THE 7-N-OXIDES OF PURINES RELATED TO NUCLEIC ACIDS: THEIR CHEMISTRY, SYNTHESIS, AND BIOLOGICAL EVALUATION?

Tozo Fujii,* $\ddot{*}$ Taisuke Itaya, \ddagger and Kazuo Ogawa δ

\$~aculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi, Kanazawa 920, Japan; §Research Laboratories, Ikeda Mohando Co., Ltd., *Kamiichi-machi, Toyam 930-03, Japan*

Abstract - Recent advances in the chemistry, synthesis, and biological evaluation of the 7-N-oxides of purines related to nucleic acids are reviewed. The 7-N-oxides covered are those of guanine **(11,** adenine (2). and hypoxanthine (3) and of related compounds such as 6-mercaptopurine (6-MP) (72). the 6-thioxo analogue of 3, and 6-methylthiopurine, a simple model for azathioprine (78), which were all unknown until recently.

CONTENTS

- I. Introduction
- **lI.** Occurrence
- 111. Chemistry and Synthesis
	- A. Guanine 7-Oxide
	- B. Hypoxanthine 7-N-Oxide
	- C. Adenine 7-Oxide
- IV. Related Compounds
	- A. 6-Mercaptopurine 7-N-Oxide
	- B. 6-Methylthiopurine 7-N-Oxide
- V. Biological Activity
- References and Notes

TDedicated to Emeritus Professor Dr. Shigeru Oae (University of Tsukuba) on the occasion of his 77th birthday.

I. Introduction

Guanine **(1)** and adenine (2) are important fundamental biomolecules related to DNA's and RNA's. Hypoxanthine **(3)** is also a biologically significant oxopurine, which occurs in the animal body during the breakdown of nucleic acids and in the plant kingdom as well.¹ It also occurs as the 9- β -D-ribofuranoside inosine and the related nucleotide inosine 5'-phosphate, the former having been identified² as a minor component of more than 30 species of **tRNA** and the latter being an important precursor in the de novo biosynthesis of purine nucleotides such as adenosine $5'$ -phosphate and guanosine $5'$ -phosphate.^{1b,3}

Because these three purines cany four endocyclic nitrogen atoms, four kinds of mono-N-oxide should be theoretically possible for each. Among the four possible isomeric N-oxides⁴ in each case, the 1-, 3-, and 9-N-oxides have been prepared by chemical, synthesis: 1-hydroxyguanine,⁵ guanine 3-N-oxide,^{6,7} 9-hydroxyguanine,⁸ adenine 1-oxide (41),⁹ adenine 3-oxide,¹⁰ 9-hydroxyadenine,¹¹ 1-hydroxyhypoxanthine.¹² hypoxanthine 3-oxide,^{10,13} and 9-hydroxyhypoxanthine.⁸ The remaining 7-N-oxide isomers became known only recently, and the definite advances in the chemistry, synthesis, and biological evaluation of the 7-N-oxides of these purines emphasize the need for the present review, which covers the literature through the end of 1995.

11. Occurrence

In 1985, three research groups¹⁴⁻¹⁶ independently reported the isolation of guanine 7-oxide (4) from the culture broths of certain Streptomyces species (ATCC 39364;¹⁴ S. purpurascens A-347;¹⁵ and No. 3780¹⁶), together with its observed antitumor, ^{14–17} antimicrobial, ¹⁶ and antiviral¹⁸ activities. The chemical structure of this antibiotic was established as 4 on the basis of elemental^{14,15b,16} and spectral^{15b,16} analyses; its chemical behavior;¹⁶ and the X-ray molecular structures of the hydrobromide salt (monohydrate),¹⁴ the free base (dihydrate),^{15b} and the pentamethylated derivative (17).¹⁶ Thus, 4 has so far been a unique purine N-oxide shown to occur in nature.

111. Chemistry and Synthesis

A. GUANINE 7-OXIDE

Direct oxidation of guanine (1) with peroxytrifluoroacetic acid has been shown to produce the 3-N-oxide,⁶ not the 7-N-oxide (4) as once thought.¹⁹ In a preliminary experiment, Brown's group²⁰ obtained 8hydroxyguanine (6) from the reaction of **2,4-diamino-5-nitroso-6-hydroxypyrimidine** (5) with formalin and merely mentioned that it may be possible to obtain the presumed intermediate, guanine 7-N-oxide (4) (Scheme I).

