SYNTHESIS AND REACTIONS OF LITHIATED MONOCYCLIC AZOLES CONTAINING TWO OR MORE HETERO-ATOMS. PART VI: TRIAZOLES, TETRAZOLES, OXADIAZOLES, AND THIADIAZOLES¹^t

M. Ross Grimmett^a and Brian Iddon^b

Chemistry Department, University of Otago, P.O. Box 56, Dunedin, New Zealand and

hThe Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 **4WT,** England

Abstract -The metallation and halogen + *metal exchange reactions of l,2,3- and I,2,4-rriazoles, tetrazoles, 1,2,3-, 1,2,4-,* **1,2,5-,** *and 1.3.4-oxadiazoles, and 1.2.3-, 1,2,4-, 1,2,5-, and 1,3,4 thiadiazoles and the reactions of the resulting organometallic derivatives, particularly lithiated derivatives, are reviewed comprehensively.*

CONTENTS

- **I INTRODUCTION**
- n I ,2,3-TRIAZOLES
	- A Metallation in the ring
	- B Halogen \rightarrow lithium exchange reactions
	- C Lateral metallation

III 1.2.4-TRIAZOLES

- A Metallation in the ring
- B Lateral metallation

N TETRAZOLES

- A Metallation in the ring and halogen \rightarrow metal exchange reactions
- B Lateral metallation

v OXADIAZOLES

- A 1,2,3-Oxadiazoles (Sydnones)
- B 1,2,4-Oxadiazoles

[†] This series of reviews is dedicated to Professor Alan R. Katritzky on the occasion of his 65th birthday.

- $\mathbf C$ 1,2,5-Oxadiazoles
- 1,3,4-Oxadiazoles D

\overline{M} **THIADIAZOLES**

- A 1.2.3-Thiadiazoles
- \bf{B} 1,2,4-Thiadiazoles
- C 1,2,5-Thiadiazoles
- 1,3,4-Thiadiazoles D

I INTRODUCTION

A gencral introduction to this series of reviews was given in Part L2 Since it appeared a review on "The Lateral Metallation of Isoxazoles" has been published³ which covers some references that we had overlooked. We would be plcascd to hear from any other authors whose work we have inadvertently overlooked.

Part VI, like the other reviews in this Series, is intended to be comprehensive and covers the literature through June 1994.

I1 I,2,3-TRIAZOLES

A Metallation in the ring

Substituted diazomethanes, e.g. 1, react with organolithium reagents as shown in Scheme 1, to give N-lithiated

1H- 1.23-triazoles, e.g. **4.4** The key steps are the condensation of the lithiated diazomethane (2) with the starting material (1), to give triazole (3) which fragments to the product (4) in the presence of the excess of butyllithium.

As far as we are aware only two 1-protected $1H-1,2,3$ -triazoles have been metallated directly. The 1-trimethylsilycthoxymcthyl(SEM) derivative, with butyllithium [tetrahydrofuran (THF)/- 70 °C], gives its 5-lithiated derivative which can be quenched with a number of electrophiles, but not N,N-dimethylformamide (DMF) (see Table I).⁵ Similar reactions with 2-trimethylsilylethoxymethyl(SEM)-2H-1,2,3-triazole are not successful; the 4lithiated derivative is not stabilized through co-ordination with the substituent in this case.⁵ A mixture of $1-1H$ and **2-2H-dicthoxyethyl-1.2.3-uiazole** has been metallated with butyllithium; after quenching the lithiated products with bis(4-chlorophenyl) ketone and deprotection, a low yield (17%) of compound (5) was obtained.⁶

At ambient temperature, or slightly above, 1,4-diphenyl-1H-1,2,3-triazol-5-yllithium (7, R^4 = Ph) fragments to produce nitrogen and the N-phenylketenimine anion $(8, R⁴ = Ph)$ (Scheme 2).⁷ 1-Phenyl- $(7, R⁴ = H)$ and 4methyl-1-phenyl-1H-1.2,3-triazol-5-yllithium $(7, R⁴ = Me)$ fragment similarly but at slightly higher temperatures, typical also of the fragmentation of 1,2,3-thiadiazoles (Section VLA). 1.4-disubstituted tetrazolium salts (Section IV), and 5-chloro-1-phenyltetrazole *(Section IV)* in the presence of bases.^{8,9} A number of other 4-substituted 1phenyl-1H-1.2.3-triazol-5-yllithium compounds (7) lose nitrogen at ambient temperature (Scheme 2).¹⁰ Neither butylluhium nor sec-butyllithium appear to metallate the diethylamide $(6, R⁴ = CONEt₂)$ but an excess of lithium

Scheme **2**

diisopropylamide (LDA) at -78 °C accomplishes this metallation - at position-5. The 5-lithiated derivative of **l-h~n~yl--l-phenyl-l~-l,2,3-triazole** can prepared similarly and quenching with methyl chlorofomate yields the corresponding methyl ester; no fragmentation occurs.¹⁰ 4-Phenyl-1-styryl-1H-1,2,3-triazole forms a

Table I

1H-1,2,3-Triazoles from Lithium Compounds Prepared by Direct Metallation or Halogen \rightarrow Lithium Exchange

 $R¹$ $R⁴$ R^5 Yield $(\%)$ Ref. Reagent $H^{\underline{a}}$ $\mathbf H$ $C(OH)(C_6H_4Cl-4)_2$ $(4-CIC₆H₄)₂CO$ 17 $\overline{6}$ 10 $CO₂Me$ $CICO₂Me$ $CH₂Ph$ Ph $\overline{}$ $CH₂Ph$ SMe 91.5 11 Br $Me₂S₂$ 86.5 CH₂C₆H₄OMe-4 Br **SMe** $Me₂S₂$ $11\,$ CH₂OMeh Br $\mathbf H$ $H₂O$ 84 11 CH₂OMc^h Br $C(OH)Ph₂$ $Ph₂CO$ 93 11 CH₂OMe^b B_I $CO₂H$ $CO₂$ 71.5 11 $CH₂OMe^b$ Br $CO₂Me$ $CICO₂Me$ 11 $\overline{}$ CH₂OMe^b SPh $Ph₂S₂$ 71 11 Br **SEMC** H 30 5 Me MeI

 $Cl₃CCCl₃$

 $\overline{\text{Cl}}$

50

5

SEMº

 H

a A mixture of 1- and 2-diethoxymethyl-1.2.3-triazole was lithiated; yield given is that of the product isolated after deprotection. **h**The 2-methoxymethyl compounds reacted similarly. **C** SEM **5** trimethylsilylethoxymethyl. dThe starting material was a mixture of 1- and **2-dielhoxymcthyl-1,2,3-lriazole;** this yield is of he homogenous product obtained after deprotection of the mixture of products.

