Jian-Bo Zhou, ^a Hiroaki Okamura, Tetsuo Iwagawa, Yumiko Nakamura, ^b Noboru Nakayama, ^b Kenjiro Tadera, ^a and Munehiro Nakatani*

Department of Chemistry, Faculty of Science, Kagoshima University, Korimoto, Kagoshima 890, Japan

 ^a Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890, Japan
^b Nippon Roche Research Center, 200 Kajiwara, Kamakura 247, Japan

Abstract—Two new limonoids, trichilinins B and C, were isolated along with four nimbolidins and salannin from the root bark of *Melia toosendan*.

Meliaceae plants are a rich source of limonoids and attracting considerable interest, because the limonoids from them showed several interesting biological activities, in which an insect antifeedant activity has been well studied.¹ We have isolated several types of limonoids as insect antifeedant from a typical plant *Melia azedarach* Linn and a related plant *M. toosendan*: i.e. meliacarpinins,^{2,3} trichilins⁴⁻⁶ and azedarach chins.^{7,8}

In the continuous study of limonoids from *M. toosendan*, we isolated two new limonoids, named trichilinins B (1) and C (2), along with four nimbolidins $(3)-(6)^9$ and salannin $(7)^{10}$ from the hexane extract of the dried root bark.

Their structures were elucidated by spectroscopic means and the trichilinins were considered to be biogenetic precursors of ring-C cleaved limonoids such as 3-7. We report here the isolation and structures of trichilinins B(1) and C(2) and the antifeedant activity of the isolated limonoids against the larvae of *Spodoptera eridania* (Boisduval).

Trichilinin B (1), $[\alpha]_D^{19}$ +56° (c 0.13, MeOH), exhibited following spectral data. Negative FABms: m/z 609[M-H]⁻; HRFABms: m/z 551.3002[M+H-AcOH]⁺(Δ -0.7mmu); uv: 221nm (ϵ 11400); ir: 3600-3220, 1738, 1712 and 1655 cm⁻¹. The ms and ¹³C nmr (Table 2) data revealed the molecular formula as C_{35H46}O₉ (13 unsaturations). In the ¹H nmr spectrum, the presence of four tertiary methyls and a β -furyl moiety were observed along with a trisubstituted olefinic proton signal at δ 5.69 (dd, J=3.3 and 1.5 Hz, 15-H) and a typical AB quartet at δ 3.60 (J=7.6 Hz, 28 β -H) and 3.63 (br, J=7.6 Hz, 28 α -H), weakly coupled to 4 β -Me signal. One methine proton at δ 4.21 (d, J=2.9 Hz, 7-H) under hydroxyl, coupling with a methine proton at δ 4.16 (dd, J=12.5 and 2.9 Hz, 6-H) linked to an ether oxygen, was also observed along with three protons under acyloxy groups at δ 4.66 (dd, J=2.9 and 2.6 Hz, 1-H), 4.93 (dd, J=2.9 and 2.6 Hz, 3-H) and 5.05 (dd, J=9.2 and 7.0 Hz, 12-H).

These data strongly suggested that 1 was a hexacyclic structure similar to vilasinin $(8)^{11}$ and trichilinin (9), ¹² and the ¹H nmr spectrum of 1 was very similar to that of 9 except for the addition of one tigloyl group. The substitution pattern around the A-ring with 1α -tigloyloxy and 3α -acetoxyl groups, was deduced from the long range coupling between 1β - and 3β -H signals and the high field shift to $\delta 1.08$ (dt, J=14.3 and 7.0 Hz) of the 11α -H signal, attributable to a shielding effect of the 1α -tig-loyl group, ¹⁰ compared to $\delta 1.49$ in 9. The presence of 1α -tigloyl was also confirmed by a n0e enhancement of the 9-H signal by irradiation at the 2'-methyl signal of tig-

