
Masaru Kihara,* Yasumasa Iwai, and Yoshimitsu Nagao

Faculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan

Abstract- 3-Phenyl- and 3-alkyl-3-hydroxyindolines were synthesized by intramolecular Barbier reaction of phenyl and alkyl *N*-(2-iodophenyl)-*N*-methylaminomethyl ketones with *n*-BuLi, which were easily prepared from *N*-methyl-2-iodoaniline and bromomethyl ketones. The treatment of the indolines with acid gave the corresponding indoles in quantitative yields.

Many kinds of synthetic methods for 3-substituted indoles have been studied due to the significant biological and pharmacological actitivities of indole natural products¹ and of drugs such as indomethacin² and fluvastatin.³ From these facts, we are interested in developing a new synthetic method for 3-substituted 3-hydroxyindolines since the 3-hydroxyindolines are expected to convert easily to the corresponding indoles. In addition, as 2-methyl-4-phenyl-1,2,3,4-tetrahydro-isoquinolin-4-ol(PI-OH) and the related compounds showed a strong norepinephrine potentiating activity,⁴ 3-phenyl-3-hydroxyindolines are also interesting compounds from a pharmacological point of view. We now report a new synthetic method for the preparation of 3-phenyl- and 3-alkyl-3-hydroxyindolines(1 and 7) and the corresponding indoles(2 and 8).

In the previous papers,⁵ we reported the synthesis of PI-OH and the related compounds by intramolecular Barbier reaction of *N*-benzylphenacylamines with *n*-BuLi. Thus, we planned the synthesis of 3-phenyl-3-hydroxyindolines(1) by intramolecular Barbier reaction of *N*-(2-iodophenyl)-*N*-methylphenacylamines(3) (Scheme 1). The synthesis of a key intermediate phenacylamine(3a) was attempted by the treatment of phenacyl bromide(5a) with 2-iodo-*N*-methylaniline(4) in the presence of propyrene oxide(10 mol eq.) in various conditions as shown in Table I. The best result was obtained by using DMF as a solvent at 50°C(Entry 6). The reaction of other phenacyl bromides(5b-g) with 4 in

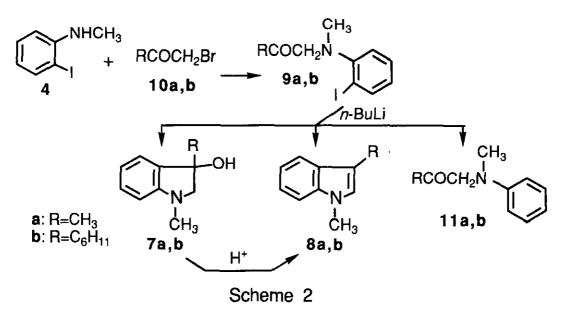

Entry	4 (mol eq.)	5a (mol eq.)	Propyrene oxide(mol eq.)	Solvent	Temp. (℃)	Time (hr)	3 a (%)
1	1.0	1.0	10	dioxane	reflux	100	30
2	1.0	1.0	10	DMSO	190	10min	
3	1.0	1.0	10	DMSO	r.t. ^{a)}	96	58
4	1.0	1.0	10	DMF	r.t. ^{a)}	138	13
5	1.0	1.0	10	DMF	50	52	50
6	1.4	1.0	10	DMF	50	22	64

Table I. Synthesis of 3a from 4 and 5a

a) room temperature

the same conditions as Entry 6 gave phenacylamines(**3b-g**) in good yields, respectively. The phenacylamines(**3a-g**) were treated with *n*-BuLi in THF at -78°C to give indolines(**1a-g**) along with indoles (**2a-g**) and deiodinated compounds (**6a-g**) as shown in Table II. Separation of the reaction mixture of **3d-g** with *n*-BuLi by flash chromatography gave the indolines(**1d-g**) and a small amount of the indoles(**2d-g**) as a pure compound, respectively. However, the chromatographic separation of the crude products⁶ obtained by the reactions of **3a-c** with *n*-BuLi afforded a mixture of the indolines(**1a-c**) and the indoles(**2a-c**)(see Table II and Experimental). These facts suggest that the indolines(**1a-c**) have a higher tendency to dehydration and aromatization than the indolines(**1d-g**) possessing electron withdrawing substituents such as halogen atoms and a CF₃ group on the 3-phenyl group. The indolines(**1d-g**) in quantitative yields, respectively.

