¹H- AND ¹³C-NMR SPECTRAL DATA OF FIVE SARPAGINE-TYPE ALKALOIDS

Reija Jokela and Mauri Lounasmaa*

Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, FIN-02150 Espoo, Finland

Abstract - Revised ¹H- and ¹³C-nmr spectral data are presented for normacusine B (1), *E*-akuammidine (2), pericyclivine (3), polyneuridine (4), and voachalotine (5).

As part of our continuing effort to obtain useful spectroscopic data of indole alkaloids, we analysed the ¹H- and ¹³C-nmr spectra of five important sarpagine-type alkaloids: normacusine B (1), *E*-akuammidine $(2)^{1}$ pericyclivine (3), polyneuridine (4), and voachalotine (5) (Table 1).

For the most part, the ¹H-nmr spectra of the sarpagine-type alkaloids (1)-(5) can be found in the literature.²⁻¹² However, there are several misinterpretations of the ¹H chemical shifts, which are now corrected. The published ¹³C-nmr spectra contain major mistakes and the ¹³C-nmr values for polyneuridine (4) appear to be totally unknown. In this paper, our intention is to put the ¹H- and ¹³C-nmr data of the five alkaloids (1)-(5) of sarpagine-type on a firm basis and remove the confusion existing in the literature (*vide infra*).

We have previously introduced the ¹H-nmr spectral data of compounds (1)-(5).² According to homonuclear COSY- and some nOe-measurements, our chemical shift values for compounds (1)-(4) are corrected (Table 1), but a few corrections need to be made to the chemical shifts of voachalotine (5). The accurate chemical shifts for H-17,17' are 3.57 and 3.68 ppm ($J_{17,17}$ = 11 Hz) (Table 1), and not 3.67 ppm and 3.67 ppm as earlier indicated.² For H-21 α and β the chemical shifts are \sim 3.7 ppm (Table 1).

The ¹H-nmr spectral values for compounds (1)-(4) have also been given by other authors.³⁻¹² Most of their reports contain partly incorrect or insufficient ¹H-nmr data.^{3-5,7-12} The structure referred to in Ref. 8 as polyneuridine actually represents *E*-akuammidine, which is a C-16 epimer of polyneuridine. Thus the ¹H-nmr data given for polyneuridine are those of akuammidine. The ¹H-nmr data for polyneuridine given in Ref. 9 are erroneous as well. The chemical shifts reported for H-5 (2.65 ppm) and CO₂Me (2.85 ppm) point to a different stereochemistry at C-16 (*cf.* Table 1), so the compound cannot be polyneuridine.

Regarding the assignment of the ¹³C-nmr data of compounds (1)-(5),^{6,7,9,10,12-17} the situation is even more confusing than for the ¹H-nmr data (*vide supra*), although correct ¹³C chemical shifts for compounds (1),⁶ (2)^{7,14,15}, and (5)¹⁶ are known.

Our new ¹³C-nmr data for normacusine B (1) are in accordance with those of Clivio et al.⁶

The chemical shifts for *E*-akuammidine (2) reported by Jewers *et al.*¹³ are misleading. The values presented are those of an unknown compound, which definitely is not akuammidine.¹⁸ For the correct ¹³C-nmr data of *E*-akuammidine (2), see Table 1.

As far as we know, the only ¹³C-nmr data introduced for pericyclivine (3) are those of Mukhopadhyay and Cordell.¹⁰ Several of the ¹³C-nmr values must be interchanged, however. We have confirmed our ¹³C-nmr data for pericyclivine (3) by heteronuclear correlation spectroscopy.

Table 1. ¹H- and ¹³C-nmr data for compounds (1) - (5).

