-C\\ (5) & C(5)-0(1)-C\\ (6) & C(5)-C(4)-C\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 11 Selected Bond Lengths, Bond Angles, and Torsion Angles of 5a

Bond Length (A)	Bond Angle	(*)	Torsion Angle	(*)	
$\begin{array}{c ccccc} \hline 0(1) - N(1) & 1.392 & (5) \\ 0(1) - C(3) & 1.478 & (6) \\ N(1) - C(1) & 1.260 & (6) \\ C(3) - C(5) & 1.548 & (7) \\ C(3) - C(6) & 1.540 & (7) \\ C(6) - C(7) & 1.512 & (8) \\ C(7) - C(8) & 1.322 & (7) \\ C(8) - C(9) & 1.513 & (7) \\ C(10) - C(11) & 1.316 & (8) \\ \end{array}$	$\begin{array}{c} 0(1) - N(1) - C(1) \\ N(1) - O(1) - C(3) \\ C(3) - C(6) - C(7) \\ C(3) - C(6) - C(10) \\ C(5) - C(9) - C(8) \\ C(5) - C(9) - C(11) \\ C(6) - C(7) - C(8) \\ C(7) - C(8) - C(9) \end{array}$	110.3 (4) 109.2 (4) 105.0 (5) 106.0 (5) 105.4 (5) 104.7 (5) 115.0 (5) 113.1 (5)	$\begin{array}{c} 0(1) - N(1) - C(1) - C(2) \\ N(1) - 0(1) - C(3) - C(2) \\ C(3) - C(6) - C(7) - C(8) \\ C(3) - C(5) - C(9) - C(8) \\ C(3) - C(5) - C(9) - C(11) \\ C(3) - C(6) - C(10) - C(11) \\ C(6) - C(3) - C(5) - C(9) \\ C(6) - C(10) - C(11) - C(9) \\ \end{array}$	- 2.0 8.4 - 60.0 - 57.1 56.1 61.7 - 0.9 - 1.7	(7) (6) (7) (6) (7) (7) (8)

Table 12 Selected Bond Lengths, Bond Angles, and Torsion Angles of 6c

Bond Length (A)	Bond Angle	(*)	Torsion Angle	(*)
$\begin{array}{c} \hline 0(1) - N(1) & 1.39 & (1) \\ 0(1) - C(3) & 1.45 & (1) \\ N(1) - C(1) & 1.30 & (1) \\ C(3) - C(5) & 1.53 & (1) \\ C(3) - C(6) & 1.55 & (1) \\ C(6) - C(7) & 1.51 & (1) \\ C(7) - C(8) & 1.32 & (1) \\ C(8) - C(9) & 1.48 & (2) \\ C(10) - C(11) & 1.33 & (1) \\ \hline \end{array}$	$\begin{array}{c} 0(1) - N(1) - C(1) \\ N(1) - 0(1) - C(3) \\ C(3) - C(6) - C(7) \\ C(3) - C(6) - C(10) \\ C(5) - C(9) - C(8) \\ C(5) - C(9) - C(11) \\ C(6) - C(7) - C(8) \\ C(7) - C(8) - C(9) \end{array}$	107.6 (8) 111.8 (7) 106.8 (9) 101.5 (9) 109.4 (9) 100.3 (9) 116 (1) 112 (1)	$\begin{array}{c} 0(1) - N(1) - C(1) - C(2) \\ N(1) - 0(1) - C(3) - C(2) \\ C(3) - C(6) - C(7) - C(8) \\ C(3) - C(5) - C(9) - C(8) \\ C(3) - C(5) - C(9) - C(11) \\ C(3) - C(5) - C(9) - C(11) \\ C(3) - C(6) - C(10) - C(11) \\ C(6) - C(3) - C(5) - C(9) \\ C(6) - C(10) - C(11) - C(9) \end{array}$	$\begin{array}{c} 0 & (1) \\ 10 & (1) \\ 58 & (1) \\ 56 & (1) \\ - & 63 & (1) \\ - & 63 & (1) \\ 2 & (1) \\ - & 2 & (2) \end{array}$

REFERENCES AND NOTES

- Part XV of the series on "Synthetic Reactions of Isoxazoline-2-oxides" : Part XIV : K. Harada, E. Kaji, K. Takahashi, and S. Zen, *Chem. Pharm. Bull.*, 1994, 42, 1562.
- K. Takahashi, E. Kaji, and S. Zen, *Nippon Kagaku Kaishi*, **1984**, 1933; K. Harada,
 K. Sasaki, E. Kaji, and S. Zen, *Heterocycles*, 1993, **36**, 449.
- a) K. Harada, Y. Shimozono, E. Kaji, H. Takayanagi, H. Ogura, and S. Zen, *Chem. Pharm. Bull.*, 1992, 40, 1921; b) K. Harada, Y. Shimozono, and S. Zen, *Nippon Kagaku Kaishi*, 1993, 400; c) K. Harada, Y. Shimozono, E. Kaji, and S. Zen, *Heterocycles*, 1993, 36, 2497.
- 4. K. Harada, Y. Shimozono, E. Kaji, and S. Zen, Chem. Pharm. Bull., 1993, 41, 1848.
- S. Zen, K. Takahashi, E. Kaji, H. Nakamura, Y. litaka, Chem. Pharm. Bull., 1983, 31, 1814;
 S. Zen, E. Kaji, and K. Takahashi, Nippon Kagaku Kaishi, 1986, 55.
- F. Fringuelli and A. Taticchi, "Dienes in The Diels-Alder Reaction", John Wiley & Sons, New York 1990, Chap. 1 and 6, Lewis acid catalyzed Diels-Alder reactions : Chapter 1, p. 23; R. Casas, T. Parella, V. Branchadell, A. Oliva, and A. Guingant, *Tetrahedron*, 1992, 48, 2659.
- A. Katritzky, "Comprehensive Heterocyclic Chemistry", Vol. 6, ed. by K.T. Potts, Pergamon Press, Oxford, 1984, pp. 36-44; P. Grunanger and P. Vita-Finzi, "The Chemistry of Heterocyclic Compounds", Vol. 49, Isoxazoles, Part 1, ed. by E. Taylor, John Wiley & Sons, 1991, Chap. 2.
- 8. K. Takahashi, E. Kaji, and S. Zen, Nippon Kagaku Kaishi, 1983, 1678.
- 9. K. Takahashi, E. Kaji, and S. Zen, Chem. Pharm. Bull., 1985, 33, 8.
- Reported in the previous communication : K. Harada, K. Sasaki, E. Kaji, and S. Zen, *Heterocycles*, 1993, 36, 253.
- 11. K. Takahashi, E. Kaji, and S. Zen, Synth. Commun. 1984, 139.