In the similar synthetic way, 3-hydroxy-3-alkylindolines(**7a**,**b**) and 3-alkylindoles (**8a**,**b**) were prepared as shown in Scheme 2. Methyl and cyclohexyl anilinomethyl ketones(**9a**,**b**) obtained from **4** and bromomethyl ketones(**10a**,**b**) were treated with *n*-BuLi, followed by chromatographic separation to give a mixture of the indolines(**7a**,**b**) and the indoles(**8a**,**b**) with the deiodinated products(**11a**,**b**) (Table II). Easy conversion of **1a**-**c** and **7a**,**b** to **2a**-**c** and **8a**,**b** was also ascertained by treatment of a chromatographically separated mixture of the corresponding indolines and indoles as shown in Table II with 5% HCI. These facts suggest that the treatment of the aminomethyl ketones such as **3a**-**g** and **9a**,**b** with *n*-BuLi, followed by dehydration of the crude product might provide a simple

Clarting	Yield (%) of Product						
Starting material	Indo	Indoline		Indole		By-product	
3a ^{a)}	1a	26	2a	53	<u>6a</u>	16	
3b ^{a)}	1b	47	2b	24	6b	20	
3c ^{a)}	1c	43	2c	23	6 c	21	
3d	1d	80	2d	4	6d	15	
3e	1e	59	2e	4	6e	24	
3f	1f	50	2 f	3	6f	19	
3g	1g	58	2g	2	6g	20	
9a ^{a)}	7a	29	8a	48	1 1 a	8	
9b ^{a)}	7b	17	8b	62	11b	7	

Table II. Yields of the	indolines (1a-g	and 7a,b) and	the indoles
(2a-g and 8a,b) from	the ketones (3a	a-g and 9a,b)	with <i>n</i> -BuLi

a) The reactions of **3a-c** and **9a**,**b** gave a mixture of the corresponding indolines and the indoles, respectively, after the chromatographic separation. The yields of the indolines and the indoles were determined by the ¹H-nmr spectra.

synthetic method of indoles(**2a**-g and **8a**,b). In fact, as a representative example, the cyclization of **3a** with *n*-BuLi and following dehydration of the crude product with 5% HCl gave **2a** in 77% yield with deiodinated product (**6a**)(13%).

In conclusion, an intramolecular Barbier reaction of phenyl and alkyl N-(2-iodophenyl)-N-methylaminomethy ketones with n-BuLi presented in this study provides a new and convenient method for the preparation of 3-substituted 3-hydroxyindolines and indoles.

EXPERIMENTAL

All melting points are given as uncorrected values. High-resolution mass spectra were recorded on JELO SX-102A and JEOL JMS-D 300 spectrometers. ¹H-Nmr spectra were recorded on a JEOL JNM-FX 200 spectrometer in CDCl₃ with tetramethylsilane as a standard and are given in δ values.

N-Methyl-2-iodoaniline(4) According to the method reported⁷ by Kadin, a solution of *o*-iodoaniline(5.103 g, 23.3 mmol), succinimide(3.549 g, 34.0 mmol), and 37% formalin(2.8 ml, 34.5 mmol) in EtOH(30 ml) was refluxed for 24 h. The mixture was evaporated *in vacuo* and H₂O(100 ml) was added to the residue. The mixture was extracted with CH₂Cl₂(100 ml x 3). The extract was washed with H₂O, dried over MgSO₄, and evaporated to give an oil(8.017 g). This was purified by flash chromatography on SiO₂ with CH₂Cl₂-acetone(30:1) to give *N*-(2-iodo-

anilinomethy)succinimide as colorless prisms(6.129 g, 81%)(from CH_2CI_2 -*n*-hexane), mp 98-99°C. ¹H-Nmr(CDCI₃) δ : 7.65(1H,dd, J=7.8, 1.5 Hz), 7.22(1H, ddd, J=7.3, 7.3, 1.5 Hz), 7.01(1H, dd, J=7.3, 1.5 Hz), 6.51(1H, ddd, J=7.8, 7.3, 1.5 Hz), 5.27(1H,t,J=7.8 Hz), 5.02 (2H,d,J=7.8 Hz), 2.67(4H,s). Ms(m/z)(M+): calcd for C₁₁H₁₁N₂IO₂: 329.9866. Found: 329.9844. Anal.Calcd for C₁₁H₁₁N₂IO₂: C, 40.02; H,3.36; N,8.49. Found: C, 40.04; H,3.41; N, 8.42.

