DIASTEREOSELECTIVE REDUCTION OF CYCLIC IMINES AND β-ENAMINO ESTERS

Giang Vo Thanh, Jean-Pierre Célérier, Anne Fleurant, Cyrille Grandjean, Sylvie Rosset, and Gérard Lhommet^{*}

Université Pierre et Marie Curie, Laboratoire de Chimie des Hétérocycles, URA 408. 4 Place Jussieu, 75252 Paris cedex 05, France

Abstract - The chemical and diastereoselective reduction of cyclic imines and β -enamino esters has been investigated and exploited as an efficient method of synthesis of *trans* disubstituted pyrrolidines.

Important biological activities¹ displayed by *trans*-2,5-disubstituted pyrrolidines (2),¹ pyrrolizidines (1) (n=1) and indolizidines (1) (n=2) have stimulated the development of synthetic strategies for the construction of this class of compounds.² Cyclic imines such as Δ -1-pyrrolines (4) (R=alkyl) which are components of ants'venoms and β -enamino esters (4) (R=CO₂R') are also precursors of *trans*-2,5-disubstituted pyrrolidines (2) which have always their stereochemistry fixed during the reduction step of cyclic imines or β -enamino esters.

In connection with our work on the use of cyclic β -enamino esters in the heterocyclic chemistry, especially for the formation of cyclic imines by direct hydrolysis and decarboxylation of β -enamino esters,^{3,4} we report herein a general investigation on the diastereoselective reduction of cyclic imines and enamines.

 Δ -1-Pyrrolines (4) and β -enamino esters (4) are diastereoselectively transformed into *cis*-disubstituted pyrrolidines (3) by a catalytic hydrogenation^{5,6} (as shown in Table 1).

Imines or Enamines	$\overline{R^1}$	R	Reducing Agent	Yield	Pyrrolidines
	Me	C14H29	H ₂ / Raney Ni / 100 bar	60	94 / 6
4g	Me	CO_2Et	H_2 / Raney Ni / 100 bar	98	98 / 2
4a	Me	C ₈ H ₁₇	$H_2 / PtO_2 / 1$ bar	75	96 / 4
4 f	Me	CO ₂ Me	$H_2 / PtO_2 / 1$ bar	98	92 / 8
4c	CH ₂ OH	Н	H ₂ / Raney Ni / 100 bar	96	94 / 6
4h	CH ₂ OH	CO ₂ Me	H ₂ / Raney Ni / 100 bar	98	94 / 6
4c	CH ₂ OH	Н	$H_2 / PtO_2 / 1$ bar	75	80 / 20
4e	CH ₂ OH	C_8H_{17}	H_2 / PtO ₂ / 1 bar	80	87 / 13
4d	CH ₂ OH	$C_{6}H_{13}$	$H_2 / PtO_2 / 1$ bar	80	94 / 6
4h	CH ₂ OH	CO ₂ Me	$H_2 / PtO_2 / 1 bar$	98	92 / 8

<u>Table 1</u>. Catalytic hydrogenation of cyclic imines (4) and β -enamino esters (4)

Chemical reductions of imines (4) and β -enamino esters (4) (R¹=CH₃) have permitted to prepare *trans*pyrrolidines (2) leading to a slight excess of *trans*-isomer only when using sodium triacetoxyborohydride or B₂H₆, (as shown in Table 2). It can be noted that a mixture of LiAlH₄/Me₃Al, which afforded *trans*dialkylpiperidines,⁷ was not efficient with five membered ring imines or enamines.

Imines or Enamines	R ¹	R	Reducing Agent	Yield	Pyrrolidines
4b	Ме	C14H29	LiAlH ₄ / Me ₃ Al ^b	75	70/30
4g	Me	CO ₂ Et	$B_{2}H_{6}$ / THF ^b	65	40 / 60
4b	Me	$C_{14}H_{29}$	NaBH ₄ / MeOH ^b	90	50 / 50
4f	Me	CO ₂ Me	NaBH ₄ / MeOH ^b	95	50 / 50
4a	Me	C ₈ H ₁₇	NaBH ₄ / AcOH ^b	70	40 / 60
4g	Me	CO ₂ Et	NaBH ₄ / AcOH ^b	92	50 / 50
4c	CH₂OH	Н	LiAlH ₄ / Me ₃ Al ^b	75	70 / 30
4h	CH₂OH	CO ₂ Me	B_2H_6 / THF ^b	65	40 / 60
4c	CH ₂ OH	Н	DIBAH / -78°C	50	45 / 55
4c	CH₂OH	н	NaBH ₄ / MeOH ^b	90	50 / 50
4h	CH ₂ OH	CO ₂ Me	NaBH ₄ / MeOH ^b	95	50 / 50
4h	CH₂OH	CO ₂ Me	$NaBH_4 / H_2SO_4^{b}$	50	50 / 50
4h	CH ₂ OH	CO ₂ Me	(CH ₃) ₄ NBH ₄ / H ₂ O ^b	84	50 / 50
4c	CH ₂ OH	Н	NaBH(OAc) ₃ ^a / PhMe ^b	75	75/25
4c	CH₂OH	Н	NaBH ₄ / AcOH / PhMe ^b	70	30 / 70
4h	CH ₂ OH	CO ₂ Me	NaBH ₄ / AcOH / PhMe ^b	92	50 / 50
4c	CH ₂ OH	Н	NaBH ₄ / AcOH / Ph Me / -10°C	80	15/85
4d	CH ₂ OH	C ₆ H ₁₃	NaBH ₄ / AcOH / Ph Me / -10°C	60	30 / 70
4h	CH ₂ OH	CO ₂ Me	NaBH ₄ / AcOH / MeCN ^b	80	30 / 70
4h	CH ₂ OH	CO ₂ Me	NaBH4 / AcOH / MeCN / 0°C	92	10/90

