SOROCENOLS C - F, FOUR NEW ISOPRENYLATED PHENOLS FROM THE ROOT BARK OF SOROCEA BONPLANDII BAILLON $^{\rm 1}$

Yoshio Hano, Juntaro Yamanaka, Yasunori Momose, and Taro Nomura* Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274, Japan

Abstract — From the root bark of *Sorocea bonplandii* Baillon (Moraceae), collected in Paraguay, four new isoprenylated phenols, sorocenols C (1), D (2), E (3), and F (4) were isolated along with four known isoprenylated phenols, mulberrofuran K (5), kuwanon J (6), chalcomoracin (7), and kuwanol E (8). The structures of sorocenols C - F were shown to be 1 - 4, respectively. These compounds are regarded as variations of Diels-Alder type adducts between chalcone derivatives and dehydroisoprenylated phenols.

Previously we reported the structure determination of two new isoprenylated phenols, sorocenols A and B, isolated from the root bark of *Sorocea bonplandii* Baillon, collected in Paraguay.² Further extension of studies on the components of *S. bonplandii* led to the isolation of four new isoprenylated phenols, sorocenols C (1), D (2), E (3), and F (4). This paper deals with characterization of these compounds. Sorocenol C (1), pale yellow plates, mp 242 - 243 °C, $[\alpha]_D^{21}$ 0°, showed positive reaction to methanolic ferric chloride, and gave the protonated molecular ion peak at m/z 645 in the fast-atom bombardment (FAB) mass spectrum. The ¹³C nmr spectrum indicated the presence of thirty nine carbons (Table 1). These results suggest the molecular formula of 1 to be C₃₉H₃₂O₉. The uv spectrum of 1 exhibited maxima at 220, 283, 313 (sh), 333 (sh), 347, 366 nm. While the absorption pattern of the spectrum was similar to those of 2-arylbenzofuran derivatives,³ the absorption maxima were shifted to longer wave side. Furthermore the spectrum of 1 was similar to those of albanol B (9)^{4,5} and mulberrofuran P (10),⁶ demonstrating that 1 is an 2-arylbenzofuran derivative such as 9 and 10. The ¹H nmr spectrum of 1 was analysed by comparing with that of 9, along with the aid of the 2D ¹H-¹H COSY spectrum and showed the signals of the following protons (δ in acctone- d_6): protons in a 3-hydroxy-3-methylbutyl group, δ 1.19,