The first chemical synthesis of 4 was accomplished by Fujii and co-workers²¹ via a newly devised "phenacylamine route", as delineated in Scheme 2. The route started from coupling of 2-amino-6-chloro-5 nitro-4(3H)-pyrimidinone (7) with appropriate N-substituted phenacylamines, generated in situ from the corresponding hydrochlorides (8a-I) and 1 N aqueous NaOH, giving the 6-phenacylamino-4-pyrimidinones (9a-I). On treatment with 2 N aqueous NaOH at room temperature for 10-60 min, the nitropyrimidinones (9a-k) cyclized *via* 10a-k to provide the 9-substituted guanine 7-oxides (12a-k), with elimination of henzoic acid. A similar alkali-treatment of 91 failed to yield guanine 7-oxide (4). However, removal of the 9-(arylmethyl) group from 12i-k was effected with conc. H_2SO_4 at room temperature for 1-3 h in the presence of toluene, producing the target N-oxide (4). Application of the same procedure to the unmodified benzyl analogue $(12g)$ or the allyl analogue $(12c)$ failed to give the desired product (4) .

As regards the problem of the tautomeric forms of guanine 7-N-oxide in the solid state, the N(7)-oxide form (4) has been preferred by Kern et al.¹⁴ on the basis of the X-ray crystal structure of the corresponding hydrobromide salt monohydrate. On the other hand, Kitahara *et al.*^{15b} have proposed the N(7)-OH form (11) on the basis of the result of an X-ray analysis of a single crystal of the dihydrate of the free base grown in 15% tetrahydrofuran-2 M NH₄OH. In solution, the two forms may coexist at equilibrium,¹⁶ and a uv spectroscopic approach, together with three p_{A} values (2.6, 5.8, and 9.5) reported¹⁶ for the free base, may suggest that the neutral species of guanine 7-N-oxide has a considerable proportion of the N(7) oxide structure in $H₂O$ (Scheme 2).^{21b}

Scheme 3 summarizes the chemical behavior of 4. On reduction with Raney Ni, 4 produced guanine (1) quantitatively.^{15b} Treatment of 4 with refluxing AcOH gave 8-hydroxyguanine (6).¹⁶ The formation of 6 from 4 may be explained by assuming 13 and 14 as the intermediates.²² Permethylation of 4 with MeI in dimethyl sulfoxide (DMSO) in the presence of NaH yielded the pentamethyl derivative (17) as the main product.¹⁶ Treatment of 4 with MeI in N,N-dimethylacetamide (DMAc) at $25-40^{\circ}$ C for 72 h gave 9methyl-8-hydroxyguanine (15) (29% yield), which was identical with a sample prepared from 12a in 80% yield by treatment with hot AcOH.²² On the other hand, treatment of 4 with dimethyl sulfate in 0.1 N. aqueous NaOH furnished 8-methoxyguanine (16) (60% yield), which was identical with a sample obtained in 94% yield from 8-methoxyguanosine by glycosidic hydrolysis with p-TsOH/AcOH (60–65 $^{\circ}$ C, 40 min).²² Methylation of 6 with dimethyl sulfate in 0.1 N aqueous NaOH failed to give 16.²² Kitahara *et*

Scheme 4

a1.23 also observed similar replacement reactions at the 8-position during their attempted chemical modifications of 4. Werbovetz and Macdonald²⁴ reported that methylation of 9-benzylguanine 7-oxide (12g) with trimethyloxonium tetrafluoroborate in MeNO₂ furnished 9-benzyl-7-methoxyguanine salt (18) and that 18 was converted to a mixture of **9-benzyl-8-hydroxyguanine** (19) and **9-benzyl-8-methoxyguanine** (20) upon treatment with refluxing aqueous NaOH (Scheme 4).25

Several derivatives of 4 have been prepared for biological evaluation. Fujii and co-workers²⁶ synthesized 8-methylguanine 7-oxide (21), a model for C(8)-blocked derivatives of 4, via an α -methylphenacylamine version of the "phenacylamine route" (Scheme 2), which started from condensation of 7 with α -(4-me**thoxyhenzy1amino)propiophenone** (22) and proceeded through cyclization of the resulting phenacylaminopyrimidinone and removal of the 4-methoxyhenzyl group. Nishii **ef** *aLZ7* prepared guanosine 7-oxide (23) from 4 and ribose 1-phosphate by utilizing purine nucleoside phosphorylase from *Bacillus subtilis* PC1 219. Kitahara *et al.28* prepare'd 23 or the 2.-deoxy analogue (24) from 4 and ribose 1-phosphate or deoxyribose 1-phosphate using purine nucleoside phosphorylase from bovine spleen. The same group²³ also reported enzymatic conversion of 4 into guanosine 7-oxide 5'-monophosphate disodium salt (25) and chemical conversion of 4 into the N^2 -tetrahydropyranyl derivative (26).