5-lithiated derivative which evolves nitrogen on warming; addition of methyl chloroformate appears to result in reaction at the styryl terminus. $4\text{-Nito-1-phenyl-1}H-1,2,3\text{-triazole (6, R}^4 = \text{NO}_2)$ is incapable of lithiation at posilion-5 without affecting the nitro group.10

Providcd that the temperature is kept low it is usually possible to trap the 5-lithiated derivative with an electrophile (Tablc l).6,8,9,11 If position-5 is blocked, as in **1.5-diphenyl-IH-1.2.3-triazole,** the 4-lithiated derivative can he formcd.8

Beguup¹² has reviewed the activation towards deprotonation (NaH/DMF) of N-substituted 1,2,3-triazoles through their quatemization or N-oxidation. Use of the N-oxides in particular has proved extremely useful for introduction of substituents into this ring system. However, with 3-substituted 1,2,3-uiazole 1-oxides regio- and monosclectivity may be low. One of the unsymmetrical positions may be protected, however, with a removable protecting group, e.g. bromine, chlorine, or methylthio.^{12,13} Halogen atoms enhance the acidity of the adjacent proton. The anions formed react with carbon, silicon, halogen, and sulfur electrophiles. Initial products may react further, e.g. by nucleophilic displacement of a halogen atom (e.g. by MeS-liberated from Me₂S₂) or through dealkylation of a methylthio group (SMe \rightarrow SH).

The reactivity of 3-substituted 1,2,3-triazole 1-oxides can be enhanced in various other ways, e.g. by their Oalkyladon.12 Thus, e.g., **1-methoxy-2-phenyl-I,2,3-triazolium** salts are deprotonated by bases such as ethyldiisopropylamine (EDIP), and the resulting anions can be quenched with various electrophiles.¹⁴ In certain cases high regio- and monoselectivity can be achieved, especially through conversion of the 1-oxides into their 1-trialkylsilyloxy derivatives.^{12,15}

3-Benzyl- and 3-phenyl-1,2,3-triazole I-oxide and the 4- and 5-methyl derivatives of the latter can he C-silylated (in **Cl** ICl3 or CH2C12) through their treatment with iodotrimethylsilane (TMSI), trimethylsilyl triflate (TMSTf), or tert-butyldimethylsilyl triflate (TBDMSTf) in the presence of EDIP, lithium 2,2,6,6-tetramethylpiperidide (LiTMP), or 1,2,2,6,6-pentamethylpiperidine (PMP).¹⁵ Substitution occurs in position-5 where this is free. An initial O-silylation enhances the acidity of the adjacent proton. For more acidic positions C-trimethylsilylation can be achieved with TMSI or TMSTf in the presence of EDIP or PMP but positions of low acidity require the use of TMSTf and LiTMP. Introduction of a tert-hutyldimethylsilyl group requires more forcing conditions, i.e. use of TBDMSTf and LiTMP.

2-Suhslitulcd 1.2.3-triazole I-oxides react with high regio- and monoselectivity since only position-5 is activated towards deprotonation.12.15 Thus, 2-methyl- and 2-phenyl-1.2.3-triazole 1-oxide and the 4-methyl derivative of the latter are C-silylated at this position in high yields with TMSTf or TBDMSTf in the presence of EDIP or LiTMP.¹⁵ If position-5 is blocked with a chlorine-atom, then sushtitution is possible in position-4. The trialkylsilyl groups in these products are replaceable through addition of various electrophilic reagents in the usual way.

Treatment of **1,2,3-uizolo[5,1-b]thiazole** with butyllithium gives a mixture of the 3- and 6-lithiated derivatives with the product ratio dependent upon temperature and reaction time. Quenching with most electrophiles gives, as the only isolable compounds, 6-substituted products (in the thiazole ring).¹⁶

B **Halogen** \rightarrow **lithium** exchange reactions

4.5-Dibromo-l(and **-2)-methoxymethyl-l,2,3-uiazole** react with hutyllithium (at -80 "C) at position-5 to give lithialcd dcrivatives which react with a variety of electrophiles in moderate to good yields (except for DMF, which gives only about 5% yield of the corresponding aldehyde).¹¹ The chlorine atom in 5-chloro-1H-1,4-diphenyl-1,2,3-triazole is exchangeable with butyllithium *(see* also Section 1I.A)' *(see* Table I for products).

C Lateral metallation

5-Mclhyl-I-phenyl-IH-1,2,3-triazole is lithiated preferentially in its methyl group **(cf.** Section ILA - 1.5 diphenyl-1H-1,2,3-triazole is lithiated at position-4); reaction of the α -(or laterally)lithiated derivative with iodomethane gives the corresponding ethyl derivative $(42\%$ yield).⁸ A number of benzotriazoles substituted at N-1 by a variety of substituted methyl functions are observed also to lithiate at the N-alkyl group.^{11,17-21} When 1-trimethylsilylmethyl-1H-1,2,3-triazoles are treated with tetrabutylammonium fluoride they are desilylated to give anions (Het-CH γ) which react with electrophiles such as water or aldehydes.²² Noteworthy are the reactions of 4-substituted 1H-1,2,3-triazole-5-carboxylates (9) with phenyllithium, or the $2,2'$ -dilithiated derivative of biphenyl, which yield products (10)-(13) arising from attack at the ester carbonyl group (Scheme 3).23

With TMSI in the presence of PMP (see Section II.A for an explanation of these abbreviations) 2-substituted 5methyl-1,2,3-triazole 1-oxides give the corresponding 4-iodomethyl derivative, as shown in Scheme $4.12,24,25$ With 4.5-dimethyl-2-phenyl-1,2,3-triazole 1-oxide the 4-iodomethyl compound is the major product.²⁴ **A** 4-mcthyl group can be deprotonated in the presence of a svonger base. Thus, treatment of 4-methyl-2-phenyl-**5-trimethylsilyl-1,2,3-triazole 1-oxide (14) with TBDMSTf in the presence of LiTMP results in the formation of** the C-silylated product (15) (Scheme 5) but in only 14% yield.¹⁵ The 3-phenyl isomer (16) reacts similarly, to

 (13) $(56%)$

Scheme 3

give a 38% yield of an analogous C-silylated product. In this case some (13%) orrho-substitution occurs also in the phenyl group.15

Milder conditions (TMSI/PMP) can be employed to C-silylate the methyl group in 5-chloro-4-methyl-3-phenyl-1.2.3-triazole 1-oxide (37% yield).15

Itemtivc C-silylation of **4-methyl-3-phenyl-l.2,3-triazole** 1-oxide, first at C-5 (Section 1I.A) then in the C-4 methyl group, occurs when it is treated with TBDMSTf in the presence of LiTMP,¹⁵ to give compound (17). This product reacts further to give a small amount of compound (18).