3

$$6: R = \bigcirc_{OH} \bigcirc_{OH} \bigcirc_{OH} \bigcirc_{OH}$$

Figure 1

Table 1 ¹³ C and ¹ H nmr chemical shifts (ppm) of 1 and

		1#1		2 ^{#1}	9#2
C	$(\delta^{13}C)$	(δ ¹ H)	$(\delta^{13}C)$	(δ ¹ H)	
C-2	Ì54.2 ´	, ,	Ì54.2 ´	` ,	155.0
C-3	103.5	7.11 (d, J = 1)	103.5	7.12 (d, J = 1)	103.2
C-3a	122.4	· · · · · ·	122.4		123.0
C-4	122.3	7.42 (d, J = 8)	122.3	7.42 (d, J = 8)	122.3
C-5	113.5	6.82 (dd, J = 2 and 8)	113.6	6.82 (dd, J = 2 and 8)	113.5
C-6	157.1	,	157.1	,	157.4
C-7	98.5	6.99 (br d, $J = 2$)	98.4	6.99 (d, J = 2)	98.5
C-7a	157.0	,	157.0	,	157.4
C-1'	132.4		132.4		132.7
C-2'	105.9	7.12 (d, J = 1.5)	105.9	7.12 (d, J = 1.5)	106.1
C-3'	153.3		153.2		153.6
C-4'	111.2		111.2		111.6
C-5'	156.9		156.9		157.1
C-6'	107.5	7.14 (d, J = 1.5)	107.5	7.14 (d, J = 1.5)	107.6
C-1"	140.6		140.7		140.8
C-2"	126.4	8.46 (br s) ^a	1 26.5	8.46 (br s) ²	126.7
C-3"	129.7		129.7		130.1
C-4"	121.9		121.9		122.5
C-5"	129.2		129.2		129.8
C-6"	121.4	7.63 (br s) ^a	121.4	7.63 (br s) ²	121.3
C-7"	22.2	2.52 (3H, br s)	22.2	2.52 (3H, br s)	22.3
C-8"	106.9		106.9		106.7
C-9"	115.1		115.0		116.0
C-10"	155.4		155.4		158.2
C-11"	118.3		116.9		105.0
C-12"	158.4	50471 7 0	158.3	# O # (1 * O)	160.8
C-13"	106.2	5.94 (d, J = 8)	105.9	5.95 (d, J = 8)	106.5
C-14"	127.6	6.02 (d, J = 8)	127.7	6.01 (d, J = 8)	131.6
C-15"	115.0		115.0		115.7
C-16" C-17"	152.2	6 50 (4 7 2)	152.2	(57(4.1.0)	152.7
C-17 C-18"	105.3 160.1	6.58 (d, J = 2)	105.3 160.1	6.57 (d, J = 2)	105.4
C-18 C-19"	111.7	6 50 (44 I 2 am 49)		(50/44 1 210)	160.2
C-19 C-20"	125.3	6.59 (dd, $J = 2$ and 8)	111.7 125.4	6.59 (dd, $J = 2$ and 8)	111.6
C-20 C-21"	18.8	7.72 (d, J = 8) 2.73 (2H, m)	22.8	7.72 (d, J = 8)	125.3
C-21 C-22"	43.3			3.36 (2H, br d, $J = 6.5$)	
C-22 C-23"	70.8	1.65 (2H, m)	124.0 131.0	5.22 (m)	
C-23 C-24"	70.8 29.5	1.19 (3H, s)	131.0	1 75 (3H bre)	
C-25"	29.5 29.8	1.19 (3H, s) 1.22 (3H, s)	25.9	1.75 (3H, br s)	
C-23	47.0	1.22 (311, 8)	44.9	1.54 (3H, br s)	

Solvent #1: acetone- d_6 #2: CD3OD J in Hz

1.22 (each 3H, s), 1.65, 2.73 (each 2H, m), two sets of ABX type aromatic protons, δ 6.82 (1H, dd, J = 2 and 8 Hz), 6.99 (1H, d, J = 2 Hz), 7.42 (1H, d, J = 8 Hz), 6.58 (1H, d, J = 2 Hz), 6.59 (1H, dd, J = 2 and 8 Hz), 7.72 (1H, d, J = 8 Hz), o-coupled aromatic protons, δ 5.94 (1H, d, J = 8 Hz), 6.02 (1H, d, J

^a These protons showed long-range coupling with the methyl protons at C-7"

= 8 Hz), two sets of *m*-coupled aromatic protons, δ 7.12, 7.14 (each 1H, d, J = 1.5 Hz), 7.63 (1H, br s), 8.46 (1H, br s), one olefinic proton, δ 7.11 (1H, d, J = 1 Hz), methyl group on an aromatic ring, δ 2.52 (3H, br s). In the ¹H nmr spectrum of 1, the coupling patterns and the chemical shifts of all the proton signals except those of the 3-hydroxy-3-methylbutyl group and the protons on the E ring were similar to those of the relevant protons of 9.4,6 These results suggest that 1 seems to be 11"-substituted albanol B. This assumption was supported by the ¹³C nmr spectrum of 1. The spectrum of 1 was analysed by comparing with that of 9, along with the aid of the 2D ¹³C-¹H COSY spectrum (Table 1). In the spectrum, the chemical shifts of all the carbon atoms except the carbons at C-11" and C-14" positions were approximately similar to those of the relevant carbons of 9. From the above results, the structure of sorocenol C is characterized as 1.

