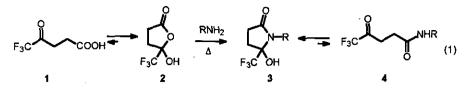
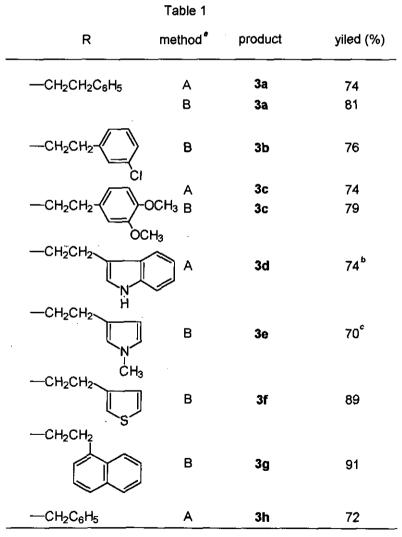
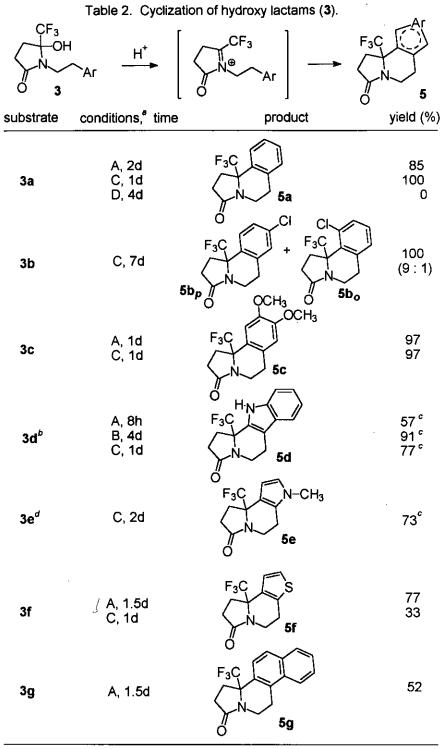
SYNTHESIS OF INDOLIZIDINE DERIVATIVES TRIFLUOROMETHYL-ATED AT BRIDGEHEAD POSITION *VIA* ACYL IMINIUM ION INTERMEDIATES DERIVED FROM RING- CHAIN TAUTOMERISM OF 5,5,5-TRIFLUORO- 4- OXOPENTANOYL ARYLETHYLAMIDES[†]


Takashi Okano, Tsutomu Sakaida, and Shoji Eguchi*

Department of Molecular Design and Engineering, Graduate School of Engineering,^{††} Nagoya University, Furo- cho, Chikusa- ku, Nagoya 464- 01, Japan


Abstract- Acyliminium ion intermediates were generated from the stable cyclic form of 5,5,5- trifluoro- 4- oxopentanoyl arylethylamides *via* acid catalyzed dehydration. Electrophilic cyclization of aryl group led to fused indolizidinones.

Preparation of trifluoromethylated heterocyclic compounds¹ is currently attracting wide interests because of their potential biological activities.² However, introduction of trifluoromethyl group into saturated nitrogen heterocycles such as pyrrolizidine, indolizidine, and quinolizidine has not been attracted much attention so far. There are many alkaloids with indolizidine skeleton known as biologically active compounds.³ Introduction of trifluoromethyl group near the nitrogen atom may modify or newly produces the biological activity due to the inductive effect affecting the basicity of the tertiary amine. In this paper, we report a facile preparation method for such a new class of trifluoromethylated fused indolizidine derivatives *via* acid- catalyzed cyclization of 5,5,5- trifluoro-4- oxopentanoyl arylethylamides.