111 1,2,4-TRIAZOLES

A Metallation in the ring

In contrast to the 1,2,3-triazoles, which are quite prone to ring-opening on attempted lithiation (Section ILA), 1 substituted 1H-1,2,4-triazoles form much more stable 5-lithiated derivatives. Thus, 1-phenyl-1H-1,2,4-triazole is lithiated at position-5 with no evidence of co-lithiation at any other site.26-30 About 10-15% of ring-opening was noticed though during the lithiation of 1-benzyl-3-phenyl-1H-1,2,4-triazole.³¹ A number of other 1substituted $1H-1,2,4$ -triazoles have been lithiated at position-5. The resulting products are quite stable at -78 °C and react cleanly with electrophiles (Table II). The variety of N-protecting groups used include methyl, $32-35$ ethyl,³⁵ isopropyl,³⁵ hexyl,³⁵ phenyl,^{28,29} benzyl,^{23,26,31,34-37} pyrid-2-yl,³⁸ trityl,³¹ methoxymethyl^{29,39} and similar ethers.²⁹ tetrahydro-2-furyl (THF in Table II).²⁹ tetrahydropyran-2-yl (THP in Table II).²⁹ SEM,⁴⁰ 1,1diethoxycthyl.^{6,35} methylthiomethyl.⁴¹ N,N-dimethylsulfamoyl.⁴² pyrrolidinomethyl.^{43,44} and 1-azabicyclo-[2.2.2]oct-3-y1 **.45** Ring-cleavage of **4-phenyl-4H-1,2,4-uiazole** is evidently preceded by metallation in positions-3 and -5.9 However, **4-phenyl-4H-l,2,4-triazole** has been converted through lithiation in position-5 [BuLi/dicthyl ether (Et₂O)/-78 °C] and condensation of the resulting 5-lithiated derivative with (chlorocarbonyl)phenyketene into the pseudocross-conjugated mesomeric betaine (19) (63% yield)30 An analogous compound (20) (77%) has heen prepared similarly from **1-phenyl-1H-1.2,4-triazol-5-yllithiurn.30**

 $N-U$ nsubstituted 1,2,4-triazoles give only the N-lithiated species which are unreactive towards electrophiles.⁴⁴ A trityl group may sterically hinder lithiation at position-5. Thus, although benzophenone reacts with 1-trityl-1H-1,2,4-aiazol-5-yUithium to give a 61% yield of the carbinol, diethylchlorophosphate fails to form the corresponding 5-phosphate ester.³¹

Katritzky's group have found that use of a pyrrolidinomethyl group to protect $N-1$, despite the fact that it would be expccted to stabilize the 5-lithiated derivative through co-ordination, results in formation of a mixture of the 3 and 5-lithiated derivatives (THF/-78 $^{\circ}$ C).^{43,44} It appears that a subsequent isomerisation produces the less sterically hindered 3-lithiated species. Analogous isomerisations occur in other N-substituted azoles including N-

Table II

1H-1,2,4-Triazoles Prepared from 1H-1,2,4-Triazol-3(or -5)-yllithium Compounds^a

 $\bar{\mathbf{v}}$

 \cdot

 \sim

^a See also text for the synthesis of compounds (19) and (20).³⁰ h Product has the formula shown below. ² Compounds converted directly into amides in I Yield given for deprotected product (acid hydrolysis). i CH₂NC₅H₁₀ = pyrrolidino-methyl. i 1:1 Ratio. K Yield of deprotected (NH) products (see yields of 5-50%. 4 1,3-Benzdioxol-5-yl. ϵ SEM = CH₂O(CH₂)₂SiMe₃. I THF = tetrahydro-2-furyl. ϵ THP = tetrahydropyran-2-yl. Discussion). $1 - Axabicyclo[2.2.2]oct-3-yl$. $m 1-(Pyrid-2-yl)-1,2,4-tetrazol-5-yl$.

aminoalkylazoles⁴⁷⁻⁴⁹ and *N*-trialkylstannylazoles.⁵⁰ 1,2,4-Triazoles protected by an aminal group at *N*-1 give N-unprotected products with diphenyl and dihenzyl sulfides. Nucleophilic cleavage of the aminal group, to form stable thioaminals, explains this behaviour.⁴⁴

Various 1-substituted 1H-1,2,4-triazoles have been acylated via lithiation at position-5 (BuLi/THF/0 $^{\circ}$ C) followed by addition of a **N,N-dimethyl-substituted** amide, e.g. N,N-dimethylacetamide (Table II).35 Acyladon of **l-methyl-1H-1.2,4uiazole** at position-3 was achieved by the sequence: lithiation at position-5 (BuLiHFIO "C), addition of diphenyl disulfide, lithiation of the **I-methyl-5-phenylthio-1H-l,2,4triazole** produced with LiTMP (THF/-80 \rightarrow -100 °C) in the presence of $N, N, N'.$ At tetramethy let hylenediamine (TMEDA), followed by addition of a **N,N-dimethyl-substituted** amide (yields: 35-67%).35 The phenylthio group was clcaved reductively from the products.

With one mol equiv. of butyllithium (THF/0 °C) *bis*(1,2,4-triazol-1-yl)methane lithiates predominantly in position-5 but a significant amount of the $5.5'$ -dilithiated derivative is produced also at this temperature.⁵¹ Varying mixtures of the mono- or disubstituted product **are** isolated following addition of one or more equivalents of the quenching reagent (Table 111). Use of LDA or an increased temperature produces similar results and it can be concluded that ring metallation is both kinetically and thermodynamically favoured.

B Lateral metallation

Although 5-lithiation of 1-substituted $1H-1.2.4$ -triazoles has been shown to be kinetically and thermodynamically favourcd,3'.37 with **I-benzyl-1H-1,2,4-triazoles** there is usually a small amount of product present arising from α -(or lateral)metallation in the benzyl group. With certain electrophilic quenching reagents the isolated products **are** formed exclusively via the laterally lithiated species, e.g. **1-henzyl-lH-1,2,4triazole** with benzyl halides.36 When position-5 is blocked, as in 5-phosphate esters of 1-benzyl-1H-1.2.4-triazole, lateral metallation becomes the favoured pathway.³⁴ The driving force for the novel phosphate migration observed when the 1-benzyl-1H-**1.2.4-lriazole-5-phosphate** ester (21) is mated with LDA (THFI-78 'C) (Scheme 6) is doubtless the formation of the formation of the more stable lithiated species. This anion-mediated phosphonate migration process predominates at **0** 'C. Identical results were obtained with the corresponding 1-methyl analogues.34 The selective lithiation of the 1-alkyl groups may be aconsequence of a "directing effect" of the adjacent phosphonate group **[cf.** ref. 52; phosphates **are** known to he excellent activators for lithiation]. To gain further insight the silyltriazoles (22) were lithiated. While use of LDA gave only about 5% deuterium incorporation into the Nsubstituent after quenching, sec-butyllithium gave greater than 90% deuteriation in the N-substituent (methyl or

or bcnzyl) (Scheme 7). 3-Deuteriation was not observed. These results suggest that phosphonate increases the acidity of the α -protons, but the increased acidity is not responsible for the selectivity of lithiation because α -(or lateral)metallation occurred even in the absence of the directing groups.^{31,34}

Scheme **7**

In **5-mcthyl-1-phenyl-1H-1,2,4-triazole** the methyl group is lithiated by butyllithium in hexme28 as are the rnethylcne groups in 5-ethyl-, 5-methylthio-, and **5-methoxymethyl-1H-1,2.4-triazole** and 1-phenyl- 1H-1.2,4 triazole-5-acetic acid.9.28 These reactions may be contrasted with those of 5-methyl- and 5-methylthio-1-phenylpyra/olcs⁵³ which are *ortho*-lithiated. Apparently the inductive effect of N-4 in 1,2,4-triazoles is significant in directing metallation either to position-5 or to a methylene group at that site.²⁸ Tables IV and V list some example?.