Sorocenol D(2), pale yellow amorphous powder, $[\alpha]_{\mathbf{D}}^{18}$ 0°, showed positive reaction to methanolic ferric chloride, and gave the protonated molecular ion peak at m/z 627 in the FAB mass spectrum. The 13 C nmr spectrum of 2 showed the presence of thirty nine carbons (Table 1). These results suggest the molecular formula to be C39H30O8. The uv spectrum of 2 was similar to that of 1. The ¹H nmr spectrum of 2 was analysed by comparing with that of 1, along with the aid of the 2D ¹H-¹H COSY spectrum, and showed the signals of the following protons: protons in a 3,3-dimethylallyl group, δ 1.54, 1.75 (each 3H, br s), 3.36 (2H, br d, J = 6.5 Hz), 5.22 (1H, m), two sets of ABX type aromatic protons, δ 6.82 (1H, dd, J = 2and 8 Hz), 6.99 (1H, d, J = 2 Hz), 7.42 (1H, d, J = 8 Hz), 6.57 (1H, d, J = 2 Hz), 6.59 (1H, dd, J = 2and 8 Hz), 7.72 (1H, d, J = 8 Hz), o-coupled aromatic protons, δ 5.95, 6.01 (each 1H, d, J = 8 Hz), two sets of m-coupled aromatic protons, δ 7.12, 7.14 (each 1H, d, J = 1.5 Hz), 7.63, 8.46 (each 1H, br s), one elefinic proton, δ 7.12 (1H, d, J = 1 Hz), methyl group on an aromatic ring, δ 2.52 (3H, br s). In the spectrum, the coupling patterns and the chemical shifts of all the proton signals except those of the 3,3dimethylallyl group were good agreement with those of the relevant protons of 1 (Table 1). In the ¹³C nmr spectrum of 2, the chemical shifts of all the carbon atoms except those of the 3,3-dimethylallyl group and the carbon at C-11" position were good agreement with those of the relevant carbon atoms of 1 (Table 1). From the above results, the structure of sorocenol D is characterized as 2.

Sorocenol E (3), pale yellow needles, mp 217 - 220 °C, $[\alpha]_D^{21}$ 0°, showed positive reaction to methanolic ferric chloride, and gave the protonated molecular ion peak at m/z 647 in the FAB mass spectrum, and the molecular formula was supported to be C₃₉H₃₄O₉ by the presence of thirty nine carbons in the ¹³C nmr spectrum (Table 2). While the uv spectrum was similar to that of kuwanol A (11),⁷ the absorption maxima

Table 2 13C and 1H nmr chemical shifts (ppm) of 3

			 	
		3		11
C	(δ ¹³ C)	(δ ¹ H)	(δ ¹³ C)	(δ ¹ H)
C-1	117.0	,	117.1	
C-2	157.1		157.0	
C-3	103.6	6.45 (d, J = 2)	103.2	6.43 (d, J = 2.4)
C-4	159.4		159.3	
C-5	108.6	6.39 (dd, J = 2 and 8)	108.0	6.38 (dd, J = 2.4 and 8.4)
C-6	128.5	7.42 (d, J = 8)	127.8	7.39 (d, J = 8.4)
C-a	125.8	7.39 (d, J = 16)	125.1	7.32 (d, J = 16.5)
С-в	124.9	6.89 (d, J = 16)	124.0	6.88 (d, J = 16.5)
C-1'	141.1		138.8	
C-2'	107.6	6.81 (brs)	106.4	6.64 (d, J = 1.5)
C-3'	152.9		153.4	
C-41	109.9		111.4	
C-51	156.6	, , , , , , , , , , , , , , , , , , ,	157.2	((0(1) 1 1 5)
C-6'	109.9	6.81 (br s)	106.7	6.62 (d, J = 1.5)
C-1"	140.5	0.40.0	132.7	
C-2"	126.2	8.43 (brs) ^a	122.7	
C-3"	129.6		37.2	
C-4"	121.7		28.4	
C-5"	129.6	7.50 (h-a):	35.0 36.1	
C-6"	120.9	7.59 (brs) ^a	36.1 23.8	
C-7" C-8"	22.2	2.50 (3H, br s)	102.1	
C-8"	106.8 115.2		116.7	
C-9"	155.4		156.9	
C-10 C-11"	133.4		103.5	
C-11 C-12"	158.3		158.4	
C-12 C-13"	106.1	5.94 (d, J = 8)	106.7	
C-13 C-14"	127.6	6.01 (d, J = 8)	129.7	
C-15"	115.2	0.01 (u, 3 = 6)	116.6	
C-16"	152.2		152.5	
C-17"	105.2	6.56 (d, J = 2)	104.2	
C-18"	159.9	(, ,	156.9	
C-19"	111.6	6.58 (dd, J = 2 and 8)	109.3	
C-20"	125.3	7.70 (d, J = 8)	127.2	
C-21"	18.8	2.73 (2H, m)		
C-22"	43.3	1.68 (2H, m)		
C-23"	71.0			
C-24"	29.6	1.22 (3H, s)		
C-25"	29.6	1.23 (3H, s)		
		• •		