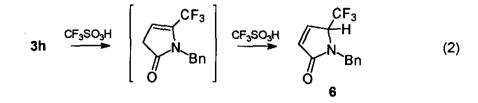

[†]Dedicated to Professor Shigeru Oae on the occasion of his 77th birthday. ^{††} former address: Institute of Applied Organic Chemistry, Faculty of Engineering

In the course of our study of preparation of fluorinated cyclic acyl imines,⁴ we found that 5,5,5trifluoro- 4- oxopentanoic acid (1)⁵ exists as a cyclic form⁶ of hydroxy lactone (2) due to highly electron-withdrawing effect of the CF ₃ group which stabilized the hemiacetal structure. A facile reaction of 2 with phenethylamine gave hydroxy lactam (3a) (R = CH₂CH₂Ph) also as a stable

a) Method A: heated at 140 °C without solvent. Method B: refluxing benzene solution. b) (5d) (23 %) was also yielded. c) (5e) (26 %) was also yielded.

a) A: CF₃COOH (solvent), B: CF₃COOH (2eq) / CH₂Cl₂, C: CF₃SO₃H (2eq) / CH₂Cl₂, D: 0.8M HCI / CH₃OH.

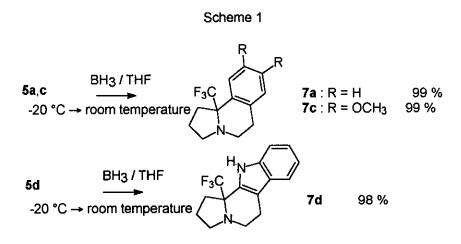
b) contaminated with 24% of (5d). c) yields based on ketoacid (1).


d) contaminated with 27% of (5e).

cyclic tautomer by just heating of the mixture at 140 °C (Method A) or refluxing of the benzene solution under neutral dehydration conditions (Method B) (eq. 1). Open- chain keto amide (4a) was not also observed in the reaction mixture unlike the corresponding acetyl derivative, which exists as open- chain structure as 4.⁷ Various aryl derivatives were obtained from acid (1) and arylethylamines and benzylamine in good yields as summarized in Table 1.

The structure of **3** is suitable for acid- catalyzed cyclization to indolizidinone skeletons (classical Pictet - Spengler conditions).⁸ Unlike usual aliphatic hydroxy lactams,⁷ (**3**) is considerably stable due to the electron- withdrawing effect of the CF₃ group and it could be treated with relatively strong acid such as CF₃COOH or CF₃SO₃H to dehydrate. For example, phenethylamide (**3**a) was treated with CF₃COOH as solvent at room temperature and led to tricyclic benzoindolizidinone (**5**a) in 85% yield (Table 2). Much better result was obtained by the reaction with 2- molar amount of CF₃SO₃H in CH₂Cl₂ at room temperature (quantitative yield). However, weaker 0.8 M HCl in methanol was not effective. Cyclized structure (**5**a) was readily assigned by the ¹H and ¹³C nmr spectra and absence of OH absorption in the ir spectrum.

Other arylethyllactams (**3b**-**g**) were also converted into the corresponding fused indolizidinones (**5b**-**g**) in the same manner as that used for the preparation of **5a** (Table 2). Usually CF₃SO₃H (2 equiv) was the best reagent to dehydrative cyclization. However, in some cases (**3d**,**f**), strong acidity of the acid affected the heterocyclic aromatic ring to lower the yields of the products. While homoveratryl derivative (**3c**) gave sterically less hindered **5c** regioselectively, *m*- chlorophenethyl derivative (**3b**) gave a mixture of regioisomers (**5b**_p) and (**5b**_q) in 9 : 1 ratio. The reaction of α -naphthyl derivative (**3g**) led to 13- azasteroidal skeleton (**5g**).


If this cyclization was applied to the benzylamide derivative such as **3h**, pyrrolizidine derivative which is also a biologically interesting group of alkaloid- related compounds⁹ was expected to be obtained. However, **3h** unchanged under the similar reaction conditions (2 equiv CF₃SO₃H / CH₂Cl₂). When long reaction time (10 d) and high concentration of CF₃SO₃H (10 equiv) were

230

employed, dehydration and migration of a double bond led to pyrrolinone (6). The 5- *endo* cyclization of **3h** seems unlikely to occur (eq 2).¹⁰

Some of the obtained indolizidinones were readily converted into corresponding saturated tertiary amines (**7a,c,d**) with BH₃/THF complex¹¹ in good yields (Scheme 1).