B. HYPOXANTHINE 7-N-OXIDE

Hypoxanthine 7-N-oxide (30) was not known until 1988, when Fujii's group²⁹ achieved its chemical synthesis by extending the "phenacylamine route" (Section **111,** A) to cover the synthesis of this new purine 7- N-oxide at the hypoxanthine level. The first step for the synthesis of 30 was coupling of $N-(4$ -methoxybenzyl)phenacylamine, generated in situ from the corresponding hydrochloride $(8i)$ and 1 N aqueous NaOH, with **6-chloro-5-nitro-4(3H)-pyrimidinone** (27), which was effected in EtOH at room temperature for 6 h to furnish the phenacylaminopyrimidinone (28) (Scheme 5). On treatment with 2 N aqueous NaOH at room temperature for 1 h, 28 gave the N-oxide (31) and benzoic acid as well. Removal of the 4-

Scheme 5

methoxybenzyl group was then carried out with 90% aqueous H_2SO_4 at 30°C for 1 h in the presence of methoxybenzyl group was then carried out with 90% aqueous H_2SO_4 at 30°C for 1 h in the presence of toluene, affording the target 7-N-oxide (30). Three pK_a values of <1.4 (basic) (for protonated form \rightleftharpoons toluene, affording the target 7-N-oxide (30). Three pK_a values of <1.4 (basic) (for protonated form \rightleftharpoons
neutral form), 5.02 (acidic) (for neutral form \rightleftharpoons monoanion), and 10.23 (acidic) (for monoanion \rightleftharpoons dianion) have been obtained spectrophotometrically for $30,^{29b}$ and a uv spectroscopic approach has suggested that the neutral form of 30 exists in H₂O mainly as the N(7)-OH tautomer (29).^{29b}

The chemical properties of 30 are illustrated in Scheme $6²⁹$ On hydrogenolysis using Raney Ni catalyst and H_2 in H₂O, 30 produced hypoxanthine (3). Treatment of 30 with hot AcOH for 20 h or with boiling 2 N aqueous HCl for 1 h gave $6,8$ -dioxopurine (32) . The apparent migration of the oxygen function from N(7) to C(8) in this case is analogous to that observed for guanine 7-oxide (4) (Section 111, **A).** Methylation of 30 with dimethyl sulfate in 0.2 N aqueous NaOH at room temperature afforded 7-methoxyhypoxanthine (35) (2870 yield), **7-methoxy-1-methylhypoxanthine** (36) (770). and 7-methoxy-3-methylhypoxanthine (37) (3%). The locations of the methyl groups were established by reductive demethoxylations of 35,36, and 37 (Raney Ni/H₂), which led to the formation of hypoxanthine (3), 1-methylhypoxanthine (33). and 3-methylhypoxanthine (34), respectively. On the other hand, methylation of 30 with MeI in DMAc at room temperature in the absence of alkali gave a complex mixture of products presumed to contain 7-methoxy-9-methyl derivative (38), and the mixture yielded 9-metbylhypoxanthine (39) when subjected to hydrogenolysis (Raney **Ni/H2)** after removal of iodide ion by the use of Dowex $50W-X8$ (H⁺). The compound (39) was identical with a sample prepared from 9-methyladenine (40) by deamination with $NaNO₂$ in aqueous HCl at 90°C.

C. ADENINE 7-OXIDE

Adenine (2) has a bicyclic ring system consisting of a 4-aminopyrimidine and an imidazole ring in juxtaposition.³⁰ On treatment with 30% aqueous H_2O_2 in AcOH at room temperature, it undergoes N-oxidation preferentially at the 1-position to produce adenine 1-oxide (41) in good yield (Scheme 7).^{9,31} This regioselectivity appears to reflect the generalization³² that on N -oxidation pyrimidine compounds form only mono-N-oxides, whereas imidazoles are resistant to N-oxidation.

In 1968, however, Rhaese³³ claimed that treatment of 2 with 0.1 M H_2O_2 in 0.01 M phosphate buffer (pH 7.0) at 37°C for 5 days afforded adenine 7-oxide (45) (isolated as a monohydrate sensitive to uv light) in 5% yield without any detectable formation of the N(1)-oxide (41). He further claimed that the N(7)-oxide (45) was among the products of X-ray irradiation of 2 in 0.05 M phosphate buffer (pH 7.0).33 Later on, these results were reportedly reproduced by Yamamoto,³⁴ who further asserted that 45 bound noncovalently to urease, an SH protein, in an experiment using a sample of 45 prepared by the method of Rhaese. This unusual regioselectivity of N -oxidation of 2 was so striking as to appear questionable. Moreover, the

l,

chemical and spectroscopic evidence adduced by both authors appeared insufficient to allow definite assignment of the $N(7)$ -oxide structure to their samples, which they thought to be the new N-oxide (45).