Solvent acetone-d6

were shifted to longer wave side. The ^{1}H nmr spectrum of 3 was analysed by comparing with those of 9 and 11, along with the aid of the 2D ^{13}C - ^{1}H COSY spectrum (Table 2). The spectrum showed the signals of the following protons: protons in a 3-hydroxy-3-methylbutyl group, δ 1.22, 1.23 (each 3H, s), 1.68,

^a These protons showed long-range coupling with the methyl protons at C-7"

2.73 (each 2H, m), two sets of ABX type armatic protons, δ 6.39 (1H, dd, J = 2 and 8 Hz), 6.45 (1H, d, J = 2 Hz), 7.42 (1H, d, J = 8 Hz), 6.56 (1H, d, J = 2 Hz), 6.58 (1H, dd, J = 2 and 8 Hz), 7.70 (1H, d, J = 8 Hz), o-coupled aromatic protons, δ 5.94, 6.01 (each 1H, d, J = 8 Hz), m-coupled aromatic protons, δ 7.59, 8.43 (each 1H, br s), two aromatic protons, δ 6.81 (2H, s), two trans-olefinic protons, δ 6.89, 7.39 (each 1H, d, J = 16 Hz), methyl group on an aromatic ring, δ 2.50 (3H, br s). In the spectrum of 3, the chemical shifts and coupling patterns of all the proton signals of the stilbene moiety in 3 were approximately agreement with those of the relevant proton signals of 11 (Table 2). These results suggest that 3 was a 4'-substituted 2,4,3',5'-tetrahydroxystilbene derivative. The ¹³C nmr spectrum of 3 was analysed by comparison with those of 9 and 11, along with the aid of 2D COLOC spectrum of 3 (Table 2). The ¹³C nmr spectrum of 3 supported that the C ring is an aromatic ring and the C-11" position is substituted with the isoprenoid moiety (Table 2). The chemical shifts of all the carbon atoms of the stilbene moiety in 3, except those of C-1', C-4' and C-6', were similar to those of the relevant carbons of 11. Furthermore the chemical shifts of all the carbon atoms in the C, D, and E rings, except those of C-11" and C-14" positions, were approximately similar to those of the relevant carbons of 9 (Table 1 and 2). From the above results, the structure of sorocenol E is characterized as 3.

Sorocenol F (4), amorphous powder, $[\alpha]_D^{24} + 20^\circ$, showed positive reaction to methanolic ferric chloride, and gave the protonated molecular ion peak at m/z 663 in the FAB mass spectrum, and the molecular formula was supported to be C39H34O10 by the presence of thirty nine carbons in the 13 C nmr spectrum (Table 3). The uv spectrum of 4 was similar to those of oxyresveratrol⁸ and kuwanon Z (12),⁹ and suggested that 4 is one of the 4'-substituted 2,4,3',5'-tetrahydroxystilbene derivative. The 1 H nmr spectrum of 4 was analysed by comparing with that of 12, along with the aid of the 2D 1 H- 1 H COSY spectrum (Table 3). The spectrum showed the signals of the following protons: protons in a 3,3-dimethylallyl group, δ 1.56, 1.69 (each 3H, br s), 3.01 (1H, br dd, J = 6 and 14 Hz), 3.10 (1H, br dd, J = 8 and 14 Hz), 4.81 (1H, m), a methyl group, δ 1.73 (3H, s), a set of methylene protons, δ 1.87, 2.83 (each 1H, dd, J = 3 and 14 Hz), two methine protons, δ 2.75 (1H, br t, J = 3 Hz), 3.47 (1H, s), two sets of ABX type aromatic protons, δ 6.36 (1H, dd, J = 2 and 8 Hz), 6.41 (1H, d, J = 2 Hz), 7.36 (1H, d, J = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.58, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.59, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromatic protons, σ 6.59, 7.26 (each 1H, d, σ = 8 Hz), σ -coupled aromati