<u>Table 2</u>. Chemical reduction of cyclic imines (4) and β -enamino esters (4)

^a Commercially available ^b Room temperature

In the course of the directed reductions of hydroxy ketones by polyacetoxyborohydrides,⁸ we have investigated the reduction of hydroxymethylpyrrolidine (4) and hydroxymethyl- β -enamino esters (4) using hydrides. In fact, the hydroxy group was in a good position to interact with reducing agent and then could permit an *anti* attack of the hydride.

When chemical reduction conditions were studied, best results were performed using sodium borohydride and acetic acid according to the results of Palmieri *et al.*⁹ but no significant d.e. was observed with DIBAH at low temperatures.¹⁰ However, the choice of the solvent is important : toluene for imines (4) and acetonitrile for β -enamino esters (4). Sodium triacetoxyborohydride has to be prepared *in situ* from sodium borohydride (3 eq.) and acetic acid (30 eq.) due to the non selectivity observed with commercial reducing agent.

Sodium polyacetoxyborohydride is a versatile reducing agent for the diastereoselective reduction of cyclic imines and cyclic β -enamino esters. Good diastereomeric excesses are obtained for the preparation of *trans*-disubstituted pyrrolidines when one of the substituents is bearing a hydroxy function permitting an intramolecular *anti* attack of the hydride. A performing separation of the two diastereoisomers can after be done by a diastereocontroled carbamatation leading to pure *cis* or *trans* compounds.¹¹

ACKNOWLEDGEMENT

We are grateful to U.C.I.B. (Usines Chimiques d'Ivry-la -Bataille, France) for the generous gift of (S)pyroglutamic acid.

REFERENCES

- T.H. Jones and M.S. Blum, "Alkaloids : Chemical and Biological Perspectives," Vol. 1, ed. by S.W. Pelletier, John Wiley and Sons, New-York, 1983, pp. 33-84, P. Casier, M. Lemaire, J.L. Clément, J.J. Basselier, C. Lange, J.P. Célérier, and G. Lhommet, French Patent n° 84/06980 (Chem. Abstr., 1986, 104, 202330j).
- A.R. Pinder, Natural Products Reports, ed. by The Royal Chemical Society, London, 1987, p. 527; 1989, p. 67 and 515.
- D. Bacos, J.P. Célérier, and G Lhommet, Tetrahedron Lett., 1987, 28, 2353. French Patent n° 86/16744; Chem. Abstr., 1989, 110, 38916f.
- 4. O. Provot, J.P. Célérier, H. Petit, and G. Lhommet, J. Org. Chem., 1992, 57, 2163.
- 5. C. Saliou, A. Fleurant, J.P. Célérier, and G. Lhommet, Tetrahedron Lett., 1991, 32, 3365.
- 6. A. Fleurant, J.P. Célérier, and G. Lhommet, *Tetrahedron Asymmetry*, 1992, 3, 695. A. Fleurant, J.P. Célérier, and G. Lhommet, *ibid.*, 1993, 4, 1429.
- 7. K. Maruoka, T. Miyazaki, M. Ando, Y. Matsumura, S. Sakane, K. Hattori, and H. Yamamoto, J. Am. Chem. Soc., 1983, 105, 2831.
- 8. D. A. Evans, K.T. Chapman, and E.M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.
- 9. G; Bartoli, C. Cimarelli, E. Marcantoni, G. Palmieri, and M. Petrini, J. Org. Chem., 1994, 59, 5328.
- 10. J.L. Marco, J. Heterocycl. Chem., 1986, 23, 1059.
- 11. A. Fleurant, C. Grandjean, O. Provot, S. Rosset, J.P. Célérier, and G. Lhommet, *Heterocycles*, 1993, 5, 929.

Received, 1st April, 1996