Fujii and co-workers³⁵ reexamined the H₂O₂/buffer oxidation procedure³³ of Rhaese for 2, but completely failed to reproduce his results; they were unable to obtain any N-oxide from 2. This led them to design a three-step route for the synthesis of adenine 7-oxide (45) from adenine (2) (Scheme 7),35 Treatment of 3 benzyladenine (43) , easily obtainable from 2 according to the literature procedure,³⁶ with magnesium monoperoxyphthalate hexahydrate (MMPP \cdot 6H₂O) in MeOH at 30°C for 20 h or with *m*-chloroperoxybenzoic acid (MCPBA) in MeOH-1 M acetate buffer (pH 5.0) (1:1, v/v) at 30° C for 15 h gave 3-benzyladenine 7-oxide (44) in 40% or 24% yield, respectively. The use of 30% aqueous H_2O_2 in AcOH at room temperature or MCPBA in AcOH at 30°C as the oxidizing agent was found to be ineffective. On treatment with conc. H_2SO_4 at 35°C in the presence of toluene for 3 h, 44 furnished the desired compound, adenine 7-oxide (45). in 55% yield. Characterization of 45 as the N(7)-oxide was readily achieved by measurement of its uv spectrum, which was different from those of the three known isomeric N-oxides, and by its chemical reactions including deamination and methylation, as shown in Scheme 7. In addition, the location of the oxygen function in 44 and 45 was confirmed by X-ray crystallographic analysis.^{35b}

Fujii's group^{35b} further found that treatment of 43 with a large excess of 30% aqueous H_2O_2 in MeOH in the presence of MeCN and KHCO₃ at 25° C for 22 h produced the N(7)-oxide (44) and 7-acetamido-3henzyladenine (50) in 12% and 1% yields, respectively, together with 28% recovery of 43. They determined p K_a values of 45 spectrophotometrically in H₂O at 30°C, obtaining two values of 3.4 (basic) [for protonated form (51) \rightleftharpoons neutral form] and 5.75 (acidic) [for neutral form \rightleftharpoons monoanion (53)] (Scheme 8).^{35b} A uv spectroscopic approach suggested that the neutral species of 45 exists in H₂O as an equilibrated mixture of the N(7)-oxide (45) and N(7)-OH (52) tautomers.^{35b} As in the case of 3-benzyladenine (43) described above, 3-methyladenine (48) and 3-ethyladenine (54) underwent peroxycarhoxylic acid oxidation at $N(7)$, giving 47 and 55 in 13–25% yields.^{37a} Treatment of 44,47, and 55 with alkyl halide $(R²X)$ in DMAc at 30°C afforded the corresponding 7-alkoxy derivatives (56) (81–91% yields), which furnished 3-alkyl-8-hydroxyadenines (57) in 26–50% yields on treatment with 0.1 N aqueous NaOH at room temperature (Scheme 9).^{37a} Treatment of 56 (X = ClO₄) with 1 M R³ONa in R³OH (R³ = Me, Et, or PhCH2) at room temperature gave 8-alkoxy-3-alkyladenines (58) in 28-97% yields, and hydrolysis of 58 $(R^3 = Me)$ with boiling 1 N aqueous HCl or hydrogenolysis (Pd–C/H₂) of 58 (R³ = PhCH₂) provided 57 in 73-88% yields.37b

Much information has been accumulated concerning the regioselectivity in N-oxidation of N^x -benzyladenines. Oxidation of 9-benzyladenine (59) with peroxyacetic acid gives the N(1)-oxide (63) in 69% vield:³⁸ that of 9-benzyladenine-2-d (60) with MCPBA gives the corresponding N(1)-oxide (64) in 71%

Scheme 9

Scheme 10

 $\ddot{}$

yield;³¹ oxidation of 7-benzyladenine (61) with MCPBA affords the N(1)-oxide (65) in 76% yield;³⁹ oxidation of 3-benzyladenine (43) with MMPP or with MCPBA or with aqueous $H_2O_2/MeCN/KHCO_3$ provides the N(7)-oxide (44) in 40% or 24% or 12% yield, respectively (vide supra);³⁵ and oxidation of N^6 -benzyladenine (62) with MCPBA⁴⁰ or with trifluoroperoxyacetic acid⁴¹ furnishes the N(1)-oxide (66) (35% yield) or the N(3)-oxide (4%) and N(7)-oxide **(4%),** respectively. Fujii's group42 treated l-benzyladenine (67), the remaining positional isomer, with MCPBA in MeOH or in MeOH-0.5 M phosphate buffer (pH 6.6) at 30°C and obtained 1-benzyladenine 7-oxide (68) as the main product (Scheme 10). Nonreductive debenzylation of 68 with H_2SO_4 /toluene gave adenine 7-oxide (45) in 63% yield. The structure of 68 was unequivocally established by an X-ray crystallographic analysis. Thus, the reaction sequence $67 \rightarrow 68 \rightarrow 45$ afforded an alternative synthesis of 45.⁴²

Yet another synthetic approach to 45 would be an extension of the "phenacylamine route" (Section **III,** A), as shown in Scheme 10. Fujii's group⁴² obtained 71 in 67% yield from 4-amino-6-chloro-5-nitropyrimidine (70) and 8i. However, treatment of 71 with 2 N aqueous NaOH in MeOH at room temperature for 2 h gave a mixture of many products, from which they were unable to isolate the cyclized product (69), even if it were present. This led them to abandon the "phenacylamine route" approach.

