SYNTHESIS OF 7-ARYL-2-DIMETHYLAMINO-3,4,5,6-TETRAHYDROPTERIDINE-4,6-DIONES

Edward C. Taylor, *a Masahiko Takahashi, *b and Norio Kobayashib

^aDepartment of Chemistry, Princeton University, Princeton, NJ 08544, USA

^bDepartment of Materials Science, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan

Abstract- 6-Amino-2-dimethylamino-5-nitrosopyrimidin-4(3*H*)-one (1) was condensed with a series of dimethylphenacylsulfonium bromides (2) in pyridine to yield 7-aryl-2-dimethylamino-3,4,5,6-tetrahydropteridine-4,6-diones (xanthopterin derivatives) (5) which were reduced to yield the corresponding 7,8-dihydro derivatives (6).

4-Amino-5-nitrosopyrimidines are important starting materials for the synthesis of pteridines, and their preparation and reactions have been thoroughly reviewed.^{1,2} In certain cases, pteridine 5-oxides are formed directly from these precursors. For example, treatment of 4,6-diamino-5-nitrosopyrimidines with acylpyridinium halides in the presence of base, or with α-cyanobenzyl benzenesulfonate in the presence of pyridine, leads to 4-aminopteridine 5-oxides.³ These reactions apparently proceed by attack of the *in situ*-generated *N*-ylides to the nitroso group to give an intermediate nitrone, which undergoes a subsequent dehydrative cyclization. By contrast, the reaction of 6-amino-1,3-dimethyl-5-nitrosouracil with phenacylpyridinium halides is reported to give 6-hydroxy-1,3-dimethyllumazines,⁴ while condensation with phenacylidenetriphenyl-phosphorane gives 7-substituted 1,3-dimethyllumazines *via* intermediate pyrimidine

anils.⁵ Similarly, 2-phenyl-4,6-diamino-5-nitrosopyrimidine condenses with diethyl phosphonate carbanions, prepared from α -bromo-esters, -nitriles or -ketones, to give pteridin-7(8H)-ones, 7-aminopteridines, and 7-alkyl or arylpteridines respectively, again via intermediate anils.⁶

We now report that condensation of 6-amino-2-dimethylamino-5-nitrosopyrimidin-4(3H)-one (1)⁷ with a series of dimethylphenacylsulfonium bromides (2)⁸ in pyridine under reflux leads to the formation of 7-aryl-2-dimethylamino-3,4,5,6-tetrahydropteridine-4,6-diones (5) rather than the isomeric 5-oxides (4). Physical and spectral properties of these new xanthopterin derivatives (5) are given in Tables 1 and 2. The structures of the condensation products (5) were assigned on the basis of ¹H and ¹³C nmr spectra;⁹ noteworthy is the absence of resonances for the proton and the tertiary carbon at position 6 of the alternative pteridine 5-oxide structures (4). Although the reaction of sulfonium ylides with nitroso groups is reported to yield nitrones via oxaziridine intermediates, ^{10,11} it appears here that the initial oxaziridine (3) rearrange to give the observed pteridin-6-ones (5).

Reduction of 5 proceeded smoothly with sodium dithionite to give 7,8-dihydro derivatives (6). These results are in accord with the known susceptibility of the 7,8-position of xanthopterin to the addition of nucleophiles, and to covalent hydration. ¹² The structures of the product (6) are in accord with their ¹H nmr spectra, which clearly show coupling

Table 1. Physical Properties of Compounds (5) and (6)