	1		2		3		4		5	
	¹ H	¹³ C	ιH	¹³ C	¹ H	¹³ C	¹ H	¹³ C	ιH	¹³ C
1	7.91 br s		7.90 br s		7.78 br s		7.81 br s			
2		136.4*		136.6*		136.6*		136.2*		136.2*
3	4.16 br d	50.5	4.24 br d	51.4	4.21 br d	50.4	4.06 dd	49.0	4.16 dd	47.9
5	2.8 m	54.3	3.1 m	58.0	3.68 ddd	53.0	4.27 br d	53.6	4.28 br d	53.6
6α	3.07 dd	27.0	2.94 dd	24.7	2.91 dd	24.2	3.10 dd	22.3	3.11 dd	22.3
6β	2.64 br d		3.30 dd		3.24 dd		2.94 br d		2.94 br d	
7		104.8		106.2		105.7		106.2		104.9
8		127.8		126.9		127.1		126.5		126.1
9	7.46 d	118.1	7.42 d	118.0	7.41 d	117.8	7.48 d	118.3	7.47 d	118.3
10	7.09 t	119.4	7.05 t	119.4	7.04 t	119.2	7.10 t	119.5	7.09 t	118.9
11	7.14 t	121.5	7.11 t	121.5	7.10 t	121.3	7.15 t	121.6	7.19 t	121.1
12	7.31 d	110.9	7.28 d	110.9	7.28 d	110.8	7.31 d	110.8	7.28 đ	108.7
13		138.1*		137.0*		137.4*		136.5*		137.2*
14α	2.04 ddd	33.6	1.85 ddd	29.2	1.76 ddd	26.9	1.91 ddd	28.9	1.98 ddd	28.3
14β	1.74 ddd		2.67 ddd		2.58 ddd		1.85 ddd		1.79 ddd	
15	2.8 m	27.8	3.1 m	29.4	2.98 m	27.2	3.21 dd	30.6	3.22 dd	30.3
16	1.85 dddd	44.3		50.3	2.82 dd	43.8		53.4		53.3
17	3.52 dd	65.1	3.67 d	68.8			3.61 d	63.2	3.57 d	63.1
17'	3.59 dd		3.83 d				3.71 d		3.68 d	
18	1.63 br d	12.8	1.65 ddd	13.0	1.62 ddd	12.9	1.60 br d	12.7	1.61 ddd	12.7
19	5.38 br q	116.7	5.39 br q	116.8	5.27 br q	114.4	5.28 br q	116.0	5.30 br q	116.2
20		139.5*		137.1*		139.5*		136.9*		138.3*
21α	3.55 def	56.1	3.58 def	55.5	3.6 m	56.0	3.6 m	55.8	3.7 m	55.9
21β	3.55 def		3.58 def		3.6 m		3.6 m		3.7 m	
CO₂Me			2.94 s	50.6	3.07 s	50.8	3.73 s	52.2	3.73 s	52.2
<i>CO</i> ₂ Me				173.8		172.9		176.4		176.4
NCH ₃									3.61 s	29.2

* Assigments for these signals within a vertical column may be reversed

Table 1 (continued). Coupling constants for compounds (1) - (5).