н	1	2	н	1		2	······
1	4.66 dd(2.9, 2.6)	4.77 dd(3.0, 2.6)	18	1.03	s	1.02	ŝ
2α β	2.14 dt(16.7, 2.7) 2.21 dt(16.7, 2.9)	2.12 m 2.23 m	19 21	0.94	s br s	0.96 7 35	s bre
3	4.93 dd(2.9, 2.6)	4.96 dd(3.3, 2.6)	22	6.23	d(1.1)	6.56	brs
5	2.75 d(12.5)	2.81 d(12.5)	23	7.32	dd(1.5, 1.3)	7.35	br s
6 7	4.16 dd(12.5, 2.9) 4.21 d(2.9)	4.19 dd(12.8, 2.9) 4.26 d(2.9)	28α β	3.63 3.60	br d(7.6) d(7.6)	3.66 3.63	br d(7.7) d(7.7)
9	2.80 dd(12.3, 7.6)	3.18 dd(13.5, 5.9)	29	1.21	br s	1.23	br s
11α β	1.08 dt(14.3, 7.0) 2.13 m	2.22 m 2.28 m	30 AC	1.11	s	1.07 1.93	s s
12	5.05 dd(9.2, 7.0)	2.18 m 2.36 m		1.90	s		- ,
15	5.69 dd(3.3, 1.5)	5.71 dd(3.3, 1.8)	Tig 2'-M	le1.83	br s	1.79	br d(1.1)
16α β	2.55 ddd(16.1, 10.9, 1.5) 2.45 ddd(16.1, 7.9, 3.0)	2.59 ddd(15.7, 10.7, 1.8) 2.51 ddd(15.6, 7.8, 3.3)	3'	6.96	qq(7.2, 1.5)	6.95	qq(7.2, 1.5)
17	3.01 dd(10.6, 7.7)	3.46 dd(10.6, 7.7)	3'-⊮	le 1.75	dd(7.3, 1.1)	1.70	dd(7.2, 1.4)

Table 1. ¹H Nmr data for 1 and 2

Figure 1. Selected nOe connectivities for 1.

Tab	le 2.	13 _C	Nmr	data	for 1
С				С	
1	71.9	d	_	19	15.2 q
2	27.4	t		20	124.5 s
3	73.9	đ		21	140.3 d
4	42.4	s		22	111.7 d
5	39.6	đ		23	142.1 d
6	72.4	d		28	78.0 t
7	71.7	d		29	19.7 q
8	45.4	s		30	15.3 q
9	34.3	d		Ac	20.9 q
10	39.5	S			21.3 q
11	24.2	t			170.2 s
12	77.2	d			170.9 s
13	51.4	s		1'	166.5 s
14	157.4	5		2'	128.7 s
15	122.7	d		2'-Me	11.9 q
16	36.6	t		3'	138.0 d
17	50.3	d		3'-Me	14.4 q
18	26.9	q			

loyl. The α configuration of the 12-OAc group was apparent from the couplings of the 12 β -H signal and also from the high field shift of the acetyl signal to δ 1.88 in 1 from δ 2.13 in 9, attributable to the effect of the 1α -tigloyl group. Another stereo-chemistry of 1 was comfirmed by nOe experiments (Figure 1).

The ¹H nmr spectrum of trichilinin C (2), $[\alpha]_D^{19} + 22^\circ$ (c 0.09, MeOH); C₃₃H₄₄O₇, was superimposable on that of 1 except for the lack of one acetoxyl group and some differences in the chemical shifts. The fact that the 12-OAc group in 1 is missing in 2, was apparent from the presence of 12-methylene signls at δ 2.18 and 2.36. On the other hand, the substitution pattern of the A-ring with 1-acetoxyl and 3-tigloyloxy groups was deduced from the large low field shifts of the 11 α - and 9-H signals from δ 1.08 and 2.80 in 1 to δ 2.22 and 3.18 in 2. These shifts would result in the cancellation of the effect due to 1α -tigloyl and a conformational change of the ring C, which was deduced from a large low field shift of the 17-H signal.

Vilasinin and trichilinins appear to be biogenetic precursors of nimbolidins and salannin class ring-C cleaved limonoids, that is, a Grob type olefin-forming fragmentation¹³ of a 12-hydroxy 14, 15-epoxyvilasinin class compound and subsequent ether ring formation between C-7 and C-15 hydroxyl groups would yield nimbolidins and salannin. Insect antifeedant activity of the isolated limonoids was tested by a leaf disk method¹⁴ against the larvae of a Japanese pest insect *Spodoptera eridania* (Boisduval). Nimbolidins (3-6) showed the activity at 500 ppm, whereas trichilinins B (1) and C(2) and salannin (7) were all active at 1000 ppm. The activities of these compounds were not so strong compared to those of the azedarachins, 200-400 ppm, and trichilins, 200-400ppm, isolated from the same plant.