	Ar	Yield	Mp (°C)	Molecular	Found % (Calcd %)		
		%	(Solvent)	Formula	С	H	N
5a	C ₆ H ₅	44	204-205	C ₁₄ H ₁₃ N ₅ O ₂	59.23	4.76	24.82
			(MeOH)		(59.34)	(4.63)	(24.73)
5b	5b 4-BrC ₆ H ₄ 46		262-264	$C_{14}H_{12}N_5O_2Br$	46.40	3.52	19.37
	(MeOH-pyridine)				(46.43)	(3.34)	(19.34)
5c	5c 4-ClC ₆ H ₄		259-261	$C_{14}H_{12}N_5O_2Cl$	52.80	4.00	22.10
	(MeOH-pyridine)				(52.92)	(3.81)	(22.04)
5d	d 4-MeOC ₆ H ₄ 49 231-233		231-233	$C_{15}H_{15}N_5O_3$	57.50	5.00	22.40
		(MeOH-pyridine)			(57.50)	(4.83)	(22.35)
5e	$4\text{-MeC}_6\text{H}_4$	4 6	232-234	$\mathrm{C_{15}H_{15}N_5O_2}$	60.58	5.11	23.57
		(M	leOH-pyridine)		(60.60)	(5.09)	(23.56)
6a	C_6H_5	80	199-201	$\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{N}_5\mathrm{O}_2$	58.86	5.26	24.36
		(iso-PrOH)			(58.94)	(5.30)	(24.55)
6b	4-BrC ₆ H ₄	7 0	211-212	$C_{14}H_{14}N_5O_2Br$	45.99	3.98	18.98
		(iso-PrOH)			(46.17)	(3.90)	(19.23)
6c	c 4-ClC ₆ H ₄ 52 195-196		195-196	$C_{14}H_{14}N_5O_2Cl$	52.46	4.57	21.82
	(iso-PrOH		(iso-PrOH)		(52.58)	(4.41)	(21.90)
6d	4-MeOC ₆ H ₄ 66 200-202		$C_{15}H_{17}N_5O_3$	57.21	5.59	21.99	
		(iso-PrOH)			(57.14)	(5.43)	(22.21)
6e	$4\text{-MeC}_6\text{H}_4$	48	192-194	$C_{15}H_{17}N_5O_2$	60.23	5.71	23.44
			(iso-PrOH)		(60.19)	(5.72)	(23.40)

between the C-7 and N-8 protons. 13

The condensation of dimethylphenacylsulfonium iodide with o-phenylenediamine is known to give quinoxalines. ¹⁴ The present work constitutes an expansion of our previous observation that the reaction of dimethylphenacylsulfonium bromide with heterocyclic o-nitrosoamines can provide a convenient route to condensed pyrazinones. ¹⁵

EXPERIMENTAL

 $\textbf{7-Aryl-2-dimethylamino-3,4,5,6-tetra hydropteridine-4,6-diones\ (5):}$

General Procedure. A mixture of 1^7 (1.0 mmol, 183 mg) and the corresponding

Table 2. Spectral Data of Compounds (5) and (6)

	Ms m/z (M ⁺)	Ir KBr, en	₁ -1	l _{H-Nmr} δ (Solvent)
5a	283	3480 3350 1610 1540		3.10 (s, 6H), 7.52-7.70 (s, 5H), 8.30 (s, 1H), 8.33 (s, 1H) (DMDO-d ₆)
5b	361	3325 1625 1545 1505	1580	3.45 (s, 6H), 7.55 (d, J=8.4 Hz, 2H), 8.13 (s, 2H), 8.25 (d, J=8.4 Hz, 2H) (CF ₃ COOH)
5c	317	3340 1620 1545 1500		3.45 (s, 6H), 7.60 (d, J=8.8 Hz, 2H), 8.13 (br s, 2H), 8.37 (d, J=8.8 Hz, 2H) (CF ₃ COOH)
5 d	313	3320 1630 1590 1550		3.42 (s, 6H), 4.02 (s, 3H), 7.12 (d, J=8.8 Hz, 2H), 8.13 (br s, 2H), 8.42 (d, J=8.8 Hz, 2H) (CF ₃ COOH)
5e	297	3465 3330 1540 1490		2.53 (s, 3H), 4.47 (s, 6H), 7.50 (d, J=8.2 Hz, 2H), 8.17 (br s, 2H), 8.37 (d, J=8.2 Hz, 2H) (CF ₃ COOH)
6a	285	3460 3345 1590 1550		3.04 (s, 6H), 5.80 (d, J=5.0 Hz, 1H), 6.51 (d, J=5.0 Hz, 1H), 7.14 (s, 2H), 7.31-7.50 (m, 5H) (DMSO-d ₆)
6b	362	3420 3280 1610 1550		3.05 (s, 6H), 5.81 (d, J=4.8 Hz, 1H), 6.61 (d, J=4.8 Hz, 1H), 7.12 (br s, 2H), 7.44 (d, J=8.3 Hz, 2H), 7.58 (d, J=8.3 Hz, 2H) (DMSO-d ₆)
6c	319	3450 3310 1615 1560		3.03 (s, 6H), 5.82 (d, J=5.0 Hz, 1H), 6.57 (d, J=5.0 Hz, 1H), 7.03 (br s, 2H), 7.43 (s, 4H) (DMSO-d ₆)
6d	315	3500 3340 1610 1570		3.06 (s, 6H), 3.75 (s, 3H), 5.75 (d, J=4.8 Hz, 1H), 6.37 (d, J=4.8 Hz, 1H), 6.92 (d, J=8.0 Hz, 2H), 7.06 (br s, 2H), 7.40 (d, J=8.0 Hz, 2H) (DMSO-d ₆)
6e	299	3490 3340 1620 1565		2.29 (s, 3H), 3.04 (s, 6H), 5.74 (d, J=4.8 Hz, 1H), 6.41 (d, J=4.8 Hz, 1H), 7.09 (br s 2H), 7.17 (d, J=7.9 Hz, 2H), 7.35 (d, J=7.9 Hz, 2H) (DMSO-d ₆)