Table 3 13C and 1H nmr chemical shifts (ppm) of 4

4			12		
С	(δ ¹³ C)	(δ ¹ H)	$(\delta^{13}C)$	(δ ¹ H)	
C-1	116.1	,	Ì16.7	` '	
Č-2	156.9		156.1		
C-3	103.6	6.41 (d, J = 2)	103.2	6.42 (d, J = 2)	
Č-4	159.1	31.1 (3,0 -)	160.2	,	
Č-5	108.4	6.36 (dd, J = 2 and 8)	107.9	6.36 (dd, J = 2 and 8)	
C-6	128.2	7.36 (d, J = 8)	127.7	7.36 (d, J = 8)	
C-α	126.5	7.27 (d, J = 16)	125.8	7.26 (d, J = 16)	
С-β	124.1	6.85 (d, J = 16)	123.6	6.83 (d, J = 16)	
C-11	141.2	,	140.5	,	
C-21	107.5	6.25 (d, J = 1)	107.0	6.24 (d, J = 1)	
C-31	155.0		154.3		
C-41	110.3		109.7		
C-51	159.1		158.3		
C-6'	100.2	6.60 (d, J = 1)	99.6	6.57 (d, J = 1)	
C-1"	75.8		75.3	,	
C-2"	196.8		195.2		
C-3"	49.2	3.47 (s)	49.0	3.46 (s)	
C-4"	92.5		92.3	•	
C-5"	38.3	2.75 (br t, J = 3)	37.9	2.79 (dd, J = 3 and 4)	
C-6"	31.2	1.87 (dd, $J = 3$ and 14)	31.0	1.87 (dd, $J = 4$ and 14)	
		2.83 (dd, J = 3 and 14)		2.84 (dd, J = 3 and 14)	
C-7"	22.6	1.73 (3H, s)	22.4	1.72 (3H, s)	
C-8"	109.9	` ,	109.2		
C-9"	114.8		114.4		
C-10"	163.4		166.0		
C-11"	117.3		98.2	6.16 (d, J = 2)	
C-12"	171.1		172.2		
C-13"	111.6	6.58 (d, J = 8)	111.3	6.54 (dd, J = 2 and 8)	
C-14"	123.3	7.26 (d, J = 8)	125.8	7.36 (d, J = 8)	
C-15"	112.0		111.6		
C-16"	155.9		155.1		
C-17"	103.2	6.35 (d, J = 2)	102.7	$6.35 ext{ (d, } J = 2)$	
C-18"	159.1		158.1		
C-19"	107.7	6.34 (dd, J = 2 and 8)	107.2	6.34 (dd, J = 2 and 8)	
C-20"	134.3	6.65 (d, J = 8)	133.6	6.65 (d, J = 8)	
C-21"	22.1	3.01 (br dd, $J = 6$ and 14) 3.10 (br dd, $J = 8$ and 14)			
C-22"	122.5	4.81 (m)			
C-23"	131.7				
C-24"	17.9	1.69 (3H, br s)			
C-25"	26.0	1.56 (3H, br s)			

Solvent acetone-d6

ortho-coupled aromatic protons were good agreement with those of the relevant protons of 12 (Table 3). The ¹³C nmr spectrum of 4 was analysed by comparison with that of 12, along with the aid of the 2D ¹³C
¹H COSY spectrum. The chemical shifts of all the carbon atoms except that of C-11" were similar to those

of the relevant carbons of 12 (Table 3). From these results, the 3,3-dimethylallyl group locates at the C-11" position of kuwanon Z (12) and the structure of sorocenol F is characterized as 4.