EXPERIMENTAL

¹H (200 MHz) and ¹³C nmr (50 MHz) spectra were recorded on a Varian Gemini- 200 spectrometer. Other spectral data for the new compounds were satisfactorily obtained.

Amide formation of 5,5,5- trifluoro- 4- oxopentanoic acid (3). Method A: An amine (6.0 mmol) and 1 (850 mg, 5.0 mmol) was dissolved into Et_2O (15 ml), and the resulting mixture was allowed to stand overnight. The resulting precipitates were collected and washed with Et_2O several times. The collected solid was heated under Ar atmosphere at 140 °C for 2 h. Crude 3 was purified by recrystallization from Et_2O or SiO₂ column chromatography (1 : 1 hexane- EtOAc). Method B: An amine (6.0 mmol) and 1 (850 mg, 5.0 mmol) was dissolved into benzene (15 ml), and the resulting solution was refluxed with a Dean- Stark trap until deposition of water ceased. After removal of the solvent under reduced pressure, the residue was purified as above.

5- Hydroxy- 1- (2- phenylethyl)- 5- trifluoromethyl- 2- pyrrolidinone (3a): mp 94 - 95 °C; ¹H nmr (CDCl₃) δ 1.93 - 2.07 (m, 1H), 2.42 - 2.62 (m, 3H), 2.80 (ddd, 1H, J = 13, 10, 5 Hz), 3.04 (ddd, 1H, J = 13, 10, 5 Hz), 3.39 (dddq, 1H, J = 14, 10, 7, 1 Hz), 3.64 (ddd, 1H, J = 14, 10, 5 Hz),

4.16 (brs, 1H), 7.15 - 7.36 (m, 5H); ¹³C nmr (CDCl₃) δ 28.75, 29.79, 34.01, 42.42, 89.48 (q, J= 32 Hz), 124.11 (q, J= 285 Hz), 127.09, 129.07, 139.20, 175.82. Anal. Calcd for C₁₃H₁₄NO₂F₃: C, 57.14; H, 5.16; N, 5.13. Found: C, 56.95; H, 5.13; N, 5.18.

1- [2- (3- Chlorophenyl)ethyl]- 5- hydroxy- 5- trifluoromethyl- 2- pyrrolidinone (3b): mp 104 - 105°C; ¹H nmr (CDCl₃) δ 2.00 - 2.15 (m, 1H), 2.45 - 2.67 (m, 3H), 2.77 (ddd, 1H, J= 13, 10, 5 Hz), 2.99 (ddd, 1H, J= 13, 11, 6 Hz), 3.39 (ddd, 1H, J= 14, 10, 6 Hz), 3.58 (ddd, 1H, J= 14, 11, 5 Hz), 4.34 (s, 1H), 7.06 - 7.13 (m, 1H), 7.17 - 7.26 (m, 3H); ¹³C nmr (CDCl₃) δ 28.68, 29.73, 33.84, 41.99, 89.52 (q, J= 33 Hz), 124.09 (q, J= 285 Hz), 127.23, 127.41, 129.38, 130.27, 141.06, 175.86. Anal. Calcd for C₁₃H₁₃NO₂ClF₃: C, 50.75; H, 4.26; N, 4.55. Found: C, 50.88; H, 4.30; N, 4.53.

1- [2- (3,4- Dimethoxyphenyl)ethyl]- 5- hydroxy- 5- trifluoromethyl- 2- pyrrolidinone (3c): mp 108 - 109 °C; ¹H nmr (CDCl₃) δ 1.94 - 2.08 (m, 1H), 2.43 - 2.63 (m, 3H), 2.74 (ddd, 1H, J = 13, 9, 5 Hz), 2.99 (ddd, 1H, J = 13, 10, 7 Hz), 3.37 (ddd, 1H, J = 14, 9, 7 Hz), 3.63 (ddd, 1H, J = 14, 10, 5 Hz), 3.85 (s, 3H), 3.86 (s, 3H), 6.71 - 6.83 (m, 3H); ¹³C nmr (CDCl₃) δ 28.74, 29.79, 33.59, 42.48, 56.09, 56.14, 89.45 (q, J = 32 Hz), 111.82, 112.55, 121.19, 124.14 (q, J = 286 Hz), 131.78, 138.18, 149.48, 175.65. Anal. Calcd for C₁₅H₁₈NO₄F₃: C, 54.05; H, 5.44; N, 4.20. Found: C, 54.09; H, 5.44; N, 4.16.