With 1-bis(mcthylthio)methyl-1H-1,2,4-triazole butyllithium in dimethoxyethane (DME) gives products of α -(or lateral)mctallation, presumably because the resulting anion is doubly stabilized.⁴¹ The 1-methylthiomethyl analogue is conventionally 5-lithiated. When treated in turn with butyllithium (hexane/-60 °C) and benzyl halides 1-benzyl-1H-1,2,4-triazoles give products only of lateral metallation.³⁶ That metallation procedures are not the only way of generating such methylene anions was demonstrated by their generation in fluoride induced desilylation of 1-trimethylsilylmethyl-1H-1,2,4-triazole^{54,55} and 1-[phenylthio(trimethylsilyl)methyl]-. 1-[methyl-

Table IV

$1H-1,2,4$ -Triazoles Prepared by Lateral Metallation in a Substituent at $N-1$

1-Phenyl-1H-1,2,4-triazoles Prepared by Lateral Metallation in a Substituent at Position-528 a

a Reaction of 5-methylthio-1-phenyl-1 H -1,2,4-triazole with BuLi, then Mel, gave the 5-ethylthio derivative (70%).

thio(trimcthylsilyl)methyl]-, and 1-[methoxy(trimethylsilyl)-methyl]-1H-1,2,4-triazole.⁴¹ The anion derived from **l-ui1nethylsilylmethyI-lH-1,2,4-triazole** in this way is basic enough to deprotonate position-5 of the starting material, thus leading to mixtures of products. $41,54$

Methyl **lH-l,2,4-triazole-5-carhoxylate** (23) forms **the** carbinol (24) when treated with phenyllithium; retro-aldol reactions account for the other products (Scheme 8).23 Phenyllithium reacts with **1-benzyl-3-phenyl-1H-1.2.4** triazolc at position-5.23

Scheme **8**

With one mol equiv. of but:/llithium 3.5-dimethyl-4-phenyl- $1H-1.2.4$ -triazole gives products of lateral metallation, providing access to the 3-ethyl (33% yield) and some 3-(2'-hydroxyethyl) products [with acetone (26%) or 1-tetralone (51%) ⁵⁶

IV TETXAZOLES

A Metallation in the ring and halogen \rightarrow metal exchange reactions

Provided that position-5 is free metallation takes place there preferentially 45,57-62 either with a 1- (Table VI) or 2substituted tetrazole (Table VII), and halogen \rightarrow metal exchange occurs when magnesium or butyllithium reacts with 5-chloro-1-phenyltetrazole.⁶³ Tetrazolium salts form anions at C-5 very readily with bases such as triethylamine $64,65$ and even more readily with butyllithium.⁶¹

The species (25), which form when butyllithium or the more reactive tert-butyllithium react with 2,3-diaryltetrazolium tetraphenylborates, can be regarded as carbenoids, quite stable at -100 °C.⁶¹ Above -60 °C, however, they ring-open to form **(22)-l-cyano-2,3-diaryltriaz-2-en-2-ium-l-idenes** (26) (Scheme 9) hut they can be trappcd at -90 **"C** by deuteriosulfuric acid, **4-rnethoxybenzenediazonium** tetrafluoroborate **(56%** yield), or tosyl azidc (43%) (but not with nitrous oxide, palladium dichloride, or oxidising electrophiles like chlorine and brornine).61 1,4-Disubstituted tetrazolium salts cleave similarly to give carbodiimides.65 1-Methyltetrazol-5 yllithium would not react with ferric chloride.⁵⁸

The 5-lithiated derivative of 1-methyltetrazole also fragments below -50 **"C** to form nitrogen and lithium

Table VI

1,s-Disubstituted Tetrazoles Prepared from]-Substituted Tetrazol-5-yllilhium Compounds

 $\mathcal{L}^{\text{max}}_{\text{max}}$.

Table VII

2,5-Disubstitued Tetrazoles Prepared from 2-Substituted Tetrazol-5-yllithium Compounds⁴⁵

 $\frac{z}{z}$ ົ≃

Scheme **9**

methylcyanamide, but is stable enough below -60 °C to react with a variety of electrophiles (Table VI).⁵⁹ 1-**Phenyl-lH-l,2,3-triazol-5-yllithiurn** is a little less stable, decomposing at temperatures as high as -60 *"C* to **-70** [°]C, to give lithium phenylcyanamide.⁵⁹ In general tetrazol-5-yllithium compounds are more susceptible to fragmentation than their $1,2,3$ -triazolyllithium analogues.^{59,63}

Noteworthy is the fact that 1-phenyltetrazole is mercurated by mercuric acetate and the resulting 5-mercuriacetate can be used to introduce halogen (CI, Br, I) at this position.⁶⁶

B Lateral metallation

When position-5 of tetrazole is blocked anions can be formed by lateral metallation of alkyl or aryl substituents. Thus, 1- and 2-alkyl-5-phenyltetrazoles react with *tert*-butyllithium (THF/-78 °C) to give "dipole stabilized" α lithioalkyl derivatives which react readily with a wide range of electrophiles (Tables VIII and IX).60,62,67 No lithiation occurs in the ortho-position of the 5-phenyl suhstituent. These lithiomethyl derivatives are stable at -23 \degree C, and even briefly at 0 \degree C.⁶²

Ketones capable of enolisation will not react as quenching reagents for these anions. 2-Akyltetrazoles with groups other thah phenyl at position-5 enter the process less readily, although satisfactory yields are achieved with phenylthio, aminomethyl, and trimethylsilyl groups at position- 5.62 It has been suggested that 2alkyletrazoles are more acidic than their 1-isomers. Hence, the lithioakyl derivatives are less stabilized and more nuclcophilic. The presence of extra pyridine-like N-atoms adjacent to the pyrrole-type N-atom greatly facilitates deprotonation of an N-alkyl group (1-alkylpyrazoles are more readily laterally metallated than l-akylimidazoles).62 A number of 1,5-dialkyl- and 5-benzyl-I-methyl- and 5-methyl-I-phenyl-tetrazoles are converted also into anions at the 5-alkyl side chain by phenyllithium^{68,69} or -sodium⁶⁸ (Table X). Thal ring-lithiation is preferred can be deduced from the reaction of 1-methyltetrazole (27) with butyllithium. Quenching the product with chlorotrimethylsilane initially gives the 5-trimethylsilyl derivative **(28)** (Scheme