NaBH₄(689 mg, 16.4 mmol) was added to a solution of the *N*-(2-iodoanilinomethy)succinimide(5.401 g, 16.4 mmol) obtained as above in dry DMSO(10 ml) and the mixture was heated for 30 min at 100°C. The reaction mixture was poured into ice-water(60 ml) and extracted with ether(60 ml x 3). The extract was dried over MgSO₄ and evaporated to give a pale brown oil. This was purified by flash chromatography on SiO₂ with *n*-hexane-CH₂Cl₂(1:1) to afford **4** as a pale yellow oil(3.463 g, 91%). ¹H-Nmr(CDCl₃) δ :7.72(1H,dd,J=7.9, 1.5 Hz), 7.30(1H,ddd,J=8.8, 8.3, 1.5 Hz), 6.63(1H,dd,J=8.3, 1.5 Hz), 6.51(1H,ddd,J=8.8, 7.9, 1.5 Hz), 4.18(1H, br s), 2.95(3H,d,J=8.0 Hz). Ms(m/z) (M⁺): calcd for C₇H₈NI: 232.9703. Found: 232.9703.

General Procedure for Preparation of Phenyl and Alkyl *N*-(2-lodophenyl)-*N*-methylaminomethyl Ketones This is exemplified by the preparation of 3d. Propyrene oxide(2.17 ml, 30.9 mmol) was added to a solution of 4-fluorophenacyl bromide(5d)(671 mg, 3.09 mmol) and *N*-methyl-2-iodoaniline (4)(1.004 g, 4.33 mmol) in dry DMF(2 ml). The mixture was heated under N₂ for 20 h at 50°C. H₂O(20 ml) was added and the mixture was extracted with ether(20 ml x 3). The extract was evaporated and the residue was purified by flash chromatography on SiO₂ with *n*-hexane-CH₂Cl₂(1:1) as a eluent to give 3d as an oil(881 mg, 86%). The ms and ¹H-nmr spectral data are shown in Table III.

Other *N*-(2-iodophenyl)-*N*-methylaminomethyl ketones(**3a-c**, **3e-g**, and **9a**,**b**) were prepared in the same way as **3d**(Table III).

General Procedure for Barbier Reaction of Phenyl and Alkyl *N***-(2-lodophenyl)-***N***-methylaminomethyl Ketones** This is exemplified by the reaction of **3a** and **3d**. Reaction of **3a** *n*-BuLi(1.6 M sol. in *n*-hexane, 0.41 ml, 0.66 mmol) was added to a solution of the phenacylamine(**3a**)(195.5 mg, 0.55 mmol) in dry THF(5 ml) by a syringe at -78°C under N₂ and the mixture was stirred for 15 min at -78°C. H₂O(10 ml) was added and the mixture was extracted with ether(20 ml x 3). The extract was dried over MgSO4 and evaporated *in vacuo*. The residue was subjected to flash chromatography on SiO₂ with CH₂Cl₂. The first fraction was further purified by flash chromatography on SiO₂ with *n*-hexane-CH₂Cl₂(1:1) to afford the indole(**2a**) as an oil(17 mg) and the deiodinated product(**6a**) as a white solid(19.6 mg, 16%). The second fraction gave a mixture(75 mg) of **1a** and **2a** as an oil. The yields of **1a** and **2a** were calculated by the integral values of the *N*-