5- Hydroxy- 1- (2- thienyl)- 5- trifluoromethyl- 2- pyrrolidinone (3f): mp 87 - 88 °C; ¹H nmr (CDCl₃) δ 1.97 - 2.12 (m, 1H), 2.44 - 2.47 (m, 3H), 3.01 (ddd, 1H, *J*= 14, 9, 5 Hz), 3.28 (ddd, 1H, *J*= 14, 9, 7 Hz), 3.45 (ddd, 1H, *J*= 14, 9, 7 Hz), 3.71 (ddd, 1H, *J*= 14, 9, 5 Hz), 6.85 (dd, 1H, *J*= 3, 1H), 6.95 (dd, 1H, *J*= 5, 3 Hz), 7.16 (dd, 1H, *J*= 5, 1 Hz); ¹³C nmr (CDCl₃) δ 28.00, 28.78, 29.84, 42.42, 89.46 (q, *J*= 32 Hz), 124.10 (q, *J*= 285 Hz), 124.48, 125.93, 127.54, 141.32, 175.80. Anal. Calcd for C₁₁H₁₂NO₂F₃S: C, 47.31; H, 4.33; N, 5.02. Found: C, 47.54; H, 4.34; N, 4.96.

5- Hydroxy- 1- [2- (1- naphthyl)ethyl]- 5- trifluoromethyl- 2- pyrrolidinone (3g): mp 132 - 134 °C; ¹H nmr (CDCl₃) δ 1.83 - 2.09 (m, 1H), 2.43 - 2.63 (m, 3H), 3.17 - 3.33 (m, 1H), 3.43 - 3.62 (m, 2H), 3.66 - 3.81 (m, 1H), 7.35 (dd, 1H, *J* = 12, 7 Hz), 7.35 (d, 1H), 7.41 - 7.56 (m, 2H), 3.66 - 3.81 (m, 1H), 7.31 - 7.40 (m, 2H), 7.41 - 7.56 (m, 2H), 7.73 (dd, 1H, *J* = 7, 3 Hz), 7.81 - 7.86 (m, 1H), 8.19 - 8.24 (m, 1H); ¹³C nmr (CDCl₃) δ 28.52, 29.90, 31.36, 41.86, 89.48 (q, *J* = 33 Hz), 124.15 (q, *J* = 286 Hz), 124.15, 125.93, 126.20, 127.44, 127.85, 129.14, 132.34, 134.21, 135.40, 175.94. Anal. Calcd for C₁₇H₁₆NO₂F₃: C, 63.15; H, 4.99; N, 4.33. Found: C, 63.32; H, 4.34; N, 4.34.

1- Benzyl- 5- hydroxy- 5- trifluoromethyl- 2- pyrrolidinone (3h): mp 101 - 103 °C; ¹H nmr (CDCl₃) δ 2.01 - 2.13 (m, 1H), 2.37 - 2.55 (m, 3H), 4.36 (d, 1H, J= 16 Hz), 4.69 (d, 1H, J= 16Hz), 7.20 (s, 5H); ¹³C nmr (CDCl₃) δ 28.46, 29.15, 43.78, 90.00 (q, J= 33Hz), 124.23 (q, J= 286Hz), 127.86, 128.24, 128.85, 137.31, 176.37. Anal. Calcd for C₁₂H₁₂NO₂F₃: C, 55.60; H, 4.67; N, 5.40. Found: C, 55.67; H, 4.59; N, 5.40.

