NEW SYNTHETIC ROUTE TO 3-FURYLPHOSPHONATES

Chi-Wan Lee and Dong Young Oh*

Department of Chemistry, Korea Advanced Institute of Science and Technology, 373-1, Kusung-Dong, Yusung-Gu, Taejon, 305-701, Korea

Abstract - A method for the preparation of 3-furylphosphonates has been developed starting with the addition of homoallylic phosphonates to nitrile, followed by a sequence consisting of acidic hydrolysis, iodinemediated cyclization and dehydroiodination by DBU.

In contrast to the significant number of preparations of arylphosphonates,¹ only a few reports are found in the literature for the preparation of furylphosphonates.² A literature survey on the preparation of 2-furylphosphonates showed that some of the methods reported involve the photoinitiated arylation of trialkyl phosphites,^{2a} and the reaction of 2-furyllithium with diethyl chlorophosphate.^{2c} But there is only one literature about the method for the preparation of 3-furylphosphonate to our knowledge.³ Therein, 3-furylphosphonates were obtained through halophilic attack of a phosphite anion, but halophilic attack occurs only when the bromomethyl group in furan is conjugated with the ethoxycarbonyl group.

Recently, we have developed method for the synthesis of 2,4-disubstituted furans,⁴ and β diethoxyphosphinyl- β , γ -unsaturated ketones *via* iodocyclization.⁵ As an extension of thesemethods we investigated a new route to 3-furylphosphonates *via* iodocyclization. The method is depicted in Scheme 1.

Treatment of lithiated homoallylic phosphonates (1) with nitriles followed by hydrolysis with 5N H_2SO_4 gave the 2-oxophosphonate derivatives (2).⁶ The reaction of 2-oxophosphonates (2) with 1.5 equiv. of K₂CO₃ and 2 equiv. of iodine in dry acetonitrile at room temperature afforded dihydrofurans (3). The conversion of 2 to 3 could be reasonably explained by assuming the formation of a iodonium ion, which allow an intramolecular attack by enolic -OH,⁷ leading to the cyclization product (3). And the dehydroiodination of dihydrofurans (3) by DBU in anhydrous THF and subsequent basic isomerization gave 3-furylphosphonates (4) in good overall yields from 1 (Table 1).

•	•			=	
3-Furylphosphonate	R ¹	R ²	R ³	Yield (%)	
	Н	Н	Ph	80	
4b	Н	н	p-Cl-Ph	83	
4c	н	Н	<i>p</i> -CH ₃ O-Pl	h 80	
4d	Me	н	p-Cl-Ph	66	
4e	Ме	Me	p-Cl-Ph	63	
4f	Ph	н	p-Cl-Ph	57	

 Table 1. Synthesis of 3-Furylphosphonates via Iodocyclization

When the reaction was carried out with aliphatic nitriles, we have found none of the desired 2-

oxophosphonate derivatives (2). In the case of synthesis of 4f ($R^1=Ph$, $R^2=H$), 2f could be prepared as in the literature⁸ not by the above method, because the acylation step of homoallylic phosphonate (1f) afforded 2-oxophosphonate (2f) in low yield.

When t-BuOK was used in place of DBU, the desired prodct could not be obtained.

In summary, we have developed a new alternative and mild route to 3-furylphosphonates. Although this procedure involved the well-known halocyclization, the reaction pathway proved to be of a significant value since it is the first approach to the synthesis of 3furylphosphonates *via* iodocyclization.

Representative Procedure.

To a solution of diethyl 3-butenylphosphonate (1) (1 mmol) in 5 ml of THF was added dropwise a solution of 1.6 M *n*-BuLi (0.69 ml, 1.1 mmol) in hexane at -78 °C. After stirring for 1 h at this temperature, a solution of benzonitrile (1.1 mmol) in 5 ml of THF was added dropwise and the reaction mixture was stirred at room temperature for 30 min under N₂, followed by addition of 5N H₂SO₄ (2 ml). After usual work-up, to the reaction mixture in dry acetonitrile (30 ml) was added iodine (558.4 g, 2.2 mmol) and K₂CO₃(207.3 g, 1.5 mmol). The mixture was stirred for 2 h at room temperature. To the resultant solution was added saturated aq. sodium thiosulfate and the mixture was extracted with CH_2Cl_2 . Then the combined organic extracts were concentrated and treated with DBU (380.6 g, 2.5 mmol) in 5 ml of THF at room temperature. After 3 h, the mixture was quenched and extracted with CH_2Cl_2 . The combined organic extracts were dried with MgSO₄, and concentrated *in vacuo*. The mixture was purified by silica gel chromatography.

ACKNOWLEDGEMENT

We thank the Korea Science and Engineering Foundation for financial support.

REFERENCES

- T. Hirao, T. Masunaga, Y. Ohshiro, and T. Agawa, Synthesis, 1981, 56; T. Hirao, T. Masunaga, N. Yamada, Y. Ohshiro, and T. Agawa. Bull. Chem. Soc. Jpn., 1982, 55, 909;
 A. Osuka, N. Ohmasa, Y. Yoshida, and H. Suzuki, Synthesis, 1983, 69; X. Lu and J. Zhu, Synthesis, 1987, 726.
- R. Obrycki and C. E. Griffin, J. Org. Chem., 1968, 33, 632; S. Andreae and H. Seeboth,
 Z. Chem., 1979, 19, 98 (Chem. Abstr., 1979, 91, 20607k); S. Andreae and H. Seeboth,
 Ger. (East) Patent 136,501 1979 (Chem. Abstr., 1979, 92, 58975n).
- 3. L. M. Pevzner, V. M. Ignat'ev, and B. I. Ionin, Zhur. Obshch. Khim., 1994, 64, 1108.
- 4. J. H. Jung, J. W. Lee, and D. Y. Oh, Tetrahedron Lett., 1995, 36, 923.
- 5. C.-W. Lee, J. E. Hong, and D. Y. Oh, J. Org. Chem., 1995, 60, 7027.
- 6. K. Lee and D. Y. Oh, Synthesis, 1991, 213.
- R. Anonioletti, F. Bonadies, and A. Scettri, *Tetrahedron Lett.*, 1988, 29, 4987 ; J. Barluenga, M. Tomàs, and A. Suarez-Sobrino, *Synlett*, 1990, 673.
- 8. K. Lee and D. Y. Oh, Bull. Korean Chem. Soc., 1989, 10, 613.

Received, 13th February, 1996