IV. Related Compounds

A. 6-MERCAPTOPURINE 7-N-OXIDE

6-Mercaptopurine (6-MP) (72). the 6-thioxo analogue of hypoxanthine (3), is an antileukemic agent of longstanding clinical usefulness.⁴³ Among the four possible N-oxides of 6-MP, only the N(3)-oxide (75) has so far been obtained. It has been synthesized from 6-chloropurine 3-oxide (76) and ammonium dithio carbamate⁴⁴ or from 7-aminothiazolo[5,4-d]pyrimidine 6-N-oxide (77) by rearrangement,⁴⁵ and a comparison of the activities of the N-oxide (75) with the parent 6-MP has been made in several biological systems.⁴⁵ Fujii *et al.*⁴⁶ reported the first synthesis of 6-mercaptopurine 7-N-oxide (73), in which they adopted a dichloropyrimidine variant (Scheme ll) of their favorite "phenacylamine route" (Section **111,** A and B). The synthesis of 73 started with the condensation of **N-(4-methoxybenzyl)phenacylamine,** generated from its hydrochloride salt (8i), with 4,6-dichloro-5-nitropyrimidine (83) in CHCl₃ at 0–5^oC for 1 h to give the phenacylaminopyrimidine (79) . Successive treatments of 79 with thiourea, conc. aqueous NH₃, and 2 N aqueous NaOH afforded the N-oxide (80). Removal of the 4-methoxybenzyl group from 80 was effected in a mixture of conc. H_2SO_4 and toluene at 23°C for 2 h, giving the target compound (73). On treatment with sodium dithionite in boiling 50% aqueous MeOH for 1.5 h, 73 produced 6-MP (72). The **'H** nmr spectrum of 73 indicated that 6-mercaptopurine 7-N-oxide exists in Me₂SO- d_6 in the 6-thioxo-1H-

586

Scheme 11

purine form (85) rather than the C(6)-SH form (73). In an alternative synthetic approach to 73, Fujii et $aI₁⁴⁶$ heated hypoxanthine 7-N-oxide (30) with P_2S_5 in boiling pyridine. However, they were unable to obtain 73, but isolated a compound inferred to be 8-mercaptohypoxanthine. They obtained three pK_a values for 73 spectrophotometrically in H₂O at 30 $^{\circ}$ C, as shown in Scheme 12, and a uv spectroscopic approach suggested the overwhelming predominance of the N(7)-OH tautomer (88) over the N(7)-oxide tautomer (73) in the neutral species of 6-mercaptopurine 7-N-oxide in H_2O .^{46b}

Scheme 12

B. 6-METHYLTHIOPURINE 7-N-OXIDE

Azathioprine (Imuran[®]) (78), the *S*-(1-methyl-4-nitro-1H-imidazol-5-yl) derivative of 6-MP (72), is an immunosuppressive agent of longstanding clinical usefulness.43 It acts as a pro-drug for 6-MP.43a Fujii *et* a ¹⁴⁶ reported the first synthesis of 6-methylthiopurine 7-N-oxide (74), a simple model for the 7-N-oxide of azathioprine (78). For the synthesis of 74, they methylated the precursor (80) for 73 with dimethyl sulfate in a mixture of 1 N aqueous NaOH and MeOH at room temperature or with MeI and K_2CO_3 in MeOH at room temperature, obtaining the 6-methylthio derivative (81) (Scheme 11). Nomeductive dehenzylation of 81 with conc. H2S04 in the presence of toluene at **25'C** for 1 h gave the desired N-oxide (74). On the other hand, direct methylation of 73 with Me1 or dimethyl sulfate in a mixture of MeOH and 1 N aqueous NaOH resulted in the formation of a mixture of many products, from which they were unable to obtain the S-methyl derivative (74). The location of the oxygen function in 73, 74, and 80 was confirmed by X-ray crystallographic analysis of $74 \text{ H}_2\text{O}$, which was shown to exist in the N(7)-OH form (86).

Scheme 13

Fujii et al.^{46b} also determined two p K_a values for 74 spectrophotometrically in H₂O at 30^oC, as shown in Scheme 13, and a uv spectroscopic approach suggested that the neutral species of 6-methylthiopurine 7-Noxide exists in H₂O as an equilibrated mixture of the N(7)-oxide (74) and the N(7)-OH (86) tautomers. In an attempt to develop an alternative synthetic route to adenine 7-oxide (45) . Fujii et al.⁴⁶ examined amination of 74 under a variety of reaction conditions (Scheme 11). However, all attempts resulted in the recovery of 74, suggesting the inertness of the C(6)-SMe group in the anionic species (92). On the other hand, treatment of the N(9)-arylmethyl derivative (81) with 16% methanolic NH₃ at 24°C for 4 h gave an unstable crude compound inferred to be the ring-opened product (82), which reverted to 81 on heating in boiling EtOH for 30 min.⁴⁶ Treatment of 81 with saturated ethanolic NH₃ in an autoclave at 110^oC for 6 h afforded the $C(8)$ -amino derivative (84) .⁴⁶ In either case, the desired adenine derivative (69) could not be obtained.