No	Yiel (%)	ld Formula)	Ms(m/z)(M ⁻¹ Calcd(Foun	
3 a	64	C ₁₅ H ₁₄ NOI		7.97(2H,dd,J=8.3, 1.2 Hz), 7.83(1H,dd,J=8.1, 1.2 Hz), 4.52
				(2H,s), 2.95(3H,s)
3 b	61	C ₁₆ H ₁₆ NO ₂ I	381.0228	8.00(2H,d,J=9.0 Hz), 7.82(1H,dd,J=7.9, 1.2 Hz), 6.89(2H,d,
			(381.0214)	J=9.0 Hz), 4.45(2H,s), 3.86(3H,s), 2.92(3H,s)
3 C	86	C ₁₆ H ₁₆ NO ₂ I	381.0228	7.82(1H,dd,J=7.9, 1.3 Hz), 7.54(1H,ddd,J=7.8, 1.5, 1.0 Hz),
			(381.0263)	7.48(1H,dd,J=2.7, 1.5 Hz), 7.34(1H,dd,J=8.3, 7.8 Hz), 7.10
				(1H,ddd,J=8.3, 2.7, 1.0 Hz), 4.52(2H,s), 3.84(3H,s), 2.95
				(3H,s)
3 d	86	C ₁₅ H ₁₃ NOFI	369.0026	8.05(2H,dd,J=8.5, 5.5 Hz), 7.83(1H,dd,J=7.8, 1.5 Hz), 7.11
		10 10		(2H,dd,J=8.5, 8.5 Hz), 6.80(1H,m), 4.46(3H,s), 2.91(3H,s)
3 e	61	C ₁₅ H ₁₃ NOCI		7.94(2H,d,J=8.7 Hz), 7.82(1H,dd,J=7.8, 1.5 Hz), 7.41(2H,d,
		10 10		J=8.7 Hz), 7.32(1H,ddd,J=8.1, 7.8, 1.5 Hz), 6.79(1H,ddd,
			(,	J=8.1, 7.8, 2.0 Hz), 4.45(2H,s), 2.91(3H,s)
3f	82	C ₁₅ H ₁₃ NOBrl	428.9225	7.86(2H,d,J=8.4 Hz), 7.83(1H,dd,J=8.3, 1.5 Hz), 7.58(2H,d,
				J=8.4 Hz), 4.44(2H,s),2.90(3H,s)
3g	38	C ₁₆ H ₁₃ NOF ₃ I	418.9994	8.09(2H,d,J=8.1 Hz), 7.83(1H,dd,J=8.0, 1.5 Hz), 7.71(2H,d,
•				J=8.1 Hz), 6.80(1H,ddd,J=7.5, 6.8, 2.0 Hz), 4.50(2H,s),
			· · ·	2.92(3H,s)
9 a	91	C10H12NOI	288.9964	7.85(1H,dd,J=7.8,1.5 Hz),7.13(1H,dd,J=8.1,1.5 Hz),6.80(1H,
		10 12		ddd,J=8.1, 7.3, 1.5 Hz), 3.78(2H,s), 2.80(3H,s), 2.23(3H,s)
9 b	58	C ₁₅ H ₂₀ NOI		7.86(1H,dd,J=7.8,1.5 Hz),7.14(1H,dd,J=8.1,1.5 Hz),6.78(1H,
		- 10. 20 21		ddd,J=8.8, 7.1, 1.5 Hz), 3.86(2H,s), 2.79(3H,s), 2.63(1H,m)
			()	

Table III. Yields, Ms and ¹H-Nmr Spectral Data for Aminomethyl Ketones(**3a-g** and **9a,b**)

methyl groups in the ¹H-nmr spectrum to be 32 mg(26%) and 43 mg(total yield 60 mg, 53%). The ms and ¹H-nmr spectral data are shown in Table IV.

Intramolecular Barbier reaction of other ketones(**3b**,**c** and **9a**,**b**) were carried out in the same way as **3a**(Tables II, IV, and V).

<u>Reaction of 3d</u> The phenacylamine(3d)(739 mg, 2.0 mmol) was treated with *n*-BuLi (1.6 M sol. in hexane, 1.56 ml, 2.40 mmol) in dry THF(10 ml) in the same way as **3a** to give a crude product(566.8 mg). This was subjected to flash chromatography on SiO₂ with CH₂Cl₂ to give 2d(first fraction: 18 mg, 4%), 6d (second fraction: 54 mg, 15%), and 1d(third fraciton: 389 mg, 80%), respectively. The ms and ¹H-nmr spectral data of these products are shown in Table IV.

