HIGHLY EFFECTIVE PROCEDURE FOR INTRODUCTION OF AMINO GROUP INTO THE 2-POSITION OF IMIDAZOLE RING

Ikuo Kawasaki, Norio Taguchi, Youko Yoneda, Masayuki Yamashita, and Shunsaku Ohta*

Kyoto Pharmaceutical University, Misasagi Nakauchicho 5, Yamashinaku, Kyoto 607, Japan

Abstract - Procedures for the preparation of 2-amino- and 2-arylaminobenzimidazoles were developed, and one of the efficient procedure was applied to the synthesis of preclathridine A, a marine imidazole alkaloid isolated from a sponge.

Several methods for the preparation of 2-aminoimidazole compound have been reported, and they are reactions of 2-chloroimidazole with ammonium hydroxide,¹ imidazole with sodium amide,² and substitution of 2-lithioimidazole with vinyl azide followed by hydrolysis.³ But these procedures are

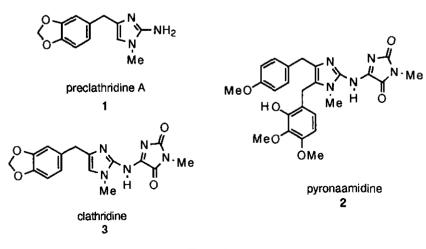
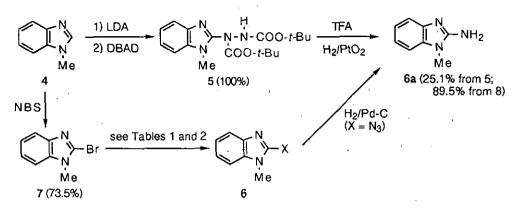



Figure 1

of low yield and require some severe reaction conditions. On the other hand, several marine alkaloids such as 1-3 containing primary amino or substituted amino group at the 2-position of imidazole ring were recently isolated from sponges.⁴ We have hitherto investigated synthesis of imidazole compounds,⁵ and in this communication we would like to report several improved procedures, proceed in good yields and under mild conditions, for the preparation of 2-amino and 2-arylaminobenzimidazoles and the first total synthesis of preclathridine A (1).

Scheme 1

First, 2-lithioimidazole was treated with di-*tert*-butyl azodicarboxylate to give quantitatively the 2hydrazide (5) (Scheme 1), however, conversion of the product (5) to the 2-aminobenzimidazole (6a; X=NH₂) resulted in low yield (25.1%). On the other hand, aminations of 2-bromobenzimidazole (7) with aqueous ammonium hydroxide in various solvents were examined (Entries 1-6), but the yield of 6a was low (30.6 %) or the 2-hydroxy compound (6c; X=OH) was produced. When DMF was used as the reaction solvent, *N*,*N*-dimethylamino group was introduced to give 6b (X=NMe₂) in 91.4%

Entry	Reagent	Solvent	<u>X</u>	Yield (%)
1 '	28% NH4OH	a	NH ₂	6a ^b : 30.6
2	28% NH4OH	DMFa	NMe ₂	6b ^c : 91.4
3	28% NH₄OH	HCONH ₂ a	ОН	6c : 70.9
4	28% NH4OH	EtOH ^a	ОН	6c : trace
5	NHEt ₂	а	NEt ₂	6d : 22.2
6	NHBn ₂	a	—	N.R.d

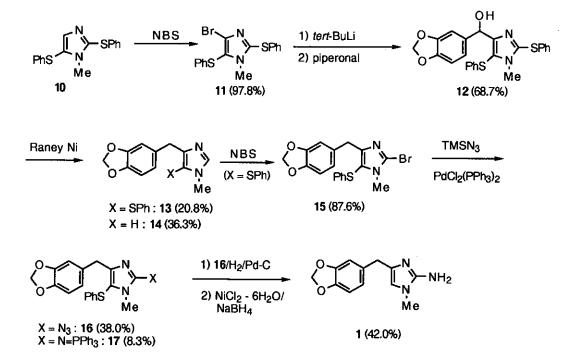
Table 1. Substitution Reaction of the Bromide(7)

a: bath temperature (100 °C); b: known compound (ref. 6); c: known compound (ref. 7); d: no reaction. yield (Entry 2), but the reaction with an excess of N,N-dialkylamine gave poor results (Entries 5 and 6).

Next, we tried bromination of 4 followed by substitution reaction of the resulting bromide (7) with *N*-containing reagents such as sodium azide, trimethylsilyl azide and various primary arylamines in the presence of a Pd catalyst, and the results are summarized in Table 2. The best result for the preparation of the azide (6f; 80.8%) was obtained in combination of $PdCl_2(PPh_3)_2$ with trimethylsilyl azide (Entry 5). The azide (6f) was readily hydrogenated in the presence of Pd-C to give 6a (89.5% yield). In the reaction of 7 with arylamines, the combination of $PdCl_2[P(o-tol)_3]_2$ and $LiN(TMS)_2$

gave good results (Entries 7-11).