V. Biological Activity

Guanine 7-oxide (4) exhibited excellent activity in mice that were inoculated either intraperitoneally or subcutaneously with L1210 leukemia cells.^{14,15a} It caused pronounced growth inhibition of several murine and human cell lines in vitro.¹⁷ For the L1210 lymphoblastic leukemia, 50% inhibition was obtained below 1 μ M.¹⁷ It also inhibited Yoshida sarcoma and L5178Y leukemia cells in culture at IC₅₀'s of 1.65 and 2.40 μ g/ml, respectively.¹⁶ The intraperitoneal administration of this antibiotic showed a life-prolongation effect on mice bearing P388 leukemia, and the activity at a dose of 6.0 mg/kg/day was almost comparable to that observed with mitomycin C at a dose of 1.0 mg/kg/day.¹⁶ The N-oxide (4) also showed a dose-dependent inhibition of the growth of Ehrlich solid carcinoma in mice via oral administration.¹⁶ Guanine 7-oxide (4) has no activity against Staphylococcus aureus 209P, Bacillus subtilis PC1 219, Escherichia coli NIHJ, Pseudomonas aeruginosa IF0 3445, Micrococcus luteus PC1 1001, Candida albicans 3 147, and Saccharomyces cerevisiae at a concentration of 100 μ g/ml.^{15a} Nishii et al.¹⁶ reported that 4 was inhibitory to Candida albicans but inactive against Gram-positive and Gram-negative bacteria and Trichophyton species. Moderate antiviral activity of 4 was demonstrated against DNA and RNA viruses derived from salmonids.¹⁸ The LD₅₀ of 4 in mice was determined to be 40-80 mg/kg (by single intraperitoneal administration)^{15a} or 53 mg/kg (by intraperitoneal administration).¹⁶ Jackson *et al.*¹⁷ reported that the N-oxide (4) is converted within sensitive cells into guanosine 7-oxide 5'-triphosphate and this results in inhibition of cellular protein synthesis. Nishii et al ²⁷ reported that the antimicrobial activity of guanosine 7-oxide (23) was very weak but it inhibited L5178Y mouse leukemia cells in culture at an IC_{50} of 0.60 μ g/ml; intraperitoneal administration of 23 showed a life-prolongation effect on mice bearing P388 leukemia; and 23 showed a dose-dependent inhibition of the growth of Ehrlich solid carcinoma in mice. Kitahara et al ²⁸

reported the antitumor activities of 23 and the 2'-deoxy analogue (24) against mouse leukemia L1210 cells. They also reported the biological activities of the nucleotide analogue (25) and the N^2 -tetrahydropyranyl derivative (26).²³

In the in vitro bioassay of antileukemic activity against murine L5178Y cells, Fujii and co-workers^{21b} found that none of the 9-substituted guanine 7-oxide (12a-k) was more effective than the parent, natural N-oxide (4). Within this series, however, the benzyl analogues (24g-k) with or without alkoxy functions were more cytotoxic, with IC₅₀'s of 13.0-48.0 μ g/ml, than the alkyl analogues (12a-f). 8-Methylguanine 7oxide (21), 9-(4-methoxybenzy1)-8-methylguanine 7-oxide, and 9-(4-methoxy-3-sulfobenzy1)-8-methylguanine 7-oxide showed only weak antileukemic activity and no antimicrobial activity.26

Hypoxanthine 7-N-oxide (30) was weakly cytotoxic, with IC₅₀ of 100 μ g/ml, in the *in vitro* bioassay of antileukemic activity against murine L5178Y cells, and it did not show any antimicrobial activity even at 1000 μ g/ml.^{29b} None of its 9-(4-methoxybenzyl) derivative (31) and the 7-methoxy derivatives (35, 36, and 37) was found to be antileukemic or antimicrobial.^{29b} In a similar bioassay, 6-mercaptopurine 7-Noxide (73) and its 9-(4-methoxybenzyl) derivative (80) were less effective than the parent 6-MP (72), but slightly more cytotoxic than hypoxanthine 7-N-oxide (30); 6-methylthiopurine 7-N-oxide (74) and adenine 7-oxide (45) were inactive at 50 μ g/ml concentration.^{46b}

In the tobacco callus bioassay of cytokinin activity, each of N^6 -benzyladenine 1-oxide (66), N^6 -benzyladenine 3-oxide, and N^6 -benzyladenine 7-oxide was active at 4 μ M concentration, being less active than the parent synthetic cytokinin (62) by a factor of 40.41