Compound 1. $J_{3,14\alpha} = 11 \text{ Hz}; J_{3,14\beta} \approx 2 \text{ Hz}; J_{5,6\alpha} = 5 \text{ Hz}; J_{5,6\beta} \approx 1,5 \text{ Hz}; J_{5,16} \approx 1 \text{ Hz}; J_{6\alpha,6\beta} = 16 \text{ Hz}; J_{14\alpha,14\beta} = 13$ Hz; $J_{14\alpha,15} = 2$ Hz; $J_{148,15} \approx 3$ Hz; $J_{15,16} \approx 1.5$ Hz; $J_{16,17} = 8.5$ Hz; $J_{16,17'} = 6$ Hz; $J_{17,17'} = 11$ Hz; $J_{18,19}$ = 7 HzCompound 2. $J_{3,14\alpha} = 11 \text{ Hz}; J_{3,14\beta} \approx 2 \text{ Hz}; J_{5,6\alpha} = 5 \text{ Hz}; J_{5,6\beta} = 1.5 \text{ Hz}; J_{6\alpha,6\beta} = 16 \text{ Hz}; J_{14\alpha,14\beta} = 12.5 \text{ Hz}; J_{14\alpha,15} = 12.5 \text{ Hz}; J_{14\alpha,$ ≈ 2 Hz; $J_{14\beta,15} \approx 3$ Hz; $J_{17,17} = 11$ Hz; $J_{18,19} = 7$ Hz; $J_{18,21\alpha} = 2$ Hz; $J_{18,21\beta} = 2$ Hz Compound 3. $J_{3,14\alpha} = 10.5 \text{ Hz}; J_{3,14\beta} = 2 \text{ Hz}; J_{5,6\alpha} = 5 \text{ Hz}; J_{5,6\beta} = 1.5 \text{ Hz}; J_{5,16} = 11 \text{ Hz}; J_{6\alpha,6\beta} = 16 \text{ Hz}; J_{14\alpha,14\beta} \approx 1000 \text{ Hz}; J_{14\alpha,14\beta} = 10000 \text{ Hz}; J_{14\alpha,14\beta} = 10000 \text{ Hz}; J_{14\alpha,14\beta} = 10$ 13 Hz; $J_{14\alpha,15} \approx 2$ Hz; $J_{14\beta,15} = 4.5$ Hz; $J_{15,16} = 2.5$ Hz; $J_{18,19} = 7$ Hz; $J_{18,21\alpha} = 2$ Hz; $J_{18,21\beta} = 2$ Hz Compound 4. $J_{3,14\alpha} = 9.5 \text{ Hz}; J_{3,14\beta} = 4 \text{ Hz}; J_{5,6\alpha} = 6.5 \text{ Hz}; J_{5,6\beta} \approx 1 \text{ Hz}; J_{6\alpha,6\beta} = 16.5 \text{ Hz}; J_{14\alpha,14\beta} = 13.5 \text{ Hz}; J_{14\alpha,15}$ = 2.5 Hz; $J_{148,15}$ = 3.5 Hz; $J_{17,17}$ = 11.5 Hz; $J_{18,19}$ = 6.5 Hz Compound 5. $J_{3,14\alpha} = 10.5 \text{ Hz}; J_{3,14\alpha} \approx 3.5 \text{ Hz}; J_{5,6\alpha} = 6.5 \text{ Hz}; J_{5,6\alpha} \approx 1 \text{ Hz}; J_{6\alpha,6\beta} = 16.5 \text{ Hz}; J_{14\alpha,14\beta} = 13.5 \text{ Hz};$ $J_{14\alpha,15} = 2.5 \text{ Hz}; J_{14\beta,15} \approx 3 \text{ Hz}; J_{17,17'} = 11 \text{ Hz}; J_{18,19} = 6.5 \text{ Hz}; J_{18,21\alpha} \approx 2 \text{ Hz}; J_{18,21\beta} \approx 2 \text{ Hz}$

Cordell *et al.* have presented the ¹³C-nmr spectrum of a compound they call polyneuridine (4).⁹ In fact, the chemical shifts belong to a compound that cannot be polyneuridine (2) (*vide supra*, ¹H-nmr). The new and correct ¹³C chemical shifts for polyneuridine (4) are reported in Table 1.

Our ¹³C chemical shift values for voachalotine (5) are in accordance with those of Reis et al.¹⁶

As we can see, there has been much confusion in the literature about the ¹H- and ¹³C-nmr spectral data of alkaloids (1)-(5). Their chemical shifts are now revised, and they can be used as reliable reference data in analyzing the nmr spectra of other alkaloids of sarpagine type.

EXPERIMENTAL

⁻¹H⁻and ¹³C-nmr spectra were measured with a Varian Unity-400 NMR spectrometer working at 399.952

1018

MHz (¹H) and 100.577 MHz (¹³C). The solvent in all measurements was CDCl₃ (the solubility of *E*-akuammidine is poor). Chemical shifts are given in ppm by reference to TMS (¹H-nmr; $\delta_{\rm H} = 0.00$ ppm) and CDCl₃ (¹³C-nmr; $\delta_{\rm C} = 77.00$ ppm). Signal assignments were confirmed by APT- and ¹H, ¹H-COSY measurements, and when there was enough of the sample also by ¹H, ¹³C-correlation spectroscopy. Abbreviations s, d, t, q, m, def, and br are used to designate singlet, doublet, triplet, quartet, multiplet, deformed, and broad, respectively.