Table VIII

1,5-Disubstituted Tetrazoles Prepared by Lateral Lithiation in a Substituent at N-1

Table IX

2,5-Disubstituted Tetrazoles Prepared by Lateral Lithiation in a Substituent at $N-2^{60}$, 62

 $N = N$ CHER² R^5

\mathbb{R}^2	R^5	${\bf E}$	Reagent	Yield $(\%)$
H	Ph	CH ₂ OH	HCHO	33
H	Ph	CH(OH)Et	EtCHO	85
H	Ph	CH(OH)C ₆ H ₄ OMe-4	4-MeOC ₆ H ₄ CHO	77
$\mathbf H$	Ph	Me ₃ SiCl	ClSiMe ₃	70
$\mathbf H$	SP _h	CH(OH)C ₆ H ₄ OMe-4	4-MeOC ₆ H ₄ CHO	57
$\mathbf H$	CH ₂ NH ₂	CH(OH)C ₆ H ₄ OMe-4	4-MeOC ₆ H ₄ CHO	37
Me	Ph	CO ₂ H	CO ₂	53
Me	Ph	CH(OH)Ph	PhCHO	98a
Et	SiMe ₃	SiMe ₃	CISiMe ₃	51
SiMe ₃	Ph	$=CHEt$	EtCHO	68
SiMe ₃	Ph	$=$ CHBu-tert	tert-BuCHO	88

 $\overline{\text{a}$ See also ref. 67

Table X

1,5-Disubstituted Tetrazoles Prepared by Lateral Lithiation of 5-Substituted Tetrazoles

a NC₅H₁₀ is a piperidino substituent. **h** The 5-substituent in the substrate was isopropyl; the product in this case was α -(1-cyclohexyltetrazol-5y1)isohutyric acid.

 10 ,⁶² This is followed by lateral metallation. The product mixture isolated, compounds (29)-(31) (Scheme 10), infers that transmetallation occurs since the methylene group in compound (29) is more acidic than the methyl group in compound **(28).**

5-Phenyltetrazole reacts with sec-butyllithium in the *ortho*-position of the substituent whilst 5-(*o*-tolyl)tetrazole is laterally metallated in the methyl group (Table XI).⁷¹ Whilst reaction of the *ortho*-lithiated derivative derived from 5-phcnylletrazole is straightfonvard with iodomethane, its reaction with I-iodopentane or 1-chloro-3-iodopropane failed. Benzyl bromide gives 5-(o-bromophenyl)tetrazole and bibenzyl. The dianion derived from 5-(o-tolyl)tetrazole reacts with 1-iodopentane and benzyl bromide in addition to iodomethane.⁷¹

V OXADIAZOLES

A 1,2,3-Oxadiazoles (Sydnones)

Lithiation of 3-phenylsydnone (32) (BuLi/Et₂O/-20 °C) followed by carbonation gives the 4-carboxylic acid (35) (Schcmc 11).72 The same product is formed with equal success from 4-bromo-3-phenylsydnone (33) *viu* bromine \rightarrow lithium exchange (BuLi/Et₂O/-50 °C) and treatment of the 4-lithiated intermediate with carbon dioxide.⁷² Other examples of sydnone 4-lithiation have been reported,⁷³ while the bromine \rightarrow lithium exchange route has been used to prepare a number of 4-carboxylic acids74-76(Table **XIr).**

3-Bcnzylaminosydnone reacts at the exocyclic **NH** functionality with one mol equiv. of butyllithium (THF/< -20 'C) hut two mol equiv. lithiate position-4 as well, to give a red dianionic species which reacts with a variety of

Table XI

Tetrazoles Prepared by Lateral Metallation of 5-Aryltetrazoles71

Table XII

4-Substituted 1,2,3-Oxadiazoles Prepared from 1,2,3-Oxadiazol-4-yllithium Compounds

 ζ

J

electrophiles.⁷⁷ Selective C-acylation has been observed with N,N-dimethylbenzamide and with DMF, but acyl halides give only decomposition products. One mol equiv. of iodomethane yields the 4-methyl product; two mol equiv. give the N.4-dimethyl derivative (Table XII).

4Lithiated 3-phenylsydnone (34) reacts with cuprous iodide, to give a copper derivative which can be employed to obtain 4-acyl- or 4-aroylsydnones.⁷⁸ Palladium(0) catalysed cross coupling of 4-cupro-3-phenylsydnone with aryl iodides and vinyl bromides similarly introduced aryl and vinyl groups at the 4-position.⁷⁹ A Grignard reagcnt has been obtained from 4-bromo-3-phenylsydnone (33).72.80,81,82 The bismercurated derivative 36 is coupled in the presence of LiPdCl₃/CuCl₂, to give the tricyclic product (37) (Scheme 12).⁸¹

B 1,2,4-Oxadiazoles

3-Methyl-5-phenyl-1.2.4-oxadiazole (38) reacts with butyllithium to give the product (39) of addition across the 4,5-azomethine double bond (Scheme 13).⁸³ In contrast, its isomer (40) is laterally metallated in its

Scheme 14

methyl group; carbonation of the intermediate yields acid (41) (Scheme 14).83 **A** methyl group at position-5 is much more acidic than one at position-3. Thus, 3,5-dimethyl-1,2,4-oxadiazole reacts with butyllithium (Et₂O/ -60 °C) followed by addition of chlorotrimethylsilane, to give the 5-trimethylsilyl derivative (60% yield).⁸⁴ With butyllithium in THF a lower yield of this product is obtained together with a little of the 3,5-bis(trimethylsilyl) product. **These** resulb were rationalised in terms of butyllithium being a tetramer in ether and a dimer in **THF.** In THF 1he reagent is more basic and less selective. There may also be some co-ordination of the lithium cation at all three heteroatoms, leading to lithiation at both the 3- and 5-methyl groups *("ortho* effect").⁸⁴ 3-Mcthyl- and **3-phenyl-1.24-oxadiazole** are mercuratectwith mercuric chloride at position-5 and the resulting mercurated derivatives can be used to introduce halogen (CI, 10-15% yield; Br, 50%; and I, 90%) at this position.⁸⁵

C 1,2,5-Oxadiazoles

34-Dimethyl-1.2,s-oxadiazole has been laterally metallated in one of its methyl groups as a route to the monoacetic acid derivative (93% yield) via carbonation of the lithiated intermediate.^{9,83}

D 1,3,4-Oxadiazoles

In common with 2-methyl-thiazoles¹ and -1,3,4-thiadiazoles (Section VI.D), lithiation of 2-methyl-5-phenyl-1.3.4-oxadiazole (42) results in dimer (43) formation which is followed by a ring opening process (Scheme 15);

addition of water allows compound (44) to be isolated.^{86,87} 2,5-Dimethyl-1,3,4-oxadiazole also appears to be quite prone to ring-cleavage in the presence of butyllithium.^{9,83} The mechanism of this process has been discussed earlier.¹

A numkr of 5-substituted **2-methyl-1,3,4-oxadiazoles** have been laterally metallated [BuLiFI-78 "C with hexamcthylphosphoric triamide (HMPA) as co-solvent (8:1 v/v)] and the anions quenched with suitable enol ethers, to give compounds of type (45) or (46) (Scheme 16) (Table XIII).⁸⁸ The reaction appears to require an aryl substituent at position-5, for the 2,5-dimethyl compound gives no products.