REFERENCES AND NOTES

- 1. For pertinent reviews, see (a) J. H. Lister, 'Fused Pyrimidines. Part 11: Purines,' ed. by D. J. Brown, Wiley-Interscience, New York, 1971, pp. 250–251; (b) G. Shaw, 'Rodd's Chemistry of Carbon Compounds,' 2nd ed., Vol. IV, Part L, ed. by S. Coffey, Elsevier Scientific Publishing Co., Amsterdam, 1980, pp. 31-32; (c) Atta-ur-Rahman and M. I. Choudhary, 'The Alkaloids,' Vol. 38, ed. by A. Brossi, Academic Press, New York, 1990, pp. 256-257.
- 2. For a review, see M. Sprinzl, T. Hartmann, 1. Weher, **J.** Blank, and R. Zeidler, Nucleic Acids Res., 1989, 17, 11.
- 3. For reviews, see (a) Ref. la, pp. 112-113; (b) G. Shaw, 'Comprehensive Heterocyclic Chemistry,' Vol. 5, ed, by K. T. Potts, Pergamon Press, Oxford, 1984, p. 505 and pp. 598-599.
- 4. The designation "N-oxide" used in this review follows that adopted in ref. 7, footnote 15.
- **5.** A. A. Watson, S. C. Nesnow, and G. B. Brown, J. Org. Chem., 1973,38, 3046.
- 6. U. Wolcke and *G.* B. Brown, J. Org. Chem., 1969, 34,978.
- J. **C.** Parham, T. G. Winn, and G. B. Brown, *J. Org. Chem.,* **1971.36, 2639.**
- *A.* **A.** Watson, *J. Org. Chem.,* **1974,39, 2911.**
- (a) M. **A.** Stevens, D. I. Magrath, H. W. Smith, Ad *G.* B. Brown, *J. Am. Chem. Soc.,* **1958, 80, 2755;** (b) M. **A.** Stevens and G. B. Brown, *ibid.,* **1958, 80,2759;** (c) T. Fujii and T. Itaya, *Tetrahedron,* **1971.27, 351.**
- I. Scheinfeld, J. C. Parham, S. Murphy, and *G.* B. Brown, *J. Org. Chem.,* **1969, 34, 2153.**
- **A. A.** Watson, *J. Org. Chem.,* **1977,42, 1610.**
- (a) **E. C.** Taylor, **C. C.** Cheng, and 0. Vogl, *J. Org. hem.,* **1959, 24, 2019;** (b) J. C. Parham, **J.** Fissekis, and G. B. Brown, *ibid.,* **1966, 31, 966;** (c) H. Kawashima, T. Meguro, and I. Kumashiro, *Bull. Chem. Soc. Jpn.,* **1966, 39, 633.**
- **H.** Kawashima and I. Kumashiro, *Bull. Chem. Soc. Jpn.,* **1969, 42, 750.**
- D. L. Kern, *G.* C. Hokanson, J. **C.** French, and N. K. Dally, *J. Antibiot.,* **1985, 38, 572.**
- (a) M. Kitahara, K. Ishii, Y. Kumada, T. Shiraishi, T. Furuta, T. Miwa, H. Kawaharada, and K. Watanabe, *J. Antibiot.,* **1985, 38, 972;** (b) M. Kitahara, K. Ishii, H. Kawaharada, K. Watanabe, T. Suga, T. Hirata, and S. Nakamura, *ibid.,* **1985, 38, 977.**
- M. Nishii, J. Inagaki, F. Nohara, K. Isono, H. Kusakabe, K. Kobayashi, T. Sakurai, S. Koshimura, S. K. Sethi, and J. *A.* McCloskey, *J. Antibiot.,* **1985,38, 1440.**
- *R.* C. Jackson, T. J. Boritzki, J. **A.** Besserer, K. L. Hamelehle, J. L. Shillis, W. R. Leopold, and D. W. Fry, *Adv. Enzyme Regul.,* **1987.26, 301.**
- (a) M. Hasobe, M. Saneyoshi, and K. Isono, *J. Antibiot.,* **1985, 38, 1581;** (b) *Idem, ibid.,* **1986, 39, 1291.**
- **T. J.** Delia and G. B. Brown, *J. Org. Chem.,* **1966, 31, 178.**
- G. Zvilichovsky and G. B. Brown, *J. Org. Chem.,* **1972, 37, 1871.**
- (a) F. Nohara, M. Nishii, K. Ogawa, K. Isono, M. Ubukata, T. Fujii, T. Itaya, and T. Saito, 21. *Tetrahedron Lett.,* **1987, 28, 1287;** (b) **K.** Ogawa, M. Nishii, J. Inagaki, F. Nohara, T. Saito, T. Itaya, and T. Fujii, *Chem. Pharm. Bull.,* **1992.40, 343.**
- K. Ogawa, Ph. D. Dissertation, Kanazawa University, May **1994,** pp. **29-31.**
