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CONVERSION O F  ARTEMISINIC ACID INTO (-)-FABIANANE 
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Abstract - The conversion of (-)-fabianane from artemisinic acid was achieved in 

seven steps via photooxidative cyclization as a key step. 

(-)-Fabianane (8) was isolated by Brown' from the aerial parts of Fabiana imbricata(Ruiz and Pavon) 

Romeo, a plant native to central Chile which is used by the Mapuche Indians to treat kidney and urinary 

afflictions. (-)-Fabianane (8) is novel seco-amorphane sesquiterpene. It shares several structural similarities 

such as overall stereochemistry and level of oxygenation at carbons 4.5 and 6 with deoxyartemisinin (2),2 the 

metaboliteof artemisinin, the antimalarial principle from Artemisia annua. The two compounds differ in that 

the 5, 12 ester linkage in deoxyartemisinin (2) is replaced by a 5, 11 ether linkage with an additional methyl at 

carbon 11 in fabianane (8). There have been no previous reports of synthesis of fabianane to the best of our 

knowledge.3 The novel seco-amorphane shucture as well as natural scarcity of (-)-fabianane (8) (0.001 

% yield from F. imbricata) have prompted us to prepare the compound by synthesis. In this communication, 

we would like to report the first synthesis of (-)-fabianane. 

(-)-Artemisinic acid (I), a versatile chiral starting material for the preparation of many novel analogs4 of 

artemisinin, was converted to dihydroartemisinyl aldehyde (3) by literature procedures4a in three steps in 65 

%overall yield. The oxidative degradations of the aldehyde (3) with bubbling air in a dimethylformaldehyde 

solution of 1,4diazabicyclo[2.2.2]octane (DABCO) and complex of cupric acetate with 2.2'-bipyridyl (70 OC. 

1 h) afforded the ketone (4)6 (mp 34-36 OC) in 44 % yield (Scheme 1). Treatment of the ketone (4) with 

methylmagnesium bromide in ether (reflux, 2 h) provided 4-amorphen-11-01 (5)' (mp 80-82 OC) in 87 96 

yield. The tertiary alcohol (5) was also isolated8 from Fabiana imbricata (Ruiz and Pav.). Photosensitized 

oxygenation9 of 5 afforded new peroxofabianane (7)lZ (mp 79-80 OC) in 27 % yield via the intermediate 

(6)10Jl[irmdiation of 5 under oxygen atomosphere and rose bengal as photosensitizer in CH~CNICHZCI~ 
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Scheme 1 

ReagentsandCondtionr i, air, 1,4-diazabicyclo[2.2.2]octane (0.56 equiv.), cupric acetate (cat.)/2,Z1- 

bipyridyl(l:l), dimethylformamide, 70 OC, 1 h, 44 %; ii, methylmagnesium bromide (5.4 equiv.), 

anhydrous ether, reflux, 2 h, 87 %; iii, 02, irradiation, rose bengal, CH$N/CH2C12(1: 1 ), -23 O C, 2.5 h, 

92 %; iv, copper triflate (0.41 equiv.), oxygen, -23 OC,1 h then room temperature, 2 h,27 % from 5; v, Hz, 

5 % Pd/CaC03, ethanol, room temperature, 22h then pTsOH (0.4 equiv.),room temperature, 1 h, 91 %. 
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(1: I), -23 OC and subsequent treatment by copper triflate at -23 0 C to room temperature]. Hydrogenation of 7 

with 5 % PdICaC4 in ethanol and subsequent in situ treatment with pTsOH afforded (-)-fabianane 

(8)13 (oil) in 91 % yield. (-)-Fabianane (8) synthesized from artemisinic acid was identical by cornparision of 

specific rotation and spectral properties with those of natural (-)-fabianane,l isolated from F. imbricata. This 

synthesis represents a demonstration of the potential biogenetic relationship hetween the tertiary alcohol (5) and 

fabianane (8). The intermediate (6)'o was obtained in 92 % yield from 4-amorphen-11-01 (5) and the 

stereoisomer was not detected in this reaction. Unfortunately, direct conversion2 of the intermediate (6) with 

mCPBA in CHCb to fabianane (8) was unsuccessful. The absolute configuration of natural fahianane has 

been assumed to he as shown in 8 by analogy with other amorphaness which were recently isolated from F. 

imbricata, such as the tertiary alcohol (5). The relative configuration of (-)-fahimane was confirmed as 

shown in the structure (8) by this conversion . 
In conclusion, this first conversion of (-)-fabianane was stereoselectively established from readily available 

artemisinic acid in seven steps and provides this scarce natural product in quantities suitable for more extensive 

biological evaluation. 
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