Table XI11

1,3,4-Oxadiazoles Prepared by Lateral Metallation of a 5-Substituted 2-Methyl-l,3,4-oxadiazole88

VI THIADIAZOLES

A 1,2,3-Thiadiazoles

The ring was cleaved when butyllithium was reacted with **4-methyl-5-phenyl-1,2.3-thiadiazole.8~** 4.5-Diphenyl-1,2,3-thiadiazole fonns diphenylacetylene under similar conditions (ref. 4 in our ref. 8 and ref. 89). Thiadiazoles unsuhstitutcd in position-4 or -5 can be lithiated. Thus, 4-phenyl- l,2,3-thiadiazole forms the 5-lithiated species (47) with LDA⁹⁰ or with butyllithium at -65 $^{\circ}C^{91}$ (see also ref. 92). With butyllithium at higher temperatures, howcver, ring-opening occurs with elimination of nitrogen and the alkynthiolate anion (48) which forms can be trapped with iodo-methane or -ethane, to give the corresponding thioether **(49, R** = Me or Et) (Scheme 17)⁹¹ (see also rcf. 92), or hydrolysed with water, to give 2-benzylidene-4-phenyl-1.3-dithiole (50) (74% yield).93 4-Phenyl-1,2,3-thiadiazole is cleaved similarly with methyllithium at low temperature.⁹⁰ It was thought that a more covalcnt carbon-metal bond might retard the decomposition, but reaction with methylmagnesium bromide was unsuccessful. **4-Phenyl-1.2.3-thiadiazol-5-yllithium.** prepared using LDA, has been trapped in 55% yield with chlorotrimethylsilane.⁹⁰

Scheme 17

5-Phenyl-1.2.3-thiadiazole is lithiated at position-4 with methyllithium in THF:^{90,91} addition of iodomethane yields the 4-methyl derivative in 64% yield.⁹⁰ With phenyllithium the yield of alkylated product drops to 34% and to a mere trace with butyllithium, presumably because N-S bond cleavage (see refs. 83 and 91) occurs in this case. Reactions of 5-phenyl-1,2,3-thiadiazol-4-yllithium with bromo- or iodo-butane were unsuccessful but this anion has been trapped with a wide range of other electrophiles⁹⁰ (Table XIV).

B 1,2,4-Thiadiazoles

3.5-Dimethyl-1,2,4-thiadiazole can be laterally metallated in one of its methyl groups and the resulting anion converted by carbonation into the corresponding 5-acetic acid derivative $(62\% \text{ yield})$.⁸³

C 1,2,5-Thiadiazoles

The nucleophilic ring-cleavage reactions of 1,2,5-thiadiazoles(and -selenadiazoles) have been studied in some detail. Grignard reagents and alkyllithium compounds deprotonate these heterocycles, $83,94-96$ even at temperatures as low at **-70** ^{*°*}C; the reaction products, after hydrolysis, are thioethers, ammonia, and 1,2dicarbonyl compounds (Scheme 18). It is believed that the reactions proceed through metal insertion into the N-S bond, as shown.97 With phenylmagnesium bromide **1,2,4-thiadiazolocyclophanes** also give 1,2-diketones, e.g. $(51) \rightarrow (52)$ (Scheme 19).^{98,99} Benzo-2,1,3-thiadiazole is cleaved similarly by phenyllithium.¹⁰⁰ 1,2,5-Thiadiazole and 3-substituted 1.2.5-thiadiazoles react in turn with Grignard reagents and sulfur dichloride to givc mixtures of 3-mono- or 3.4-disubstituted 1,2,5-lhiadiazoles (Table XV), thiols, and thioethers. It is likely

Table XIV

4-Substituted 5-Phenyl-1,2,3-thiadiazoles Prepared from 5-Phenyl-1,2,3-thiadiazol-4-yllithium Compounds

Table XV

1,2,5-Thiadiazoles Prepared by Reacting Grignard Reagents (R⁴MgX) with 1,2,5-Thiadiazole or a 3-Substituted Derivative¹⁰¹

 \bar{z}

Scheme 19

that the heterocyclic products arise from a sequential ring-opening and recyclisation process.¹⁰¹ By contrast, **3-(3-chloro-1.2,5-thiadiazol-4-yl)-1.2,5,6-tetrahydro-I-methylpyridine** (53) is alkylated at position-3 of the

(53)

thiadiazole ring by its reaction with various Grignard reagents [RMgX; R = n-Pr (75%), R = n-C5H₁₁ (24%), $R = n-C_7H_{15}$ (72%), $R = n-C_8H_{17}$ (75%)].¹⁰²

D 1,3,4-Thiadiazoles

2.5-Dimcthyl-1,3,4-thiadiazole can be laterally metallated in one of its methyl groups and, with carbon dioxide, the resulting lithiated derivative is converted into the corresponding 2-acetic acid **(80%)** yield).81 By contrast, **2,s-** dimcthyl-1,3,4-oxadiazole is cleaved by alkyllithium reagents (Section V.D). 2-Methyl-5-phenyl-1,3,4thiadiazole (54) is metallated similarly by butyllithium (THF/-78 °C) and the resulting anion (55) can be quenched with iodomethane, to give the corresponding ethyl derivative $(97\% \text{ yield})$.86.87 When this experiment was repeated, however, without addition of iodomethane and the resulting mixture was allowed to warm up to ambicnt tcmperature prior **to** addition of water the dimer (56) was isolated (75%). When iodomethane or benzyl

Scheme 20

bromide was added at ambient temperature compounds (57, R = Me or CH₂Ph) (38-47%) were formed.^{86,87} The dimcr (56) reverted to starting material (54) on being heated at >150 °C, as shown (Scheme 20). When 2**iso-pmpyl-5-phenyl-1.34-thiadiazole** was metallated similarly and the resulting laterally metallated intermediate allowed to warm up prior to quenching the mixture with iodomethane, only the *tert*-butyl-1.3.4-thiadiazole (90%) was obtained and no products arising from a ring-opening sequence could be detected.⁸⁷

ACKNOWLEDGEMENTS

We thank Sandra Fahy for help in preparation of the manuscript.

