
A FACILE SYNTHESIS OF NINE- AND TEN- MEMBERED CYCLIC ETHERS UTILIZING INTRAMOLECULAR *ENDO*-MODE CYCLIZATION OF THE CONJUGATED ALLENYL KETONES

Woo Song Lee,^a Norio Nakazawa,^a Motoo Shiro,^b and Yoshimitsu Nagao^a*

^aFaculty of Pharmaceutical Sciences, The University of Tokushima, Sho-machi, Tokushima 770, Japan ^bRigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196, Japan

Abstract - Intramolecular *endo*-mode cyclization reactions of the conjugated allenyl ketones (3) and (4) were carried out in the presence of BF₃•OEt₂, B(CF₃SO₃)₃, and CF₃SO₃H in CH₂Cl₂ to give the corresponding nine- and tenmembered cyclic ethers (5 - 7) as crystalline compounds in satisfactory yields. The structure of 6 was confirmed by its X-ray crystallographic analysis.

Six- to nine-membered cyclic ethers have often appeared in marine natural products¹ such as brevetoxins² and ciguatoxin.³ In general, an annulation reaction toward the medium-sized eight- to eleven-membered cyclic compounds seems to be difficult from the viewpoint of unfavorable entropy factors.⁴ Recently, we have disclosed various cyclization reactions for five- to eight-membered carbocyclic compounds, ^{5a,b} spiro[4.5]decatriene and [5.5]undecatriene diones, ^{5c} and seven-membered cyclic ethers^{5d} and amides^{5e} on the basis of intramolecular *endo*-mode ring closure at the sp carbon atom of the conjugated allenyl ketone moiety. In the earlier studies on remarkable *endo*-mode cyclization reactions, ⁵ we realized that the conjugated allenyl ketone system bearing a substituted phenyl group should be suitable enough for the intramolecular cyclization being difficult in the conjugated alkenyl and alkynyl ketones. Here, we describe a facile construction method of nine- and ten-membered cyclic ethers.

Scheme 1 i, Propargylmagnesium bromide (1.5 mol eq.), THF, $0 \ C$, (3 : 53%, 4 : 62%); ii, CF₃SO₃H (10 mol %), CH₂Cl₂, $0 \ C$ (63%); iii, B(CF₃SO₃)₃ (2.4 mol eq.), CH₂Cl₂, -78 C (54%); iv, NaH (1.2 mol eq.), THF, reflux (7 : 56% with 40% recovery of 6, 84% recovery of 5)

Conjugated allenvi ketones (3) [colorless prisms, mp 39 - 40 % (CH₂Cl₂ - hexane)] and (4) (pale yellow oil) were readily prepared by treatment of the corresponding N-methoxy-N-methylamides (1) and (2) 6,7 with 1.5 mol eq. of propargylmagnesium bromide (1M solution in Et₂O)^{5a} in THF at 0 $^{\circ}$ C. Treatment of 3 and 4 with 1.2 mol eq. of BF3•OEt2 in CH2Cl2 at -78 °C for 5 min gave the desired nine-membered cyclic ether (5) [colorless prisms, mp 69 - 70 °C (CH₂Cl₂ - hexane)] in 30% yield and ten-membered one (6) [colorless prisms, mp 92 °C (CH₂Cl₂ - hexane)] in 16% yield, respectively. Although treatment of 3 with 2.4 mol eq. of B(CF₃SO₃)₃⁸ at -78 °C gave the compound (5) in only 27% yield, the same reaction of 4 afforded a mixture of exo-methylene cyclic ether (6) and endo-olefinic one (7) in 54% total yield. The mixture could be separated on a silica gel plate (Merck Kieselgel 60 F254) with ether - hexane (2:1) to give each pure compound (6) or (7) [colorless prisms, mp 78 % (CH₂Cl₂ - hexane)]. Both compounds (3) and (4) were allowed to react with a catalytic amount (10 mol %) of CF₃SO₃H in CH₂Cl₂ at 0 $^{\circ}$ C for 5 min to furnish the corresponding cyclic ether (5) in 63% yield and the mixture of 6 and 7 in a ratio of 1.3:1 and in 52% total yield. All experimental results for cyclization reactions as described above are summarized in Table 1. Interestingly, in contrast to successful cyclization of the ether (3), similar reactions of the methylene derivative (8) employing various Lewis acids and CF₃SO₃H resulted in production of a complex mixture.

The structure of exo-methylene product (6) was established by its X-ray crystallographic analysis⁹ as shown in Figure 1. The structure of endo-olefinic product (7) was confirmed by identification with all

Compd	Reaction Conditions			Product	Yield ^{b)} /%
	LA ^{a)} or A ^{a)} Temp/°C		Time/min		
n = 3					
3	В	-78	5	5	30
"	BT	11	10		27
	А	0	5	н	63
n = 4					
4	В	-78	5	6	16
	BT		**	6 + 7	54 ^{c)} 52 ^{d)}
**	Α	0	**	11	52 ^{d)}

Table 1. Intramolecular Cyclization of Conjugated Allenyl Ketones (3) and (4).

a) LA : Lewis acid. B = BF₃·OEt₂ (1.2 mol eq.), BT = B(CF₃SO₃)₃ (2.4 mol eq.), A = CF₃SO₃H (10 mol %). b) Isolation yield. c) Yield of a mixture of 6 and 7 (3.6 : 1). d) Yield of a mixture of 6 and 7 (1.3 : 1).