Acid- catalyzed cyclization of hydroxy lactams (3). Lactam (3) (0.5 mmol) was dissolved in CH_2Cl_2 (3 ml), and CF_3SO_3H (0.09 ml, 1.0 mmol) was added. The resulting mixture was stirred for the period given in Table 2 at room temperature. The solution was neutralized by saturated aq NaHCO₃ and extracted with Et₂O. The solution was dried over MgSO₄. After removal of the solvent under reduced pressure, recrystallization of the residual solid from Et₂O or SiO₂ column chromatography (1:1 hexane - EtOAc) gave pure cyclization product (5). When CF₃COOH as the solvent was used, just removal of the solvent under reduced pressure and purification as above was done.

1,5,6,10b- Tetrahydro- 10b- trifluoromethylpyrrolo[2,1- *a***jisoquinolin- 3(***2H***)- one (5a)**: mp 113 - 114 °C; ¹H nmr (CDCl₃) δ 2.20 (dtq, 1H, J= 13, 10, 1 Hz), 2.47 (dd- pentaplet, 1H, J= 17, 10, 1 Hz), 2.66 - 3.09 (m, 4H), 3.27 - 3.43 (m, 1H), 4.41 (dddq, 1H, J= 13, 7, 4, 1 Hz), 7.16 - 7.38 (m, 4H); ¹³C nmr (CDCl₃) δ 27.48, 29.43, 30.38, 35.30, 65.14 (q, J= 34 Hz), 126.85, 127.02 (q, J= 288 Hz), 127.34, 129.12, 129.84, 132.82, 134.71, 174.37. Anal. Calcd for C₁₃H₁₂NOF₃: C, 61.17; H, 4.74; N, 5.49. Found: C, 61.19; H, 4.69; N, 5.35.

9 : 1 Mixture of 8- and 10- chloro- 1,5,6,10b- tetrahydro- 10b- trifluoromethylpyrrolo[2,1 *a*]isoquinolin- 3(2*H*)- one (5b). ¹H Nmr (CDCl₃) δ 2.15 (dtq, 0.9H, J= 13, 10, 1 Hz), 2.39 - 2.60 (m, 1H), 2.65 - 3.07 (m, 4H), 3.23 - 3.40 (m, 1H), 4.30 - 4.40 (m, 0.1H), 4.41 (dddq, 0.9H, J= 13, 7, 3, 1 Hz), 7.13 (ddt, 0.1H, J= 8, 2, 1 Hz), 7.19 - 7.36 (m, 3H); ¹³C nmr (CDCl₃) δ 27.42, 29.38, 30.29, 34.93, 64.87 (q, J= 28 Hz), 126.42 (q, J= 250 Hz), 127.71, 128.29 (q, J= 2 Hz), 129.71, 131.29, 135.12, 136.78, 174.20; minor peaks: 27.91, 28.90, 30.02, 34.63, 130.15, 130.80, 135.4. Anal. Calcd for C₁₃H₁₁NO₂ClF₃: C, 53.90; H, 3.83; N, 4.84. Found: C, 53.57; H, 3.91; N, 4.77. **1,5,6,10b-Tetrahydro-8,9-dimethoxy-10b-trifluoromethylpyrrolo[2,1-a]isoquinolin-3(2H)-one** (5c): mp 69 - 71 °C; ¹H nmr (CDCl₃) δ 2.09 - 2.25 (m, 1H), 2.39 - 2.53 (m, 1H), 2.65 - 3.01 (m, 4H), 3.22 - 3.38 (s, 6H), 4.35 - 4.46 (m, 1H), 6.63 (s, 1H), 6.77 (q, J = 1 Hz); ¹³C nmr (CDCl₃) δ 27.15, 29.38, 30.38, 35.30, 56.00, 56.28, 64.92 (q, J = 28 Hz), 109.27 (q, J = 2 Hz), 111.7, 124.29, 127.07(q, J = 288 Hz), 127.28, 148.45, 149.79, 174.32. Anal. Calcd for C₁₅H₁₆NO₃F₃: C, 57.14; H, 5.12; N, 4.44. Found: C, 57.27; H, 5.14; N, 4.47.