While sorocenols C (1), D (2), and E (3) have the assymmetric centers, these compounds showed no optical rotations. On the other hand, Hano et al. reported that albanol B (9) was confirmed to be an artifact derived from mulberrofuran I (13) by autooxidation⁵ and compound (13) would be a derivative induced from the Diels-Alder type adduct through the hemiketal intermediate. Considering these reports as well as the isolation of chalcomoracin (7)¹¹ and kuwanol E (8)¹² from the same material, sorocenols C (1), D (2), and E (3) seem to be artifacts derived from the mulberrofuran I type intermediate and sorocenol F (4) seems to be derivative induced from the intermediate as described in Figure 2.

EXPERIMENTAL

Abbreviations: s = singlet, d = doublet, dd = doublet, dd = doublet, t = triplet, m = multiplet, br = broad, sh = shoulder. The general procedures followed and the instruments used in our previous paper.²

Isolation of Sorocenols C (1), D (2), E (3), and F (4)

The dried root bark of Sorocea bonplandii (550 g) was extracted with n-hexane, benzene, and acetone, successively.² Evaporation of n-hexane, benzene, and acetone solutions to dryness yielded 9.3 g, 3.3 g, and 20.3 g of the residue, respectively.² The benzene extract $(3.3 \text{ g})^2$ was chromatographed over silicagel (250 g) with n-hexane containing increasing amount of ethyl acetate as an eluent.² The fraction (0.1 g) eluted with n-hexane - ethyl acetate (3: 7) was rechromatographed over silica gel (10 g) with benzene - ethyl acetate as an eluent. The fraction eluted with benzene - ethyl acetate (83: 17) was fractionated by preparative hplc [solvent, n-hexane - ethyl acetate (3:2), column, Senshu Pak SSC-Silica 4251-N, 1 cmp x 25 cm, detector, uv 280 nm] to give sorocenol D (2, 1.4 mg) and mulberrofuran K (5, 1.6 mg). The acetone extract (20.3 g) was chromatographed over silica gel (250 g) with n-hexane containing increasing amount of ethyl acetate as an eluent.² The fraction (1.3 g) eluted with n-hexane - ethyl acetate (1:1) was rechromatographed over silica gel (50 g) with benzene containing increasing amount of acetone. The fraction (0.25 g) eluted with benzene - acetone (85: 15) was fractionated by preparative tlc [benzene - acetone (2:1)] followed by preparative hplc [chloroform - ethyl acetate (2:5), ethyl ether only, above described conditions] to give sorocenol C (1, 15 mg), sorocenol E (3, 3 mg), kuwanon J (6, 5 mg)¹⁴ and chalcomoracin (7, 2 mg).¹¹ The fraction (0.32 g) eluted with benzene - acetone (8: 2) was fractionated by preparative tlc [benzene - acetone (1:1), chloroform - ethyl acetate (1:2), n-hexane - acetone (2:3)] followed by preparative hplc [n-hexane - ethyl acetate (1:3)] to give sorocenol E (3, 60 mg) and kuwanol E (8, 20 mg). 12 The fraction (0.35 g) eluted with benzene - acetone (7:3) was fractionated by preparative tlc [benzene - ethyl acetate (1:2)] followed by preparative hplc [chloroform ethyl acetate (1:2) to give kuwanol E (8, 10 mg), 12 sorocenol E (3, 15 mg) and sorocenol F (4, 183 mg). The known compounds (5, 6, 7, and 8) were identified by comparing with the spectral data of authentic samples.

Sorocenol C (1)

Compound (1) was crystallized from methanol to give pale yellow plates, mp 242 - 243 °C. FeCl3 test: positive (brown).

[α] $_{D}^{21}$ 0° (MeOH). Uv $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 222 (sh 4.58), 283 (4.04), 313 (sh 4.21), 333 (sh 4.40), 347 (4.42), 366 (4.47). Ir $\nu_{\text{max}}^{\text{KBI}}$ cm⁻¹: 3350 (br), 1600, 1500, 1405, 1360, 1200, 1142, 1110, 1035. FAB-ms: m/z 645 (MH⁺), 451, 221, 205, 149.