- M. Kitahara, K. Shinjyo, M. Fukae, K. Hosoe, T. Shiraishi, K. Ishii, K. Watanabe, and H. Kawaharada, *J. Antibiot.,* **1990.43, 352.**
- K. **A.** Werbovetz and T. L. Macdonald, *Bioorg. Med. Chem. Lett.,* **1994,4, 2323.**
- For a discussion of similar activation of C(8). see W. Adam and *A.* Treiber, *J. Am. Chem. Soc.,* **1995, 117, 2686.**
- K. Ogawa, M. Nishii, J. Inagaki, F. Nohara, T. Saito, T. Itaya, and T. Fujii, *Chem. Pharm. Bull.,* 26. 1992, 40, 1315.
- M. Nishii, Y. Fujihara, J. Inagaki, K. Ogawa, F. Nohara, M. Ubukata, and K. Isono, *Agric. Biol.* $27₁$ *Chem.,* 1986, *50,* 2697.
- M. Kitahara, K. Ishii, T. Okazaki, T. Hidaka, and K. Watanabe, *J. Antibiot.,* 1986,39, 1288. 28.
- (a) K. Ogawa, T. Saito, F. Nohara, M. Nishii, T. Itaya, and T. Fujii, *Heterocycles,* 1988, 27, 885; (b) K. Ogawa, M. Nishii, F. Nohara, T. Saito, T. Itaya, and T. Fujii, *Chem. Pharm. Bull.,* 1992, 40, 612.
- 30. Ref. 1a, Chapter 1.
- For a similar N-oxidation of adenine-2-d to form adenine-2-d I-oxide, see T. Fujii, T. Saito, K. Kizu, H. Hayashibara, Y. Kumazawa, S. Nakajima, and T. Fujisawa, *Chem. Pharm. Bull.,* 1991, 39, 301.
- E. Ochiai, 'Aromatic Amine Oxides,' Elsevier, Amsterdam, 1967, pp. 50–51. $32.$
- H.-J. Rhaese, *Biochim. Biophys. Acta,* 1968, *166,* 311. $33.$
- 0. Yamamoto, *J. Radiat. Res.,* 1980,21, 239. 34.
- (a) T. Fujii, K. Ogawa, T. Saito, K. Kobayashi, and T. Itaya, *Heterocycles,* 1994, 38, 477; (b) T. Fujii, K. Ogawa, T. Saito, K. Kobayashi, T. Itaya, T. Date, and K. Okamura, *Chem. Pharm. Bull.,* 1995, 43, 53.
- T. Fujii, *G.* C. Walker, N. J. Leonard, D. C. DeLong, and K. Gerzon, *J. Med. Chern.,* 1979,22, 125.
- (a) T. Fujii, Y. Takada, K. Ogawa, and T. Itaya, Abstracts of Papers, Part 2, 115th Annual Meeting $37.$ of Pharmaceutical Society of Japan, Sendai, March 1995, p. 73; (b) T. Fujii, Y. Takada, and T. Itaya, Abstracts of Papers, Part 2, 116th Annual Meeting of Pharmaceutical Society of Japan, Kanazawa, March 1996, p. 139.
- T. Fujii, C. C. Wu, and T. Itaya, *Chem. Pharm. Bull.,* 1971, 19, 1368.
- (a) K. Ogawa, T. Saito, T. Itaya, and T. Fujii, *Heterocycles,* 1994,38, 253; (b) T. Fujii, K. Ogawa, 39. T. Saito, and T. Itaya, *Chem. Pharm. Bull.,* 1995,43, 328.
- (a) T. Fujii, K. Ogawa, and T. Itaya, *Heterocycles,* 1994, 37, 219; (b) T. Itaya, K. Ogawa, Y. Takada, and T. Fujii, *Chem. Pharm. Bull.,* 1996,44, in press.
- T. Fujii, Y. Takada, K. Ogawa, T. Itaya, and S. Matsubara, *Chem. Pharm. Bull.,* 1995,43, 325. 41.
- *T.* Fujii, K. Ogawa, T. Saito, T. Itaya, T. Date, and K. Okamura, *Chem. Pharm. Bull.,* 1995.43, 42. 321.
- 43. (a) G. B. Elion, *Angew. Chem., Int. Ed. Engl.,* 1989,28, 870; (b) T. A. Krenitsky, W. W. Hall, **J.** L. Selph, **J.** F. Tmax, and **R.** Vinegar, **J.** *Med. Chem.,* 1989,32, 1471.
- 44. A. Giner-Sorolla, J. *Heterocycl. Chem.,* 1971,8, 651.
- 45. G. B. Brown, G. Levin, S. Murphy, A. Sele, H. C. Reilly, G. S. Tamowski, F. A. Schmid, M. N. Teller, and C. C. Stock, **J.** *Med. Chem.,* 1965, 8, 190.
- 46. (a) K. Ogawa, T. Itaya, and T. Fujii, *Heterocycles,* 1994, 38, 1225; (b) T. Fujii, K. Ogawa, T. Itaya, T. Date, **J.** Inagaki, and F. Nohara, *Chem. Pharm. Bull.,* 1995,43,408.

Received, 19th February, 1996