1,5,6,9b- Tetrahydro- 9b- trifluoromethylindolizino[8,7- *b***]indol-3(2** *H***)- one (5d)**. The reaction of tryptamine with acid (1) gave a mixture of 3d and 5d. The mixture was treated as above: mp 221 - 222 °C; ¹H nmr (CDCl₃) δ 2.16 - 2.33 (m, 1H), 2.50 (ddq, 1H, *J* = 15, 10, 1 Hz), 2.70-2.93 (m, 4H), 3.26 - 3.41 (m, 1H), 4.61 (ddd, 1H, *J* = 14, 5, 3 Hz), 7.16 (ddd, *J* = 8, 7, 1 Hz), 7.27 (ddd, 1H, *J* = 8, 7, 1 Hz), 7.40 (ddd, 1H, *J* = 8, 1, 1 Hz), 7.54 (ddd, 1H, *J* = 8, 1, 1 Hz), 8.31 (brs, 1H); ¹³C nmr (CDCl₃) δ 20.67, 27.93, 30.41, 36.60, 63.76 (q, *J* = 30Hz), 111.71, 117.36, 120.59, 123.86, 126.36, 126.58 (q, *J* = 287Hz), 127.62, 137.09, 174.61. Anal. Calcd for C₁₅H₁₃N₂OF₃: C, 61.22; H, 4.45; N, 9.52. Found: C, 61.46; H, 4.41; N, 9.33.

1,5,6,9b- Tetrahydro- 7- methyl- 9b- trifluoromethylpyrrolo[2,3- *g*]indolizin- 3(2*H*)- one (5e). The reaction of 2- (2- aminoethyl)pyrrole with 1 gave a mixture of **3e** and **5e**. The mixture was treated as above: mp 115 - 116 °C; ¹H nmr (CDCl₃) δ 1.93 - 2.16 (m, 1H), 2.36 - 2.47 (m, 1H), 2.56 - 2.79 (m, 4H), 3.16 - 3.33 (m, 1H), 3.51 (s, 3H), 4.49 - 4.59 (m, 1H), 6.06 (dq, *J* = 3, 1 Hz), 6.59 (m, 1H); ¹³C nmr (CDCl₃) δ 20.97, 29.42, 30.64, 33.19, 35.59, 64.30 (q, *J* = 29 Hz), 104.28, 114.63, 122.28, 126.94, 127.16 (q, *J* = 286 Hz), 174.98. Anal. Calcd for C₁₂H₁₃N₂OF₃: C, 55.81; H, 5.07; N, 10.85. Found: C, 55.70; H, 5.09; N, 10.73.

1,5,6,9b- Tetrahydro- 9b- trifluoromethylindolizino[**7,8-** *b*]thiophen- **3**(2*H*)-one (**5**f) : ¹H Nmr (CDCl₃) δ 1.96 - 2.20 (m, 1H), 2.37 - 2.55 (m, 1H), 2.64 - 2.84 (m, 2H), 2.92 (dd, 1H, *J*= 8, 4 Hz), 3.21 - 3.37 (m, 1H), 4.54 (dt, 1H, *J*= 13, 2 Hz), 6.96 (dq, 1H, *J*= 5, 2 Hz), 7.23 (dq, 1H, *J*= 5, 1 Hz); ¹³C nmr (CDCl₃) 24.11, 28.60, 30.41, 35.81, 64.90 (q, *J*= 29 Hz), 124.55 (q, *J*= 2 Hz), 124.70, 126.66 (q, *J*= 287 Hz), 130.94, 137.06, 174.52. Anal. Calcd for C₁₁H₁₀NOF₃S: C, 50.57; H, 3.86; N, 5.36. Found: C, 50.50; H, 3.94; N, 5.23.