EXPERIMENTAL

¹H and ¹³C Nmr were measured in CDCl₃ on a JEOL FX-400 spectrometer. Ir (KBr) and uv (in MeOH) were recorded on JASCO FT/IR 5300 and Shimadzu UV-210A spectrophotometers. Optical rotation was measured in MeOH using a JASCO J-20 A spectrometer.

Plant material. The root bark was collected in December 1992 at Xiangtan, China.

Extraction and isolation. The air-dried root bark (1.5 kg) was extracted with hexane (20 1),15 °C, 2 weeks, to yield 9.3 g of an extract, which was flash chromatographed on silica gel with a hexane-ether solvent system. Each limonoid fractions eluted with Et₂O was purified by prep-tlc using Et₂O to give three limonoid fractions. Each fraction was further separated and purified through hplc using μ -Bondapac C₁₈ with 20-45% H₂O/MeOH as the solvent to give 1 (3.8 mg), 2 (0.9 mg), 3 (0.9 mg), 4 (6.6 mg), 5 (4.4mg), 6 (5.0 mg), and 7 (4.2 mg).

Trichilinin B (1). An amorphous powder, C₃₅H₄₆O₉; $[\alpha]_D^{19}$ +56° (c 0.13); uv 221 nm (ϵ 11400); ir 3600-3220, 1738, 1712 and 1655 cm⁻¹; negative FABms m/z 609[M-H]⁻, HRFAB ms m/z 551.3002[M+H-Ac]⁺ (Δ -0.7 mmu).

Trichilinin C (2). An amorphous powder, C₃₃H₄₄O₇; $[\alpha]_D^{19}$ +22° (c 0.09); uv 217 nm (ϵ 9000); FABms m/z 553[M+H]⁺.

REFERENCES

- 1. D. E. Champagne, O. Koul, M. B. Isman, G. G. E. Scudder, and G. H. N. Towers, *Phyto-chemistry*, 1992, 31, 377.
- 2. M. Nakatani, R.C. Huang, H. Okamura, and T. Iwagawa, Chem. Lett., 1993, 2125.
- 3. M. Nakatani, S. Arikawa, H. Okamuta, and T. Iwagawa, Heterocycles, 1994, 38, 327.
- 4. M. Nakatani, R.C. Huang, H. Okamura, H. Naoki, and T. Iwagawa, *Phytochemistry*, 1994, **36**, 39.
- 5. M. Nakatani, J-Bo Zhou, T. Iwagawa, and H. Okamura, *Heterocycles*, 1994, 38, 2407.
- 6. J-Bo Zhou, H. Okamura, T. Iwagawa, and M. Nakatani, *Phytochemistry*, in press.
- R.C. Huang, H. Okamura, T. Iwagawa, and M. Nakatani, Bull. Chem. Soc. Jpn., 1994, 67, 2468.
- 8. R.C. Huang, H. Okamura, T. Iwagawa, and M. Nakatani, Phytochemistry, 1995, 38, 593.
- 9. M. Nakatani, J-Bo Zhou, N. Nakayama, H. Okamura, and T. Iwagawa, *Phytochemistry*, in press.
- R. Henderson, R. McCrindle, A. Melera, and K.H. Overton, *Tetrahedron*, 1968, 24, 1525.
- 11. R.V. Pachapurkar, P.M. Kornule, and C.R. Narayanan, Chem. Lett., 1974, 357.
- 12. M. Nakatani, T. Iwashita, K. Mizukawa, and T. Hase, Heterocycles, 1987, 26, 43.
- 13. C.A. Grob and P.W. Schiess, Angew. Chem., Int. Ed. Engl., 1967, 6, 1.
- 14. K. Wada and K. Munakata, Agr. Food. Chem., 1968, 17, 471.

Received, 19th July, 1995