REFERENCES

- 1. Part V: B. Iddon, *Heterocycles*, 1995, 41, 533.
- **2.** Par1 I: B. Iddon, Heterocycles, 1994, 37, 1263.
- 3. N.R. Natale and Y.R. Mirzaei, *Org. Prep. Proced. Int.,* **1993.25, 515.**
- 4. G. Boche, J.C.W. Lohrenz, and F. Schubert, *Tetrahedron,* **1994.50, 5889.**
- 5. W. Holzer and K. Ruso, *J. Heterocycl. Chem.*, 1992, 29, 1203.
- 6. C.D. Jones, M.A. Winter, K.S. Hirsch, N. Stamm, H.M. Taylor, H.E. Holden, J.D. Davenport, E.V. Krumkalns, and R.G. Suhr, *J. Med Chem.,* **1990,33,416.**
- $\overline{7}$. U. Schollkopf and I. Hoppe, *Liebigs Ann. Chem.,* **1974, 1655.**
- 8. R. Raap, *Can.* **J.** *Chem.,* **1971.49, 1792.**
- B.A. Tertov and Yu. V. Koshchienko, *Chem. Heterocycl. Compd. (Engl. Transl.),* **1988,24, 117.** 9.
- 10. S. Ghose and T.L. Gilchrist, **J.** *Chem. Soc., Perkin Trans. 1,* **1991, 775.**
- 11. B. Iddon, in "Studies in Organic Chemistry 35; Chemistry of Heterocyclic Compounds", ed. J. Kovác and P. Zálupsky, Elsevier, Amsterdam, 1988, ch. 4, p. 181.
- $12.$ M. Bcgtrup. *Bull. Soc. Chim. Belg.,* **1988, 97, 573.**
- $13.$ **M.** Begtrup and G. Jonsson, *Acta Chem Scand.,* **1987, B41.724.**
- $14.$ M. Begtrup and J. Holm, **J.** *Chem. Soc., Perkin Trans. 1,* **1981,503.**
- 15. M. Begtrup and P. Vedsb, **J.** *Chem Soc., Perkin Trans. 1,* **1993, 625.**
- 16. G. Jones, H. Ollivierre, L.S. Fuller, and J.H. Young, *Tetrahedron,* **1991, 47, 2861.**
- A.R. Katritzky, S. Rachwal, KC. Caster, F. Mahni, K.W. Law, and 0. Rubio, **J.** *Chem. Soc., Perkin* 17. *Trans. 1,* **1987, 781.**
- 18. A.R. Katritzky and W. Kumierkiewicz, *J. Chem. Soc., Perkin Trans. 1,* **1987, 819.**
- A.R. Katritzky, **M.** Drewniak-Deyrup, X. Lan, and F. Bmnner, **J.** *Heterocycl. Chem.,* **1989,** *26,* **\$29.** 19.
- 20. A.R. Katritzky, 2. Yang, and J.N. Lam, *Synthesis,* **1990, 666.**
- $21.$ A.R. Katritzky and J.N. Lam, *Heteroatom Chem.,* **1990, 1, 21.**
- $22.$ 0. Tsuge, S. Kanemasa, and K. Mauuda, *Chem Lett.,* **1983, 1131.**
- E.M. Burgess and J.P. Sanchez. **J.** *Org. Chem..* **1974, 39, 940.** 23.
- 24. **M.** Bcgtrup and P. Vedsb, **J.** *Chem. Soc., Perkin Trans. 1,* **1992, 2555.**
- M. Begtrup and P. Vedsó, Abstracts of the Thirteenth International Congress of Heterocyclic Chemistry, $25.$ Oregon State University, **1991,** abstract no. **GE8-93.**
- $26.$ H. Behringer and R. Ramert, *Liebigs Ann. Chem.,* **1975, 1264.**
- H.W. Gschwend and H.R. Rodriguez. *Org. React.,* **1979.26,** *1.* 27.
- R.G. Micetich, P. Spevak, T.W. Hall, and B.K. Bains. *Heterocycles,* **1985.23, 1645.** 28.
- 29. F. Dallacker and K. Minn, *Chem.-Ztg.,* 1986, 110, 275.
- 30. K.T. Potts, P.M. Murphy, and W.R. Kuehnling, J. *Org. Chem.,* 1988, 53, 2889.
- $31.$ D.K. Anderson, J.A. Sikorski, D.B. Reitz, and L.T. Pilla, *J. Heterocycl. Chem.,* 1986, 23, 1257.
- 32. P. Jutzi and U. Gilge, *J. Organomet. Chem.,* 1983,246 163.
- 33. S. Kerschl and B. Wrackmeyer, 2. *Naturforsch.,* 1986, 41B, 890.
- 34. D.K. Anderson and J.A. Sikorski, **J.** *Heterocycl. Chem.,* 1992,29, 177.
- 35. S. Ohta, I. Kawasaki, A. Fukuno, M. Yamashita. T. Tada, and T. Kawabata, *Chem. Phurm Bull.,* 1993, 41, 1226.
- 36. M.R. Cuberes, M. Moreno-Manas, and A. Trius, *Synthesis,* 1985,302.
- 37. M. Moreno-Manas, J. Bassa, N. Llad6, and R. Pleixats, *J. Heterocycl. Chem.,* 1990, 27, 673.
- 38. **T.** Kauffmann, **J.** Legler, E. Ludorff, and H. Fischer, *Angew. Chem., Int. Ed. EngI., 1972, 11,* 846.
- 39. M.C. Pirmng, E.G. Rowley, and C.P. Holmes, *J. Org. Chem.,* 1993.58, 5683.
- 40. *N.* Fugina, W. Holzer, and M. Wasicky, *Heterocycles,* 1992, 34, 303.
- 41. S. Shimizu and M. Ogata, *Tetrahedron,* 1989, 45. 637.
- 42. A.D. Buss. P.J. Dudfield, and J.H. Parsons, Europ. Pat. Appl. 0.284,277,A1/1988 *(Chem Abstr.,* 1989, 110, 173232).
- 43. A.R. Katritzky, A. J6zwiak. P. Lue, K. Yannakopoulou, G.J. Palenik, and Z.-Y. Zhang, *Tetrahedron,* 1990, 46, 633.
- 44. A.R. Katritzky, P. Lue, and K. Yannakopoulou, *Tetrahedron,* 1990, 46, 641.
- 45. S.M. Jenkins, H.J. Wadsworth, S. Bromidge, B.S. Orlek, P.A. Wyman, G.J. Riley, and J. Hawkins, J. *Med Chem.,* 1992,35, 2392.
- 46. P.J. Dudfield, C.T. Ekwuru, K. Hamilton, C.E. Oshourn, and D.J. Simpson, *Synlett,* 1990, 277.
- J.R. Lindsay Smith and J.S. Sadd, J. *Chem Soc., Perkin Trans.* 1, 1975, 1181. 47.
- R. Faure, E.-J. Vincent, and J. Elguero, *Heterocycles,* 1983, 20, 1713. 48.
- A.R. Katritzky, K. Yannakopoulou, W. Kuzmierkiewicz, J.M. Aurrecoechea, G.J. Palenik, A.E. 49. Koziol, M. Szczesniak, and R. Skarjune, *J. Chem. Soc., Perkin Trans. 1,* 1987, 2673.