1,5,6,12b- Tetrahydro- 12b- trifluoromethylnaphtho[1,2- g]indolizin- 3(2*H*)- one (5g): mp 146 - 149 °C; ¹H nmr (CDCl₃) δ 2.21 (dtq, 1H, J= 12, 11, 1 Hz), 2.49 (dd- pent, 1H, J= 16, 10, 1 Hz), 2.69 - 2.88 (m, 1H), 2.99 (ddd, 1H, J= 13, 9, 2 Hz), 3.10 - 3.54 (m, 3H), 4.58 - 4.69 (m, 1H), 7.43 (dq, 1H, J= 9, 2 Hz), 7.52 - 7.47 (m, 2H), 7.79 - 7.89 (m, 2H), 7.95 - 8.02 (m, 1H); ¹³C nmr (CDCl₃) δ 24.00, 29.36, 30.43, 34.62 (q, J= 2 Hz), 65.24 (q, J= 28 Hz), 123.62 (q, J= 3 Hz),

235

123.72, 127.17 (q, J = 288 Hz), 127.43, 127.98,129.02, 129.70, 130.84, 131.84, 133.35, 174.05. Anal. Calcd for C₁₇H₁₄NOF₃: C, 66.88; H, 4.62; N, 4.59. Found: C, 66.85; H, 4.75; N, 4.49. **1-Benzyl- 5- trifluoromethylpyrrol- 2(5***H***)-one (6)** : ¹H Nmr (CDCl₃) δ 4.12 (d, 1H, J = 15 Hz), 4.37 (ddq, 1H, J = 6, 2, 1 Hz), 5.35 (d, 1H, J = 15 Hz), 6.44 (dd, 1H, J = 6, 2 Hz), 6.97 (dd, 1H, J = 6, 1 Hz), 7.19 - 7.40 (m, 5H); ¹³C NMR δ 44.99, 61.92 (q, J = 33 Hz), 123.69 (q, J = 282 Hz), 128.52, 129.34, 131.71, 136.53, 139.27 (q, J = 3 Hz), 171.86. Anal. Calcd for C₁₂H₁₀NOF₃: C, 59.75; H, 4.18; N, 5.81. Found: C, 59.75; H, 4.17; N, 5.81.

1,2,3,5,6,10b- Hexahydro- 10b- trifluoromethylpyrrolo[2,1- *a*]isoquinoline (7a). To a THF solution (15 ml) of (5a) (765 mg, 3.00 mmol), BH₃- THF (1.0 M, 30 ml, 30 mmol) was added dropwise at - 20°C, and the resulting solution was stirred for 3 h. To the solution, MeOH (8ml) was added, and then the solvents were removed under reduced pressure. The residue was chromatographed on SiO₂ column (1 : 1 hexane - EtOAc) to give colorless oil which was treated with HCl (g) to form hydrochloride as colorless solid (633 mg, 100 %): mp 169 - 170 °C; ¹H nmr (free amine, CDCl₃) δ 1.73 - 2.17 (m, 3H), 2.64 - 2.91 (m, 5H), 3.26 - 3.36 (m, 1H), 3.52 (m, 1H), 7.12 - 7.37 (m, 4H); ¹³C nmr (free amine, CDCl₃) δ 23.86, 26.50, 36.83, 47.09, 54.78, 67.50 (q, J = 26 Hz), 127.78 (q, J = 284 Hz), 127.89, 128.53, 128.78, 135.25, 137.58. Anal. Calcd for C₁₃H₁₄NF₃:HCl: C, 56.22; H, 5.44; N, 5.04. Found: C, 56.13; H, 5.34; N, 5.21.

1,2,3,5,6,10b- Tetrahydro- 8,9- dimethoxy- 10b- trifluoromethylpyrrolo[2,1- *a*]isoquinoline (7c). ¹H Nmr (CDCl₃) δ 1.75 - 2.14 (m, 3H), 2.58 - 2.96 (m, 3H), 2.58 - 2.96 (m, 5H), 3.25 (ddd, 1H, J = 9, 6, 2 Hz), 3.40 (ddd, 1H, J = 13, 9, 5 Hz), 3.87 (s, 3H), 3.88 (s, 3H), 6.62 (s, 1H), 6.82 (q, 1H, J = 1 Hz); ¹³C nmr (CDCl₃) δ 23.75, 25.12, 36.98, 46.33, 54.05, 55.95, 56.26, 66.93 (q, J = 27Hz), 111.07, 111.59 (q, J = 285 Hz), 126.74, 129.80, 147.96, 148.85. Hydrochloride: mp 30 °C (decomp.). Anal. Calcd for C₁₅H₁₈NF₃·HCl: C, 53.34; H, 5.67; N, 4.15. Found: C, 53.03; H, 6.00; N, 4.13.

