2-METHY L-4-NITROISOXAZOLIN-5-ONE: RING TRANSFORMATION TO 3-NITROPY RROLES Masahiro Ariga,* Nagatoshi Nishiwaki, Yuko Miwa, Keita Tani, and Yasuo Tohda

Department of Chemistry, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582, Japan

<u>Abstract</u> - Ring transformation of 2-methyl-4-nitroisoxazolin-5-one with some enolate anions afforded 3-nitropyrroles. A ring-opened intermediate of the ring transformation was isolated.

In our course of the study on electron deficient pyridones, 4-nitroisoxazolin-5-one was obtained.¹ Functional varieties of the isoxazolone such as heterodiene, α -nitrolactone, and β -nitroenamine suggest us that it may undergo various types of reactions. We already reported 2-methyl-4-nitroisoxazolin-5-one (1) acted as a precursor of a nitrile oxide in the reaction with various dipolarophiles to give isoxazoles.² Availability of 2-acetyl-4-nitroisoxazolin-5-one (2) as an acetylating reagent also was revealed.³

Here, we wish to deal a new ring transformation of 1 with enolate anions of β -keto esters and β diketones. Treatment of 1 with 1.2 equiv. of ethyl 2-sodio-3-oxobutanoate in pyridine at 70 °C gave ethyl 1,3-dimethyl-4-nitro-2-pyrrolecarboxylate (**3a**)⁴ as a major product (77.0%) and a trace of diethyl 1,3,5trimethyl-2,4-pyrroledicarboxylate (**4a**).⁵ The structure of **3a** was assigned by its ¹H nmr and ir spectra, and by comparison with those of an authentic sample, which was independently sythesized from ethyl 3methylpyrrole-2-carboxylate⁶ by nitration, separation from 5-nitro isomer on silica gel column, and *N*-methylation. The similar reaction with diethyl 2-sodio-3-oxopentanedioate yielded ethyl 3-ethoxycarbonylmethyl-1-methyl-4-nitro-2-pyrrolecarboxylate (3b).⁷ The results are summarized in Table 1.

It is clear that the C(2)-C(3) part of the obtained pyrrole (3) is derived from the reagent and the rest arises from the N(2)-C(3)-C(4) moiety of the isoxazolone (1). Formation of **4a** must involve the condensation of two molar ethyl 3-oxobutanoate during the ring transformation, but the detail is in progress.

Substrate	Reagent ^{a)}	Reaction Conditions				Products (Vield/%)	
		equiv.	Solvent	Temp./℃	Time/h		
1	a	1.2	Pyridine	70	5	3a (77.0)	4a (trace)
1	a	3.0	n	11	n	3a (48.0)	4a (36.0)
1	a	1.2	DMF	11	n	3a (56.8)	
1	b ·	1.2	11	11	11	3b (56.6)	
1	с	1.2	Pyridine	20	**	3c (5.8)	5c (10.4)
1	с	3.0	DMF	70	n		5c (64.2)
5c	(NH ₄ Cl)	3.0	Ethanol	80	10	3c (83.7)	

 Table 1
 Ring transformation of 2-methyl-4-nitroisoxazoloin-5-one (1)

a) a: ethyl 2-sodio-3-oxobutanoate;
 b: diethyl 2-sodio-3-oxo-pentanedioate;
 c: 3-sodiopentane-2,4-dione

2,4-Pentanedione, a kind of β -diketone, yielded a similar ring transformed product $(3c)^8$ in a low yield, and gave $5c^9$ as a major product. The ring-opened product (5c) presented in an equilibrium mixture of *E*and *Z*-isomers in CDCl₃ solution in a ratio of about 4;3.^{10,11}

The product (5c) is a β -nitroenamine and has an electrophilic carbonyl carbon in the molecule. Cyclization of **5c** to pyrrole (3c) could be achieved in good yield by heating **5c** at 80 °C for 10 h in ethanol containing a small amount of ammonium chloride as an acid catalyst.

In the present reaction, a new C-N bond is formed between the active methylene carbon of the reagent and the ring nitrogen of isoxazolone (1). Taking account of isolation of 5c, one of a plausible course of the reaction is proposed as that direct nucleophilic attack of the enolate anion to the nitrogen atom of 1 accompanied by decarboxylation to form 6, then intermediate anion (6) recyclized to nitropyrrole (3).

We, however, can not neglect that the intramolecular attack of the enolate anion introduced at the 3-position of 1 to the ring nitrogen atom caused the N-O bond cleavage and decarboxylatiton to give aziridine (7), and successive ring opening of the aziridine ring forms intermediate (6).