2⁸ (1.3 mmol) in pyridine (10 ml) was heated under reflux for 2 h. After removal of the solvent, the residue was purified by column chromatography on silica gel with CHCl₃ as the eluent. Recrystallization gave yellow crystals of **5**.

7-Aryl-2-dimethylamino-3,4,5,6,7,8-hexahydropteridine-4,6-diones (6):

General Procedure. To a stirred mixture of **5** (1.0 mmol) in a mixed solvent (50 ml) of water/pyridine/MeOH (2:1:5), a solution of Na₂S₂O₄ (0.80 g) in a small amount of water was added dropwise at 60 °C. The color of the reaction mixture turned from yellow to lemon when the reaction was complete. After cooling, the mixture was acidified with 1N HCl and extracted with CHCl₃ (3 x 30 ml). The extract was dried over anhyd. MgSO₄ and evaporated in vacuo, and the residue was recrystallized to give **6**.

REFERENCES

- (a) D. J. Brown, "The Pyrimidines", Vol. 16 of "The Chemistry of Heterocyclic Compounds", ed. by A. Weissberger, Interscience, New York, 1962; (b) D. J. Brown, "The Pyrimidines, Supplement I", Vol. 16 of "The Chemistry of Heterocyclic Compounds", ed. by A. Weissberger and E. C. Taylor, Wiley-Interscience, New York, 1970; (c) D. J. Brown, "The Pyrimidines; Supplement II", Vol. 16 of "The Chemistry of Heterocyclic Compounds", ed. by A. Weissberger and E. C. Taylor, John Wiley & Sons, New York, 1985.
- D. J. Brown, "Fused Pyrimidines. Part Three. Pteridines", Vol. 24 in "The Chemistry of Heterocyclic Compounds", ed. by E. C. Taylor, John Wiley and Sons, New York, 1988.
- (a) I. J. Pachter, P. E. Nemeth, and A. J. Villani, J. Org. Chem., 1963, 28, 1197;
 (b) I. J. Pachter, in "Pteridine Chemistry. Proceedings of the 3rd International Symposium", ed. by W. Pfleiderer and E. C. Taylor, MacMillan, New York, 1964, 47-64.
- 4. K. Senga, K. Shimizu, and S. Nishigaki, Heterocycles, 1977, 6, 1907.
- 5. K. Senga, H. Kanazawa, and S. Nishigaki, J. Chem. Soc., Chem. Commun., 1976, 588.

- 6. E. C. Taylor and B. E. Evans, J. Chem. Soc., Chem. Commun., 1971, 189.
- 7. B. Roth, J. M. Smith, Jr., and M. E. Hultquist, J. Amer. Chem. Soc., 1951, 73, 2864.
- 8. H. Böhme and W. Krause, Ber., 1949, 82, 426.
- 9. ¹³C Nmr spectrum of **5c** (DMSO-d₆): δ 36.97 (CH₃), 108.66, 128.47 (CH), 132.10 (CH), 133.91, 138.53, 150.05, 157.36, 161.15, 165.90, 176.73.
- 10. A. W. Johnson and R. T. Amel, J. Org. Chem., 1969, 34, 1240.
- 11. A. W. Johnson, J. Org. Chem., 1963, 28, 252.
- 12. W. Pfleiderer, J. Heterocycl. Chem., 1992, 29, 583.
- 13. ¹³C Nmr spectrum of **6b** (DMSO-d₆): δ 36.88 (CH₃), 68.11 (CH), 106.18, 120.90,
 128.66 (CH), 131.14 (CH), 139.68, 155.92, 157.93, 159.84, 166.29.
- 14. S. Kano and Y. Yuasa, Heterocycles, 1981, 16, 1449.
- 15. M. Takahashi and M. Hatazaki, *Heterocycles*, 1995, **41**, 1667. In this paper, various 1,3-disubstituted 5-amino-4-nitrosopyrazoles were condensed with dimethylphanacylsulfonium bromides in boiling pyridine to give pyrazolo[3,4-b]pyrazin-5(4H)-ones and/or pyrazolo[3,4-b]pyrazine 4-oxides.

Received, 2nd October, 1995