Other phenacylamines(3e-g) were treated in the same way as 3d(Tables II and IV).

General Procedure for Dehydration of 3-Phenyl- and 3-Alkyl-3hydroxy-1-methylindolines This is exemplified by dehydration of **1d** with 5%HCl. 5% HCl(5 ml) was added to a solution of **1d**(46.2 mg, 0.19 mmol) in ether(5 ml) and the mixture was stirred for 10 min at room temperature. The mixture was made basic with 10% KOH and extracted with CH₂Cl₂(20 ml x 3).

	Deiodinated Products(6a-g)					
No	Formula	Ms(m/z)(M + Calcd(Found				
1 a	C ₁₅ H ₁₅ NO	225.1154 (225.1138)	7.53(2H,d,J=8.5 Hz), 6.98(1H,d,J=7.7 Hz), 6.65(1H,d,J=8.5 Hz), 3.63, 3.41(each 1H, d,J=10.3 Hz),2.85(3H,s)			
1 b	C ₁₆ H ₁₇ NO ₂	255.1260 (255.1272)	7.44, 6.87(each 2H,d,J=8.4 Hz), 6.64(1H,d,J=7.8 Hz), 3.79(3H, s), 3.60, 3.37(each 1H,d,J=10.3 Hz), 2.83(3H,s)			
1 c	$C_{16}H_{17}NO_2$	255.1260 (255.1286)	6.73(1H,ddd,J=7.3, 7.3, 1.0 Hz), 6.64(1H,d,J=8.1 Hz), 3.63, 3.41(each 1H, d,J=10.3 Hz), 3.80(3H,s), 2.88(3H,s)			
1 d	C ₁₅ H ₁₄ NOF	243.1059 (243.1057)	7.49(2H,dd,J=9.0, 5.4 Hz), 7.01(2H,dd,J=9.0, 9.0 Hz), 6.65(1H, d,J=8.1 Hz), 3.60, 3.37(each 1H,d,J=10.3 Hz), 2.84(3H,s)			
1 e	C ₁₅ H ₁₄ NOCI	•	7.46, 7.30(each 2H,d,J=8.8 Hz), 6.95(1H,dd,J=7.3, 1.0 Hz), 6.64 (1H,d,J=7.8 Hz), 3.60, 3.37(each 1H,d,J=10.3 Hz), 2.84(3H,s)			
1f	C ₁₅ H ₁₄ NOBr	• •	7.45, 7.41(each 2H,d,J= 9.0 Hz), 6.95(1H,dd,J= 8.3 , 1.5 Hz), 6.65 (1H,d,J= 8.1 Hz), 3.61, 3.37(each 1H,d,J= 10.5 Hz), 2.84(3H,s)			
1 g	C ₁₆ H ₁₄ NOF ₃	•	7.67, 7.59(each 2H,d,J=8.6 Hz), 6.95(1H,dd,J=7.3, 1.2 Hz), 6.67 (1H,d,J=8.3 Hz), 3.64, 3.43(each 1H,d,J=10.7 Hz), 2.87(3H,s)			
2 a	C ₁₅ H ₁₃ N	207.1048 (207.1040)	7.94(1H,dd,J=7.6, 1.5 Hz), 7.66(2H,dd,J=8.3, 1.2 Hz), 7.20 (1H,s), 3.80(3H,s)			
2b	C ₁₆ H ₁₅ NO	237.1154 (237.1153)	7.89(1H,d,J=8.1 Hz), 7.65, 7.06(each 2H,d,J=8.8 Hz), 7.36(1H, d,J=7.8 Hz), 7.16(1H,s), 3.86(3H,s), 3.83(3H,s)			