1,2,3,5,6,11b- Tetrahydro- 11b- trifluoromethyl- (1*H***)- indolizino[8,7-***D***]indole (7d)**: mp 105 - 107 °C; ¹H nmr (CDCl₃) δ 1.75 - 2.08 (m, 3H), 2.49 - 2.65 (m, 2H), 2.95 (ddd, 2H, *J* = 16, 10, 7 Hz), 3.08 - 3.16 (m, 1H), 3.31 - 3.38 (m, 2H), 7.13 (ddd, 1H, *J* = 8, 7, 1 Hz), 7.22 (ddd, 1H, *J* = 8, 7, 1 Hz), 7.36 (ddd, 1H, *J* = 8, 1, 1 Hz), 7.55 (ddd, 1H, *J* = 8, 1, 1 Hz), 7.91 (br s, 1H); ¹³C nmr (CDCl₃) δ 15.96, 23.78, 35.34, 44.26, 51.38, 63.77 (q, *J* = 28 Hz), 111.40, 111.81, 119.10, 120.07, 123.14, 126.80, 127.49 (q, *J* = 284 Hz), 130.71, 136.78. Anal. Calcd for C₁₅H₁₅N₂F₃: C, 64.28;

H, 5.39; N, 9.99. Found: C, 64.33; H, 5.50; N, 9.82. Hydrochloride: mp 120 °C (decomp.).

ACKNOWLEDGMENT

This work was supported in part by a Grant- in- Aid for Development of Scientific Research from the Ministry of Education, Science, and Culture, Japan (07555285).

REFERENCES

- 1. M. A. McClinton and D. A. McClinton, *Tetrahedron*, 1992, 48, 6555.
- For reviews, see: R. Filler, *Biochemical Aspects of Fluorine Chemistry*, ed. by Y. Kobayashi, Kodansha Ltd., Tokyo, 1982; J. T. Welch, *Tetrahedron*, 1987, 43, 381; J. T. Welch and S. Eswarakrishnan, In *Fluorine in Bioorganic chemistry*, Wiley Interscience Publication, John Wiley & Sons, Inc., New York, 1990; J. T. Welch, *Selective Fluorination in Organic and Biorganic Chemistry*. ACS Symposium Series 456, Washington, D. C., 1991.
- 3. J. P. Michael, *Nat. Prod. Rep*, 1995, 12, 535.
- 4. Preparation of acyl imine using 3,3,3- trifluoro- 5- oxopentanoic acid will be reported elsewhere.
- 5. P. Brown, J. Burdon, and J. C. Tatrow, *Tetrahedron*, 1960, **10**, 164; R. H. Groth, *J. Org. Chem.*, 1959, **24**, 1709.
- R. E. Valters and W. Flitsch, *Ring- Chain tautomerism*, ed. by A. R. Katritzky, Plenum Press, New York, 1985; H. Takeuchi and S. Eguchi, *J. Chem. Soc., Perkin Trans. I*, 1988, 2149.
- 7. M. Winn and H. E. Zaugg, J. Org. Chem., 1968, 33, 3779.
- 8. For a review of acyliminium cyclization, see: W. N. Specamp and H. Hiemstra, *Tetra-hedron*, 1985, **41**, 4367.
- 9. D. J. Robins, Nat. Prod. Rep., 1995, 12, 413.
- 10. J. E. Baldwin and L. I. Kruse, J. Chem. Soc., Chem. Commun., 1977, 233.
- 11. H. C. Brown and P. Heim, J. Org. Chem., 1973, 38, 912.

Received, 16th February, 1996

236