ACKNOWLEDGEMENTS

The authors thank Mme Christiane Kan and Mme Dr. Nicole Langlois (Institut de Chimie des Substances Naturelles, Gif/Yvette, France), and Prof. H. Rapoport (University of California, Department of Chemistry, Berkeley, Calif., USA) for the supply of alkaloid samples.

REFERENCES

1. Since also Z-akuammidine (6) is known as a naturally occurring compound,¹⁹ we prefer to use the prefix E- for the "normal" akuammidine (2) in order to avoid confusion.

- 2. M. Lounasmaa, R. Jokela, A. Tolvanen, and S.-K. Kan, Planta Med., 1985, 519.
- 3. T. A. van Beek, F. L. C. Kuijlaars, P. H. A. M. Thomassen, R. Verpoorte, and A. Baerheim Svendsen, *Phytochemistry*, 1984, 23, 1771.
- 4. T. A. van Beek, R. Verpoorte, and A. Baerheim Svendsen, J. Nat. Prod., 1985, 48, 400.
- 5. J. Garnier and J. Mahuteau, Planta Med., 1986, 66.
- 6. P. Clivio, B. Richard, J.-R. Deverre, T. Sévenet, M. Zèches, and L. Le Men-Olivier, *Phytochemistry*, 1991, **30**, 3785.

- A. K. Bashir, A. A. Abdalla, E. S. Hassan, I. A. Wasfi, M. A. Amiri, and T. A. Crabb, Arab Gulf J. Scient. Res., 1994, 12, 119.
- 8. S. Mukhopadhyay, G. A. Handy, S. Funayama, and G. A. Cordell, J. Nat. Prod., 1981, 44, 696.
- 9. L.-Z. Lin and G. A. Cordell, Phytochem. Anal., 1990, 1, 26.
- 10. S. Mukhopadhyay and G. A. Cordell, J. Nat. Prod., 1981, 44, 335.
- 11. M. P. Cava, S. K. Talapatra, J. A. Weisbach, B. Douglas, R. F. Raffauf, and J. L. Beal, Tetrahedron Lett., 1965, 931.
- 12. Atta-ur-Rahman, M. M. Qureshi, K. Zaman, S. Malik, S. S. Ali, Fitoterapia, 1989, 60, 291.
- 13. K. Jewers, D. F. G. Pusey, S. R. Sharma, and Y. Ahmad, Planta Med., 1980, 38, 359.
- 14. D. Ponglux, S. Wongseripipatana, S. Subhadhirasakul, H. Takayama, M. Yokota, K. Ogata, C. Phisalaphong, N. Aimi, and S. Sakai, *Tetrahedron*, 1988, 44, 5075.
- 15. E. A. Abdel Sattar, M. M. El Olemy, and J. S. Mossa, Saudi Pharm. J., 1994, 2, 135.
- 16. R. Braga and F. Reis, Phytochemistry, 1987, 26, 833.
- 17. M. R. Yagudaev, Chem. Nat. Comp., 1986, 22, 1.
- 18. The erroneous ¹³C chemical shifts were included in our earlier review²⁰ of the sarpagine-ajmaline group of indole alkaloids.
- 19. S. Sakai, S. Wongseripipatana, D. Ponglux, M. Yokota, K. Ogata, H. Takayama, and N. Aimi, *Chem. Pharm. Bull.*, 1987, **35**, 4668.
- A. Koskinen and M. Lounasmaa, "Progress in the Chemistry of Organic Natural Products", eds.
 W. Herz, H. Grisenbach, G. W. Kirby, Vol 43, Springer Verlag, Wien, New York, 1983, pp. 267-346.

Received, 12th January, 1996