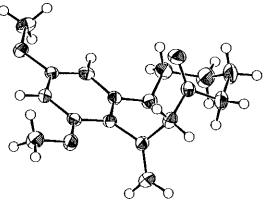


Figure 1. Perspective view of the crystallographic structure of exo - 6.

spectroscopic data [HRms calcd for C₁₆H₂₀O₄ MW 276.1362, found *m* / *z* 276.1360 (M⁺); ir (KBr) v 1734 cm⁻¹ (α , β -unsaturated carbonyl); ¹H nmr (400 MHz, CDCl₃) δ 2.13 (d, 3H, *J* = 1.5 Hz, olefinic Me), 3.75 (t, 2H, *J* = 4.9 Hz, -OCH₂CH₂-), 6.05 and 6.16 (each d, each 1H, *J* = 2.5 Hz, aromatic H), 6.23 (d, 1H, *J* = 1.5 Hz, olefinic H)] of the compound (56% yield) obtained by double bond shift of the compound (6) under the basic conditions (NaH, THF, reflux for 3 h) as shown in Scheme 1. The structure of **5** was determined by its similar characteristic spectroscopic data [HRms calcd for C₁₅H₁₈O₄ MW 262.1205, found *m* / *z* 262.1185 (M⁺); ir (KBr) v 1704 cm⁻¹ (carbonyl), 1643 cm⁻¹ (exo-methylene); ¹H nmr (400 MHz, CDCl₃) δ 3.19 (s, 2H, allylic H), 4.11 (t, 2H, *J* = 5.4 Hz, -OCH₂CH₂-), 5.35 and 5.56 (each d, each 1H, *J* = 2.0 Hz, olefinic H), 6.14 and 6.22 (each d, each 1H, *J* = 2.5 Hz, aromatic H)] to

those [HRms calcd for C16H20O4 MW 276.1362, found m / z 276. 1353 (M⁺); ir (KBr) v 1706 cm⁻¹ (carbonyl), 1646 cm⁻¹ (exo-methylene); ¹H nmr (400 MHz, CDCl₃) δ 3.20 (s, 2H, allylic H), 3.86 (t, 2H, J = 2.4 Hz, -OCH2CH2-), 5.08 and 5.52 (each d, each 1H, J = 2.0 Hz, olefinic H), 5.93 and 6.13 (each d, each 1H, J = 2.4 Hz, aromatic H)] of the compound (6). The double bond shift (exo-->endo) of 5 was not recognized in the presence of NaH in THF under reflux for 4 h, instead the starting compound (5) was obtained in 84% recovery. This remarkable localization of the exo-methylene double bond in the nine-membered cyclic ether (5) under basic or acidic conditions has never been observed in other similar cyclic compounds such as seven- and eight-membered carbocyclic compounds, ^{5b} seven-membered cyclic ethers and amides, ^{5d}, e and ten-membered cyclic ether (6).

REFERENCES AND NOTES

- 1. D. J. Faulkner, Nat. Prod. Rep., 1984, 1, 251.
- (a) Y. Shimizu, H. N. Chou, H. Bando, G. Van Duyne, and J. C. Clardy, J. Am. Chem. Soc., 1986, 108, 514. (b) M. Pawlak, M. S. Tempesta, J. Golik, M. G. Zagorski, M. S. Lee, K. Nakanishi, T. Iwashita, M. L. Gross, and K. B. Tomer, *ibid.*, 1987, 109, 1144.
- 3. M. Murata, A. M. Legrand, Y. Ishibashi, and T. Yasumoto, J. Am. Chem. Soc., 1989, 111, 8929.
- 4. M. L. Winnik, Chem. Rev., 1981, 81, 491.
- (a) Y. Nagao, W. S. Lee, and K. Kim, Chem. Lett., 1994, 389. (b) Y. Nagao, W. S. Lee, Y. Komaki,
 S. Sano, and M. Shiro, *ibid.*, 1994, 597. (c) Y. Nagao, W. S. Lee, I.-Y. Jeong, and M. Shiro,
 Tetrahedron Lett., 1995, 36, 2779. (d) Y. Nagao, I.- Y. Jeong, W. S. Lee, and S. Sano, J. Chem.
 Soc., Chem. Commun., 1996, 19. (e) Y. Nagao, I.- Y. Jeong, W. S. Lee, Tetrahedron Lett., 1996,
 37, 393.
- 6. S. Nahm and S. M. Weinreb, *Tetrahedron Lett.*, 1981, 22, 3815.
- 7. Amides (1) and (2) were readily synthesized by starting from commercially available 3,5-dimethoxyphenol *via* the several reaction steps.
- A solution of B(CF₃SO₃)₃ was prepared by treatment of BH₃•THF (1M solution in THF) with 3.0 mol eq. of CF₃SO₃H in CH₂Cl₂ at 0 °C for 10 min.^{5e}
- 9. The crystallographic data of 6 : C₁₆H₂₀O₄, FW = 276.33, trigonal, R 3 (#148), a = 32.093(3) Å, c = 7.204(3) Å, V = 6425(2) Å³, z = 18, Dcalc = 1.285 g/cm³, R = 0.033.