Since, it is not likely known that the C-anion of the reagent attacks directly at the ring nitrogen of an isoxazolone before ring cleavage. It has been well known that the nucleophilic attack at the 3-position of 5-isoxazolone resulted in the N-O bond cleavage and decarboxylation.¹²⁻¹⁵ There are also some precedents for the ring

opening of isoxazole or isoxazolone followed by succeeding recyclization to an aziridine.¹⁶

Though more examples with a variety of carbonyl compounds are necessary to show the general utility of the reaction, the ring transformation furnishes a convenient route for synthesis of functionalized ß-nitropyrrole derivatives which were tediously obtainable by direct nitration.

In conclusion, this new ring transformation suggests that 2-methyl-4-nitroisoxazol-5(2H)-one (1) behaves as a masked β -nitroenamine besides a precursor of nitrile oxide.²

REFERENCES

- M. Ariga, Y. Tohda, H. Nakashima, K. Tani, Y. Mori, and E. Matsumura, Bull. Chem. Soc. Jpn., 1991, 64, 3544.
- S. Higashida, H, Nakashima, Y. Tohda, K. Tani, N. Nishiwaki, and M. Ariga, *Heterocycles*, 1992, 34, 1511.
- 3. N. Nishiwaki, Y. Takada, Y. Tohda, and M. Ariga, Chem. Express, 1992, 7, 845.
- 4. Mp 143.0-145.0 °C. Ir: v 3140, 1690, 1550, 1340, 1100. ¹H Nmr (CDCl₃): δ 1.42 (t, *J*=7 Hz, 3H), 2.64 (s, 3H), 3.94 (s, 3H), 4.36 (q, *J*=7 Hz, 2H), 7.60 (s, 1H).
- 5. Ir: v 1690, 1540, 1350. ¹H Nmr (CDCl₃): δ 1.37 (t, J=7 Hz, 3H), 1.38 (t, J=7 Hz, 3H), 2.51 (s, 3H), 2.55 (s, 3H), 3.78 (s, 3H), 4.28 (q, J=7 Hz, 2H), 4.30 (q, J=7 Hz, 2H).
- 6. W. G. Terry, A. H. Jackson, G. W. Kenner, and G. Kornis, J. Chem. Soc., 1965, 4389.
- Mp 88.0-89.0 °C. Ir: v 3130, 1720, 1700, 1550, 1346. ¹H Nmr (CDCl₃): δ 1.27 (t, J=7 Hz, 3H), 1.37 (t, J=7 Hz, 3H), 3.96 (s, 3H), 4.18 (q, J=7 Hz, 2H), 4.28 (s, 2H), 4.34 (q, J=7 Hz, 2H), 7.64 (s, 1H).
- Mp 133.5-134.5 °C. Ir: ν 1655, 1550, 1310. ¹H Nmr (CDCl₃): δ 2.52 (s, 3H), 2.69 (s, 3H), 3.90 (s, 3H), 7.63 (s, 1H).
- Mp 125.0-128.0 °C. Ir: ν 1610, 1560, 1310. ¹H Nmr(CDCl₃): E-5c: δ 2.10 (s, 6H), 3.29 (s, 3H), 6.46 (d, J=11 Hz, 1H), 8.16 (d, J=11 Hz, 1H), 15.71 (s, 1H); Z-5c: δ 2.10 (s, 6H), 3.03 (s, 3H), 6.72 (d, J=11 Hz, 1H), 7.92 (d, J=11 Hz, 1H), 15.53 (s,1H).
- N. Nishiwaki, E. Wakamura, Y. Nishida, Y. Tohda, and M. Ariga, *Heterocyclic Commun.*, 1996,
 2, in press.
- 11. S. Rajappa and K. Nagarajan, J. Chem. Soc., Perkin Trans. II, 1978, 912.
- 12. F. de Sarlo and G. Renzi, Tetrahedron, 1966, 22, 2995.
- D. J. Woodman, C. H. Borman, N. Tontapanish, and P. M. Stonebraker, J. Org. Chem., 1969, 34, 2981.
- 14. H. J. Wollweber and C. Wentrup, J. Org. Chem., 1985, 50, 2041.
- 15. N. Nishiwaki, Y. Takada, Y. Inoue, Y. Tohda, and M. Ariga, J. Heterocycl. Chem., 1995, 32, 473.
- H. C. van der Plas, "Ring Transformations of Heterocycles", Vol. 1, Chapt. 3, Academic Press, New York, 1973.

Received, 23rd February, 1996