2c	C ₁₆ H ₁₅ N	237.1154 (237.1147)	7.95(1H,dd,J=8.1, 1.2 Hz), 7.24(1H,s), 6.82(1H,ddd,J=8.1, 2.7, 1.2 Hz), 3.87(3H,s), 3.84(3H,s)			
2 d	C ₁₅ H ₁₂ NF	225.0954 (225.0948)	7.86(1H,dd,J=7.1, 1.2 Hz), 7.58(2H,dd,J=8.8, 5.4 Hz), 7.16(1H, s), 7.12(2H,dd,J=8.8, 8.8 Hz), 3.81(3H,s)			
2 e	C ₁₅ H ₁₂ NCI	241.0658 (241.0650)	7.88(1H,dd,J=8.6, 1.0 Hz), 7.58, 7.39(each 2H,d,J=8.4 Hz), 7.22(1H,s), 3.85(3H,s)			
2f	C ₁₅ H ₁₂ NBr	285.0153 (285.0171)	7.88(1H,d,J=7.3 Hz, 7.52(4H,s), 7.22(1H,s), 3.83(3H,s)			
2 g	$C_{16}H_{12}NF_3$	275.0922 (275.0930)	7.91(1H,d,J=8.1 Hz), 7.72, 7.64(each 2H,d,J=8.3 Hz), 7.25 (1H,s), 3.79(3H,s)			
6 a	C ₁₅ H ₁₅ NO	225.1154 (225.1161)	7.99(2H,dd,J=8.1, 1.5 Hz), 7.21(2H,dd,J=8.8, 7.3 Hz), 6.72(1H, t,J=7.3 Hz), 6.68(2H,d,J=7.8 Hz), 4.77(2H,s), 3.10(3H,s)			
6 b	C ₁₆ H ₁₇ NO ₂	255.1259 (255.1247)	7.97, 6.96(each 2H,d,J=9.0 Hz), 7.20(2H,dd,J=8.8, 7.3 Hz), 6.71 (1H,t,J=7.3 Hz), 4.72(2H,s), 3.88(3H,s), 3.09(3H,s)			
6 C	C ₁₆ H ₁₇ NO ₂	225.1259 (255.1236)	7.57(1H,ddd, J=7.8, 1.5, 1.2 Hz), 7.50(1H,dd,J=2.7, 1.5 Hz), 6.67(2H,dd,J=8.8, 1.0 Hz), 4.76(2H,s), 3.84(3H,s), 3.10(3H,s)			
6 d	C ₁₅ H ₁₄ NOF	243.1059	8.01(2H,dd,J=8.8, 5.4 Hz), 7.15(2H,dd,J=8.6, 8.6 Hz), 6.73(1H, t,J=7.1 Hz), 6.67(2H,d,J=8.3 Hz), 4.72(2H,s), 3.09(3H,s)			
6 e	C ₁₅ H ₁₄ NOCI	259.0764	7.92, 7.46(each 2H,d,J=8.8 Hz), 7.21(2H,dd,J=8.8, 7.3 Hz), 6.74 (1H,t,J=7.3 Hz),6.67(1H,dd,J=8.8, 1.2 Hz),4.72(2H,s),3.09(3H,s)			
6f	C ₁₅ H ₁₄ NOBr		7.85, 7.63(each 2H,d,J=8.8 Hz), 7.21(2H,dd,J=8.5, 7.1 Hz), 6.74 (1H,t,J=7.1 Hz),6.67(2H,dd,J=8.5, 1.2 Hz),4.72(2H,s),3.09(3H,s)			
6 g	C ₁₆ H ₁₄ NOF ₃	293.1027	8.08,7.76(each 2H,d,J=8.2 Hz),7.22(2H,ddd,J=8.3, 7.1, 1.2 Hz), 6.75(1H,t,J=7.1 Hz), 6.68(2H,d,J=8.3 Hz), 4.77(2H,s),3.10(3H,s)			

Table IV. Ms and ¹H-Nmr Spectral Data for the Indolines(**1a-g**), Indoles(**2a-g**), and Deiodinated Products(**6a-g**)

Table V. Ms and ¹H-Nmr Spectral Data for the Indolines(**7a**,**b**), Indoles(**8a**,**b**) and Deiodinated Products(**11a**,**b**)