- 50. R. Gassend, J.C. Maire, and J.C. Pommier, J. *Organomet. Chem.,* 1977, 132, 69.
- E. Diez-Barra, A. de la Hoz, A. Sánchez-Migallón, and J. Tejeda, J. Chem. Soc., Perkin Trans. 1, 1993, 51. 1079.
- G.B. Hammond, T. Calogeropoulou, and **D.F.** Wiemer, *Tetrahedron Lett.,* 1986,27,4265. 52.
- 53. M.R. Grimmett and B. Iddon, *Heterocycles,* **1994,37,2087.**
- 54. S. Shimuzu and M. Ogata, *J. Org. Chem.,* **1986.51.3897.**
- 55. S. Shimuzu and M. Ogata, **J.** *Org. Chem.,* **1987. 52, 2314.**
- 56. L.A. Reiter and G.E. Berg, *Heterocycles,* **1992.34.771.**
- 57. L.L. Garber and C.H. Bmbaker, **J.** *Am. Chem Soc.,* **1966,88,4266.**
- 58. *L.L.* Garber and C.H. Brubaker, *J. Am. Chem. Soc.,* **1968.90, 309.**
- R. Raap, *Can.* **J.** *Chem.,* **1971.49, 2139.** 59.
- 60. C.J. Moody, C.W. Rees, and R.G. Young, *Synlett.* **1990.413.**
- 61. R. Weiss and R.H. Lowack, *Angew. Chem., Int. Ed. Engl.,* **1991.30, 1162.**
- 62. C.J. Moody, C.W. Rees, and R.G. Young, *J. Chem. Soc.; Perkin Trans.* 1, **1991,323.**
- 63. J.C. Kauer and W.A. Sheppard, **J.** *Org. Chem.,* **1967,32,3580.**
- 64. A.C. Rochat and R.A. Olofson, *Tetrahedron Lett.,* **1969,3377.**
- 65. D.M. Zimmerman and R.A. Olofson, *Tetrahedron Lett..* **1970,3453.**
- 66. R. SLoll6 and Fr. Henke-Stark, *J. Prakt. Chem.,* **1930, 124, 261.**
- C.I. Moody, C.W. Rees, and R.G. Young, *J. Chem Soc., Perkin Trans. I,* **1991, 329.** 67.
- C.R. Jacobson and E.D. Amstutz, *J. Org. Chem.,* **1953, 18, 1183.** 68.
- A. D'Adamo and R.A. LaForge, *J. Org. Chem.,* **1956.21.340.** 69.
- **W.J.** Gottstein, M.A. Kaplan, and A.P. Granatek, Aust. Pat. **518, 77111981** *(Chern. Abstr.,* **1982, 97,** 70. **38945).**
- 71. L.A. Flippin, *Tetrahedron Lett.,* **1991.32, 6857.**
- 72. *C.V.* Greco, M. Pesce, and J.M. Franco, *J. Heterocycl. Chem.,* **1966, 3, 391.**
- 73. **N.** Suciu, Gh. Mihai, M. Elian, and E. Stroescu, *Tetrahedron,* **1965.21. 1369.**
- 74. H. Kato and M. Ohta, *Bull. Chem. Soc. Jpn.,* **1959.32. 282.**
- L.B. Kier, D. Dhawan, and M.J. Fregly, *J. Pharm. Sci.,* **1964, 53, 677.** 75.
- T. Naito, **S.** Nakagawa, K. Takahashi, K. Masuko, K. Fujisawa, and H. Kawaguchi, *J. Antibiotics,* 76. 1968, **21, 290.**
- 77. **W.** Fleischhacker and E. Urban, *Heterocycles,* **1988,27, 1697.**
- 78. S.A. Tullis and K. Turnbull, *Synth, Commun..* **1990. 20. 3137.**
- 79. V.N. Kalinin and S.F. Min, *J. Organornet. Chem.,* **1988, 352, C34.**
- **H.** Kato and M. Ohta, *Bull. Chem. Soc. Jpn.,* **1957,30,210.** 80.
- H.J. Tien and Y.K. **Lee,** *J. Chin. Chem. Soc. (Taipei),* 1988, 35, 63. *(Chenr Abstr.,* 1990, 112, 81. 98457).
- 82. M. Ohta and H. Kato, *Nippon Kagaku Zasshi,* 1957.78, 1653 *(Chem. Abstr.,* 1960.54, 1503).
- 83. R.G. Micetich, *Can. J. Chem.,* 1970,48, 2006.
- 84. R. Pepino, A. Ricci, M. Taddei, and P. Tedeschi, *J. Organornet. Chem.,* 1982, 231, 91.
- 85. C. Moussebois and F. Eloy, *Helv. Chem. Acta,* 1964. 47. 838.
- 86. A.I. Meyers and G.N. Knaus, *J. Am. Chem Soc.,* 1974.95, 3408.
- 87. **G.** Knaus and A.I. Meyers, *J. Org. Chew.,* 1974.39, 1189.
- 88. *T.* Sasaki, M. Ohno, E.Ito, and K. **Asai,** *Tetrahedron,* 1984, 40, 2703.
- 89. R.G. Micetich, *Org. Prep. Proced. Int.,* 1971.3, 163.
- 90. *E.W.* Thomas and D.C. Zimmermann, *Synthesis,* 1985,945.
- 91. R. Raap and R.G Micetich, *Can. J. Chem.,* 1968,46, 1057.
- 92. R. Raap, *Can. J. Chem.,* 1968, 46, 2251.
- 93. N.I. Zmitrovich, M.L. Petrov, and A.A. Petrov, *J. Org. Chem U.S.S.R. (Engl. Transl.),* 1991.27, 1219.
- 94. E.S. Lane and C. Williams, *J. Chem Soc.,* 1955, 1468.
- 95. *V.* Bertini, A. De Munno, and P. Pino, *Chim Ind (Milan),* 1967, 49, 1385.
- 96. A. De Munno and V. Bertini, *Chim. Ind. (Milan),* 1969.51, 198.
- *V.* Bertini, A. De Munno, A. Menconi, and A. Fissi, *J. Org. Chem.,* 1974, 39, 2294. 97.
- 98. T. Hatta, S. Mataka, and M. Tashiro, *J. Heterocycl. Chem.,* 1986, 23, 813.
- T. Hatta, S. Mataka, M. Tashiro, K. Numano, S. Tanimoto, and A. Tori-i, *J. Heterocycl. Chem.,* 1990, 99. 27, 1861.
- E.S. Lane and C. Williams, Br. Pat. 781, 790 1957 *(Chern Abstr.,* 1958, 52, 2064). 100.
- $101.$ A. De Munno, V. Bertini, and N. Picci, *Heterocycles,* 1986.24, 1131.
- P. Sauerberg, P.H. Olesen, S. Nielsen, S. Treppendahl, M.J. Sheardown, T. Honoré, C.H. Mitch, J.S. 102. Ward, **A.J.** Pike, F.P. Bymaster, B.D. Sawyer, and H.E. Shannon, *J. Med. Chern.,* 1992, *35,* 2274.

Received, 17th January, 1995