Sorocenol D (2)

Compound (2) was obtained as pale yellow amorphous powder. FeCl3 test: positive (brown). $[\alpha]_{\rm D}^{18}$ 0° (MeOH). Uv $\lambda_{\rm max}^{\rm MeOH}$ nm (log ϵ): 221 (sh 4.62), 283 (4.06), 312 (sh 4.20), 330 (sh 4.37), 347 (4.51), 365 (4.46). Ir $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 3300 (br), 1620, 1530, 1500, 1200. FAB-ms: m/z 627 (MH⁺), 626 (M⁺), 449, 391, 282, 185.

Sorocenol E (3)

Compound (3) was crystallized from methanol to give pale yellow needles, mp 217 - 220 °C (decomp.). FeCl₃ test: positive (brown). $[\alpha]_D^{21}$ 0° (MeOH). Uv $\lambda_{\max}^{\text{MeOH}}$ nm (log ϵ): 221 (sh 4.68), 282 (4.18), 313 (4.33), 360 (4.54). Ir ν_{\max}^{KBr} cm⁻¹: 3300 (br), 1600, 1560, 1410, 1150, 1020. FAB-ms: m/z 647 (MH⁺), 629, 573, 451, 427, 391, 369, 309, 263, 217.

Sorocenol F (4)

Compound (4) was obtained as pale yellow amorphous powder. FeCl₃ test: positive (brown). $[\alpha]_0^{24} + 20^\circ$ (c = 0.025, MeOH). Uv $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ϵ): 240 (sh 4.27), 288 (4.34), 304 (4.07), 328 (4.34). Ir $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3300 (br), 1620, 1505, 1380. FAB-ms: m/z 663 (MH⁺), 645, 467, 391, 282, 263, 256, 205, 161.

REFERENCES AND FOOTNOTES

- Part 27 in the series "Constituents of the Moraceae Plants". Part 26 in the series: M. Aida, Y. Hano, and T. Nomura, Heterocycles, submitted.
- 2. Y. Hano, J. Yamanaka, T. Nomura, and Y. Momose, Heterocycles, 1995, 41, 1035.
- 3. T. Nomura, in "Progress in the Chemistry of Organic Natural Products" eds. by W. Herz,
 - H. Grisebach, C. W. Kirby, and Ch. Tamm, Springer-Verlag, Vienna, New York, 1988, 53, 87.
- 4. R. V. Rama Rao, V. H. Deshpande, R. K. Shastri, S. S. Tavale, and N. N. Dhaneshwar, *Tetrahedron Lett.*, 1983, 24, 3013.
- 5. Y. Hano, Y. Miyagawa, M. Yano, and T. Nomura, Heterocycles, 1989, 28,745.
- 6. Y. Hano and T. Nomura, Heterocycles, 1986, 24, 1381.
- 7. Y. Hano, M. Itoh, and T. Nomura, *Heterocycles*, 1985, 23, 819.
- 8. M. Takasugi, L. Munoz, T. Masamune, A. Shirata, and K. Takahashi, Chem. Lett., 1978, 1241.
- 9. Y. Hano, H. Tsubura, and T. Nomura, Heterocycles, 1986, 24, 2603.
- 10. Y. Hano, T. Fukai, T. Nomura, J. Uzawa, and K. Fukushima, Chem. Pharm. Bull., 1984, 32, 1260.
- 11. M. Takasugi, S. Nagao, T. Masamuna, A. Shirata, and K. Takahashi, Chem. Lett., 1980, 1573.
- 12. Y. Hano, T. Nomura, and S. Ueda, *Heterocycles*, 1989, **29**, 2035.

- 13. Y. Hano, T. Fukai, H. Kohno, H. Hirakura, T. Nomura, and J. Uzawa, *Heterocycles*, 1984, 22, 2729.
- 14.a S. Ueda, T. Nomura, T. Fukai, and J. Matsumoto, Chem. Pharm. Bull., 1982, 30, 3042. b J. Ikuta (née Matsumoto), T. Fukai, T. Nomura, and S. Ueda, Chem. Pharm. Bull., 1986, 34, 2471.

Received, 24th July, 1995