Table 2.	Introduction of Amino Grou	p into 7 in the Presence of Pd-Catalyst


				_	Product	
Entry	Reagent(s)	Catalyst (5 mol%)	Time	Solv. / Temp. (°C)	х	Yield (%)
1	(1) ^a LiN(TMS) ₂ (2) ^b NHBn ₂	PdCl2[P(o-tol)3]2	1 h	toluene / a, b	-NBn ₂ (6e)	47.8
2	NaN ₃	Pd(PPh ₃) ₄	2 d	THF-H ₂ O (2:1) / 70	-N ₃ (61) ^c	42.8
3	NaN ₃	PdCl ₂ (PPh ₃) ₂	2 d	THF-H ₂ O (2:1) / 60	-N ₃ (6f)	80.9
4	NaN ₃	PdCl2[P(o-tol)3]2	2 d	THF-H ₂ O (2:1) / 60	-N ₃ (6f)	N.R. ^e
5	TMSN3	PdCl ₂ (PPh ₃) ₂	20 h	THF / 80	-N3 (6f)	80.8
6	C ₆ H ₅ NH ₂ NaH	PdCl ₂ (PPh ₃) ₂	4 h	THF / room temperature	-NHC ₆ H ₅ (6g) ^d	12.0 ^f
7	C ₆ H ₅ NH ₂ NaH	Pd(PPh ₃) ₄	4 h	THF / room temperature	-NHC ₆ H ₅ (6g)	55.3
8	C ₆ H ₅ NH ₂ LiN(TMS) ₂	PdCl ₂ (PPh ₃) ₂	4 h	toluene / 110	-NHC ₆ H ₅ (6g)	44.8
9	C ₆ H5NH2 LiN(TMS)2	PdCl2[P(o-tol)3]2	1 h	toluene / 110	-NHC ₆ H ₅ (6g)	95.7
10	4-MeOC ₆ H ₅ NH ₂ LiN(TMS) ₂	PdCl2[P(o-tol)3]2	1 h	toluene / 110	-NH-C ₆ H ₄ -OMe (6h)	94.5
11	2-aminopyridine LiN(TMS) ₂	PdCl2[P(o-tol)3]2	12 h	toluene / 110	-NH-2-pyridyl (6i)	91.6
12 a: (1) -7	2-aminopyrimidine LiN(TMS) ₂	PdCi2[P(o-tol)3]2 c: known compour	1 đ	toluene / 110	-NH-2-pyrimidyl (6j)	38.2

a: (1) -78 °C; b: (2) 110 °C; c: known compound (ref. 8); d: known compound (ref. 9); e: no reaction f: Compound 9 was also obtained (15.1%).

Me 9 Me

Preclathridine A (1) was synthesized by the following way. 1-Methyl-2,5-diphenylthio-1*H*-imidazole $(10)^{5a}$ was brominated with NBS to give 11 quantitatively, which was treated with *tert*-butyllithium followed by treatment with piperonal to give the alcohol (12) in 68.7% yield. The alcohol (12) was desulfurized with Raney nickel to give a mixture of the sulfide (13) (20.8% yield) and the imidazole (14) (36.3% yield). The former (13) was brominated with NBS to give the bromide (15) (87.6% yield), which was treated with trimethylsilyl azide in the presence of PdCl₂(PPh₃)₂ to give the azide (16) (38.0% yield) accompanying with the azaphosphorane (17) (8.3% yield). The azide (16) was hydrogenated in the presence of Pd-C to give preclathridine A (1) as an oily product. Spectral data of 1 were all consistent with those of the natural product.^{4a}

Scheme 2

REFERENCES

- 1. S. Lindström, T. Ahmad, and S. Grivas, Heterocycles, 1994, 38, 529.
- T. Choshi, A. Tonari, H. Yoshioka, K. Harada, E. Sugino, and S. Hibino, J. Org. Chem., 1993, 58, 7952.
- 3. A. Hassner, P. Munger, and B. A. Belinka, Jr., Tetrahedron Lett., 1982, 23, 699.
- a) K. A. Alvi, B. M. Peters, L. M. Hunter, and P. Crews, *Tetrahedron*, 1993, 49, 329; b) P. Ciminiello, E. Fattorusso, S. Magno, and A. Mangoni, *Tetrahedron.*, 1989, 45, 3873; c) R. K. Akee, T. R. Carroll, W. Y. Yoshida, and P. J. Scheuer, *J. Org. Chem.*, 1990, 55, 1944; d) J. R. Lewis, *Nat. Prod. Rep.*, 1992, 9, 81.
- Recently published papers: a) S. Ohta, T. Yamamoto, I. Kawasaki, M. Yamashita, Y. Nagashima, and T. Yoshikawa, *Chem. Pharm. Bull.*, 1994, 42, 821; b) I. Kawasaki, M. Yamashita, and S. Ohta, *J. Chem. Soc., Chem. Commun.*, 1994, 2085; c) S. Ohta, M. Yamashita, N. Nagai, I. Kawasaki, K. Maeda, and Y. Miyano, *Heterocycles*, 1995, 41, 1683; d) I. Kawasaki, H. Katsuma, Y. Nakayama, M. Yamashita, and S. Ohta, *Heterocycl. Commun.*, in press; e) I. Kawasaki, N. Taguchi, T. Yamamoto, M. Yamashita, and S. Ohta, *Tetrahedron Lett.*, 1995, 36, 8251.
- A. M. Simonov and N. D. Vitkevich, Zh. Obshch. Khim., 1960, 30, 590 [Chem. Abstr., 1960, 54, 24677i].
- R. Benassi, R. Grandi, U. M. Pagnoni, F. Taddei, G. Bocelli, and P. Sgarabotto, J. Chem. Soc., Perkin Trans. II, 1985, 1513.
- 8. Y. Shiokawa and S. Ohki, Chem. Pharm. Bull., 1971, 19, 401.
- 9. G. Hornyák, K. Lempert. E. Pjeczka, and G. Tóth, Tetrahedron, 1985, 41, 2847.

Received, 29th March, 1996