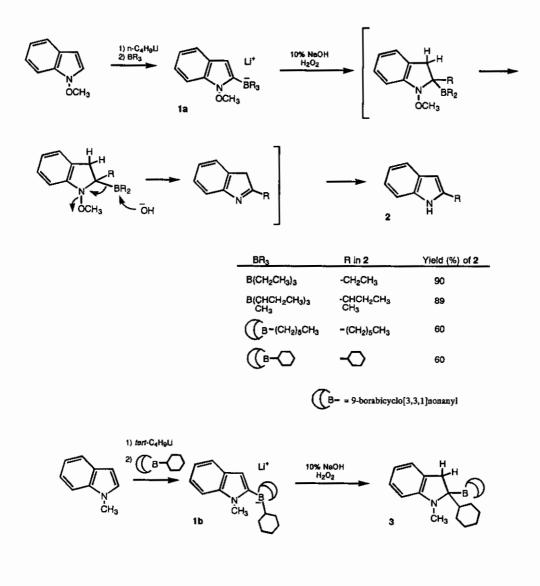
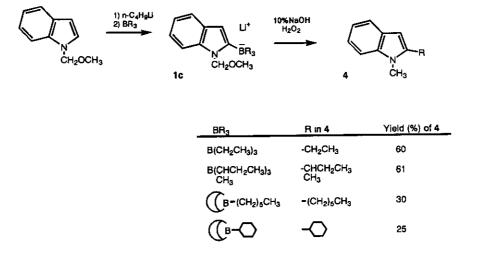
A NOVEL ASPECT OF THE 1,2-ALKYL MIGRATION REACTION WITH TRIALKYL 1-SUBSTITUTED INDOL-2-YLBORATES

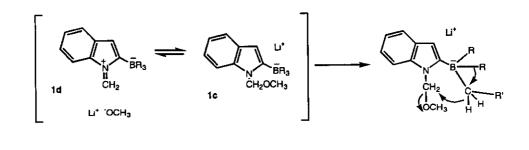

Minoru Ishikura* and Isao Agata*

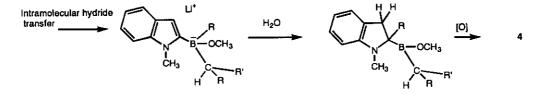
Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-02, Japan

Abstract - Intramolecular 1,2-alkyl migration reaction of trialkyl(1methoxyindol-2-yl)borates and trialkyl(1-methoxymethylindol-2-yl)borates gave rise to 2-alkylindoles and 2-alkyl-1-methylindoles, respectively.

Developing the synthetic advantages of indolylborate has been our current interest, and the investigations have been mainly done with trialkyl(1-methylindol-2-yl)borate due to its ready availability and sufficient reactivity.¹ During the recent work aimed at substituting the rigid *N*-methyl group of the indolylborate for adequately removable *N*-protecting group, we found (i) a facile formation of 2-alkylindoles from trialkyl(1-methoxyindol-2-yl)borate (**1a**) and (ii) the formation of 2-alkyl-1-methylindoles from trialkyl(1-methoxymethylindol-2-yl)borate (**1c**) involving unexpected reduction of methoxymethyl group to methyl group, and these results are reported in this paper.


Treatment of 2-lithio-1-methoxyindole (derived from 1-methoxyindole and *n*-BuLi in THF at -20°C)² with trialkylborane for 2 h generated borate (1a) *in situ*, and subsequent addition of 10% aqueous NaOH and 30% aqueous H₂O₂ under ice-cooling afforded 2-alkylindoles (2), which involves 1,2-alkyl migration and susequent elimination of methoxy group as depicted in Scheme 1. On the other hand, borane (3)³ was isolated as air stable crystals in 20% yield from the reaction with 1-methylindolylborate (1b) under similar conditions.





On subjection of borate (1c) (generated *in situ* from 1-methoxymethylindole and *n*-BuLi in THF at -20°C for 20 min, followed by treatment with trialkylborane) to the reaction under the same conditions as above, 2-alkyl-1-methylindoles (4) were unexpectedly isolated (Scheme 2), wherein an intramolecular hydride transfer process may be envisioned. Tetraalkylborate has a high propensity to transfer intermolecularly one of the α -hydrogens in the presence of a reducible substrate such as allyl halide, ketone, or acyl halide.⁴ Therefore, the highly reducible nature of the methoxymethyl group in borate (1c), due to the equilibrium (1c \Longrightarrow 1d), enhanced by increased electron density at nitrogen of the carbinolamine

moiety, as well as the intramolecular manner of the hydride transfer, is greatly responsible for the present reduction.

Scheme 2

REFERENCES AND NOTES

- M. Ishikura, Yuki Gosei Kagaku Kyokai Shi, 1995, 53, 308; M. Ishikura, J. Chem. Soc., Chem. Commun., 1995, 409; M. Ishikura, Heterocycles, 1995, 41, 1385.
- K. Nakagawa and M. Somei, *Heterocycles*, 1994, **39**, 31; F. Yamada, Y. Fukui, D. Shinmyo, and M. Somei, *ibid.*, 1993, **35**, 99; M. Somei and T. Kobayashi, *ibid.*, 1992, **34**, 1295; M. Somei, *Yuki Gosei Kagaku Kyokai Shi*, 1991, **49**, 205.
- Analytical and spectral data for borane (3): Anal. Calcd for C₂₃H₃₄NB: C, 82.38; H, 10.22; N, 4.17. Found: C, 82.29; H, 10.31; N, 4.19. ¹H Nmr (CDCl₃) δ: 0.30-0.60 (br, 2H), 0.70- 2.10 (m, 23H), 2.80 (1H, d, J=16 Hz), 2.93 (s, 3H), 3.29 (d, 1H, J=16 Hz), 6.80-7.30 (m, 4H). ¹³C Nmr (CDCl₃) δ: 23.9, 26.2, 26.7, 27.1, 28.4, 31.4, 31.7, 32.5, 35.3, 39.0, 115.3, 124.5, 124.7, 126.4, 137.2, 149.2. Ms: m/z 334 and 335 (M⁺).
- G. W. Kramer and H. C. Brown, J. Am. Chem. Soc., 1976, 98, 1964; Y. Yamamoto, H. Toi,
 A. Sonoda, and S. -I. Murahashi, J. Chem. Soc., Chem. Commun., 1976, 672; Y. Yamamoto, H.
 Toi, S. -I. Murahashi, and I. Moritani, J. Am. Chem. Soc., 1975, 97, 2558; H. Jager and G. Hesse,
 Chem. Ber., 1962, 95, 345.

Received 11th July, 1995