No		Ms(m/z)(M + Calcd(Found	
7 a	C ₁₀ H ₁₃ NO	163.0997 (163.1000)	6.75(1H,dd,J=7.6, 7.6 Hz), 6.54(1H,d,J=7.8 Hz), 3.37, 3.16 (each 1H,d,J=10.0 Hz), 2.78(3H,s), 1.62(3H,s)
7 b	C ₁₅ H ₂₁ NO	231.1623 (231.1599)	6.72(1H,ddd,J=7.6, 7.6, 1.0 Hz), 6.53(1H,dd,J=8.5, 1.0 Hz), 3.40, 3.16(each 1H,d,J=10.3 Hz), 2.78(3H,s), 2.80(1H,m)
8 a	C ₁₀ H ₁₁ N	145.0892 (145.0890)	7.56(1H,dd,J=6.8, 1.2 Hz), 6.79(1H,s), 3.69(3H,s), 2.31(3H,s)
8 b	C ₁₅ H ₁₉ N	213.1517 (213.1532)	7.63(1H,dd,J=7.7, 1.0 Hz), 7.20(1H,dd,J=8.3, 1.2 Hz), 7.06(1H, ddd,J=8.1, 7.8, 1.5 Hz), 6.76(1H,s), 3.68(3H,s), 2.85(1H,m)
11a	C ₁₀ H ₁₃ NO	163.0997 (163.1010)	7.23(2H,dd,J=8.8, 7.3 Hz), 6.75(1H,t,J=7.3 Hz), 6.62(2H,dd, J=8.8, 0.9 Hz), 4.01(2H,s), 3.06(3H,s), 2.13(3H,s)
11b	C ₁₅ H ₂₁ NO	231.1623 (231.1617)	7.21(2H,dd,J=7.6, 7.1 Hz), 6.72(1H,t,J=7.6 Hz), 6.60(2H,d, J=7.1 Hz), 4.01(2H,s), 3.02(3H,s), 2.50(1H,m)

The extract was washed with H₂O, dried over MgSO₄, and evaporated *in vacuo* to give **2d** as an oil(42 mg, 98%).

Other indolines(1e-g) were dehydrated in the same way as 1d.

REFERENCES AND NOTES

- 1. a) J.E.Saxton, "The Alkaloids: The Indole Alkaloids," Vol.7, ed. by R.H.F.Manske, Academic Press, Inc., New York, 1960, pp. 1-199; b) R.J.Sundberg, "The Chemistry of Indoles", Academic Press, Inc., New York, 1970, pp. 431-445.
- 2. N.Bodor, Drugs Future, 1981, 6, 165.
- 3. F.G.Kathawala, Med.Res.Rev., 1991, 11, 121.
- a)Y.Ishida, N.Koga, T.Nanbu, M.Kihara, and S.Kobayashi, *Br.J.Pharmacol.*, 1988, 94, 19; b) M.Kihara, M.Kashimoto, S.Kobayashi, Y.Ishida, H.Moritoki, and Z.Taira, *J.Med.Chem.*, 1990, 33, 2283; c) M.Kihara, M.Kashimoto, Y.Kobayashi, and Y.Nagao, *Chem.Pharm.Bull.*, 1994, 42, 67; d) M.Kihara, M.Ikeuchi, Y.Kobayashi, Y.Nagao, M.Hashizume, and H.Moritoki, *Drug Design & Discovery*, 1994, 11, 175; e) M.Kihara, M.Ikeuchi, S.Adachi, Y.Nagao, H.Moritoki, M.Yamaguchi, and Z.Taira, *Chem. Pharm.Bull.*, in press.
- 5. a) M.Kihara, M.Kashimoto, Y.Kobayashi, S.Kobayashi, *Tetrahedron Lett.*, 1990, **31**, 5347; b) M.Kihara, M.Kashimoto, and Y.Kobayashi, *Tetrahedron*, 1992, **48**,

67; c) M.Kihara, M.Ikeuchi, K.Jinno, M.Kashimoto, Y.Kobayashi, and Y.Nagao, *Tetrahedron*, 1993, **49**, 1017.

- 6. The crude products were found to contain the indolines **1a**-**c** as a major product with a trace of the indoles(**2a**-**c**) by their ¹H-nmr spectra, respectively.
- 7. S.B.Kadin, J.Org.Chem., 1973, 38, 1348.

Received, 29th May, 1995